

Strategies for Accelerating the Design of Dialogue Applications
using Heuristic Information from the Backend Database

L. F. D’Haro1, R. Cordoba1, R. San-Segundo1, J. Macias-Guarasa2, J. M. Pardo1
1 Speech Technology Group - Dept. of Electronic Engineering. Universidad Politécnica de Madrid

2 Department of Electronics. University of Alcala (UAH)
{lfdharo, cordoba, lapiz, pardo}@die.upm.es, macias@depeca.uah.es

Abstract
Nowadays, current commercial and academic platforms for
developing spoken dialogue applications lack of acceleration
strategies based on using heuristic information from the
contents or structure of the backend database in order to
speed up the definition of the dialogue flow. In this paper we
describe our attempts to take advantage of these information
sources using the following strategies: the quick creation of
classes and attributes to define the data model structure, the
semi-automatic generation and debugging of database access
functions, the automatic proposal of the slots that should be
preferably requested using mixed-initiative forms or the slots
that are better to request one by one using directed forms, and
the generation of automatic state proposals to specify the
transition network that defines the dialogue flow. Subjective
and objective evaluations confirm the advantages of using the
proposed strategies to simplify the design, and the high
acceptance of the platform and its acceleration strategies.
Index Terms: Development Platforms, Automatic Design of
Dialogue Systems, Data Mining.

1. Introduction
Currently, the growing demand of automatic dialogue services
for different domains, user profiles, and languages, has led to
the development of many commercial and academic platforms
that provide all the necessary components for designing,
executing and maintaining such services with a minimum
effort and with innovative functions that make them
interesting for developers and final users.

In an effort for accelerating the design of multimodal and
multilingual dialogue applications, all commercial platforms
support dedicated hardware and state-of-the-art modules such
as language identification, speech recognizers and
synthesizers, etc., optimized to guarantee users satisfaction
and minimum fine-tuning in the run-time system. The use of
user-friendly graphical interfaces simplifies the development
of complex dialogues, together with the inclusion of built-in
libraries for typical dialogue states such as requesting card or
social security numbers, etc., and additional assistants for
debugging, logging, simulating and deploying the service.
Finally, the generation of the runtime scripts using
widespread standards such as VoiceXML, SALT, CCXML,
etc., increases the portability and reduces costs.

In contrast to commercial platforms, academic platforms
(e.g. CSLU-RAD1, DialogDesigner 2, Olympus3, etc.) do not
necessarily incorporate all the features mentioned above, but

1 http://cslu.cse.ogi.edu/toolkit/
2 http://spokendialogue.dk/
3 http://www.ravenclaw-olympus.org/

allow more complex dialogue interactions. Most of them are
freely available as open source, and their functionalities can
be extended using third party modules.

Nowadays, just a few research platforms include some
kind of acceleration strategies to the design based on the
contents or the structure of the database. We could mention
the following ones.

In [9], different data mining techniques are used to
automate the selection of content data to be used in system
initiative queries, and to provide summarized answers. At
runtime, the system dynamically selects those that best narrow
down the interaction flow with the final users.

In [8], a complete platform to build voice apps is
described. Here, the system uses the dynamic contents of the
database to create new grammars and prompts, as well as the
dialogue flow for presenting information to the user, or for
solving errors, through predefined templates and user profiles.

Finally, in [4] the contents of corporate websites are used
to create automatically spoken and text-based dialogue
applications. Although the dialogue flow is predefined, this
paper shows that important knowledge can be extracted from
a well-designed content, and how it can be incorporated into
the different modules of the dialogue system.

The paper is organized as follows: section 2 provides an
overview of the overall platform architecture. Section 3
describes the proposed acceleration strategies in detail.
Section 4 describes the subjective and objective evaluations,
and section 5 outlines conclusions and future work.

2. Platform Architecture
This paper is a continuation of the work done in the European
project Gemini (IST-2001-32343), where the objective was to
create an open and modular platform for the development of
user-friendly, natural, multilingual and multi-modal dialogue
applications, called the Application Generation Platform
(AGP), which is made up of different assistants and tools. It
consists of three main layers integrated into a common
graphical user interface (GUI) that guides the designer step-
by-step. In the first one, the framework layer, the designer
specifies global aspects related to the application and the data.
This layer includes the Data Model Assistant (DMA), where
the database structure is created, and the Data Connector
Model Assistant (DCMA), where the application specific
database access functions are created. The second layer,
called retrieval layer, is modality and language independent.
This layer includes the State Flow Model Assistant (SFMA)
and the Retrieval Model Assistant (RMA). The designer first
uses the SFMA to create the dialogue flow at an abstract
level, by specifying the high-level states of the dialogue, plus
the slots to ask to the user and the transitions among states.
Then, the RMA is used to include all the actions (e.g., loops,
if-conditions, math or string operations, conditions for

Copyright © 2009 ISCA 6-10 September, Brighton UK280

making transitions between states, calls to dialogs to
provide/obtain information to/from the user, etc.) to be done
in each state defined in the SFMA. Finally, the third layer,
called the dialogs layer, contains the assistants that complete
the general flow specifying for each dialogue the details that
are modality and language dependent. Here, for example, the
prompts and grammars for each language, the appearance and
contents of the Web pages, the treatment of speech
recognition or Internet access errors, the presentation of
information on screen or using speech, etc., are defined.
Furthermore, the VoiceXML and xHTML scripts for the
speech and web modalities are also automatically generated.
Further details of the AGP can be found in [2] and [3].

3. Proposed Accelerations
In [2] and [3], we described our initial steps to include several
acceleration strategies, based mainly on exploiting the
database structure, applied successfully to different platform
assistants, with a special emphasis in the RMA. In this work,
we apply new strategies that exploit the database contents
incorporated mainly into the Data Model Assistant, the Data
Connector Model Assistant and the State Flow Model
Assistant. The next sections describe in detail these assistants
and the new acceleration strategies.

3.1. Strategies to the Data Model Assistant (DMA)

In this assistant, the designer creates the data model structure
of the service through class descriptions. These classes
provide information about which fields in the database are
relevant for the service and their organization. A class can be
characterized by a list of attributes, a description, and
optionally a list of base classes (inheriting their attributes);
and the attributes should correspond to information to be
requested/presented to the user in one or more dialogue states.
Attributes may be: a) of atomic types (e.g., string, Boolean,
float, date, etc.), b) complex objects, obtained by embedding
or referring to an existing class, or c) lists of either atomic
type items or complex objects.

In our previous work [2][3], the assistant included the
following strategies: a) support for using libraries of models,
which can be copied totally or partially, or even mix several
classes, b) automatic creation of a class when it is referenced
as an attribute inside another one, and c) definition of classes
inheriting a base class attributes.

In this work, we have added the possibility of including
information regarding the relationship between class
attributes and the fields and tables in the database. In order to
accelerate the design, the system automatically extracts and
analyzes heuristic information from the database contents and
proposes full custom classes and attributes.

3.1.1. Extraction of heuristic information

This process is done using an open SQL query to retrieve
information of every table, field and record in the database.
This information includes the name and number of the tables
and fields, and the number of records for every table. In
addition, the following features for each field are also
generated: a) average length, b) the proportion of records that
are different, c) field type, d) number of empty records, and e)
language dependent fields. These features are mainly used to
simplify the design or to improve the presentation of
information in the posterior assistants.

These heuristics are currently used for: (a) and (b) to
unify slots as mixed initiative or not (see section 3.3.1), (c) to

accelerate the creation of the data model structure (section
3.1.2), (d) to sort by relevance the attributes displayed by the
wizard when creating the database structure (section 3.1.2),
and (e) to avoid the proposal of states in the SFMA that will
never be used (section 3.3.2) since the dialogue flow in this
assistant is language independent.

Figure 1. Wizard for semi-automatic class proposal.

3.1.2. Semi-automatic class proposal

After collecting all the heuristics, the assistant includes a
wizard (see Figure 1) that allows the designer to create
custom classes selecting the tables and fields of the database
(left side in Figure 1) and/or from already existing classes in
the model (right side). The heuristic information is used to set
automatically the field types in the wizard. For example, in
Figure 1 the field type for code in the database is String (the
most generic type), but the wizard changes it to integer
because all the values are actually integer, although it can be
edited by the designer. Besides, the wizard also proposes
automatic alternative names for the new class and attributes
when it detects duplicated names with already defined ones.
In the example, the system proposes code_1.

3.2. Strategies Applied to the Data Connector Model
Assistant (DCMA)

This assistant allows the definition of the prototypes (i.e. only
the input and output parameters) of the database access
functions used in the runtime system. The advantage of using
prototypes is that their actual implementation is not required
during the design of the dialogue flow.

The main acceleration strategy, included in the first
version of the assistant, was the association of the
input/output arguments to attributes and classes defined in the
data model structure (section 3.1). This information is used by
the retrieval model assistant (RMA)[2] to create dialogue
proposals and to automatically propose database access
functions for a given dialogue in the design.

3.2.1. Semi-automatic generation of SQL queries

In this case we have incorporated a wizard that simplifies the
process of creating the function prototypes (API), reducing
the necessity of learning a new programming language (SQL),
and that simplifies the process of adding the proposed query
into the real-time modules and scripts. The new wizard semi-
automatically creates the SQL statements for the given
prototype and provides a pre-view of the results that the
system would retrieve in the real-time system. In contrast,
current platforms do not provide automatic proposals.

281

Figure 2. SFMA workspace and pop up window with state proposals from classes defined in the data model structure

The new wizard uses the information of the relationships
between the arguments and the database model and database
fields to automatically create the SQL statement using the
input arguments of the function prototype as constraints in the
WHERE clause and the output arguments as returned fields in
the SELECT clause. The wizard also allows the inclusion of
new input/output arguments or constraints supported by the
SQL standard if the prototype is not still complete.

3.3. Strategies Applied to the State Flow Model
Assistant (SFMA)

This assistant allows the designer to create a state transition
network [7] that represents the dialogue flow at an abstract
level, i.e. specifying only the high-level states of the dialogue,
the slots to be asked to the user, and the transitions between
states, but not the specific details of each state. The GUI
allows the definition of new states using wizard-driven steps
and a drag-and-drop interface. An important strategy from the
previous version is the possibility of specifying the slots
through attributes offered automatically from the data model.
The new acceleration strategies are the unification of the slots
to be requested using system or mixed initiative forms
(section 3.3.1), and the automatic generation of state
proposals (section 3.3.2).

3.3.1. Automatic unification of slots for mixed
initiative

This acceleration strategy helps the designer to decide when
two or more slots are good candidates to be requested one by
one (using directed forms) or at the same time (using mixed-
initiative forms) according to the VoiceXML terminology.
This functionality is only available when the slots in a given
state are all related to a table and field in the backend
database (section 3.2). The assistant uses the heuristics
obtained for the given fields (section 3.1.1) and applies a set
of customizable rules to decide which slots can be unified and
which ones cannot.

For instance, the system does not propose the unification
when: a) there are two slots defined as strings and the sum of
the average length of both is greater than 20 characters; in this
case, the system avoids the recognition of very long
sentences, b) one of the slots is defined as a string with an
average length greater than 10 characters, and the other slot is
an integer/float number with an average length of 5
characters. In this case, the rule avoids the recognition of long

strings, e.g. an address or name, plus the recognition of long
numeric quantities, e.g. phone or social security numbers, c)
there are two numeric slots with a proportion of different
values close to one, and the total number of records of both
fields is high (configurable value), then the system determines
that these slots have a large vocabulary and a high probability
of misrecognition. So, in all 3 cases, the system decides that it
is better to ask one slot at a time (system initiative).

3.3.2. Automatic states

In this strategy, the assistant creates automatically dialogue
states that include the slots to be requested to the user. Using
the information of the database structure (DMA) and the
database access functions (DCMA), the assistant creates the
following kinds of state proposals.

Class dependent states: For each class defined in the
DMA, the assistant creates a class template that the designer
can drag and drop into the workspace. Then, a pop-up
window allows the designer to select the attributes s/he wants
to use as slots in the new state. Finally, the new state is
inserted into the workspace allowing the designer to define
the transitions (i.e. connections) to other states. Figure 2
shows an example of using the template class_Transaction. In
this case the designer selects the attributes
TransactionAmount and AccountNumber to be used as slots
in the new state Transaction. Observe that the assistant
expands complex attributes (with inheritance and objects)
allowing only the selection of atomic attributes.

From database access functions: In this case, the system
analyzes all the database functions defined in the DCMA
containing input arguments defined as atomic types.

Then, the system uses the name of the function as
proposal for the name of the state, and the input arguments as
slots for that state. Again, the assistant allows the designer to
select several of these proposals in order to create more
complex states. For instance, if there is a database access
function called perfomTransaction, which receives three input
arguments (i.e. DebitAccountNumber, CreditAccountNumber
and TransactionAmmount), the system automatically creates a
new state proposal called perfomTransaction that includes the
three slots. Applying similar rules to the ones described in
section 3.3.1 the system would propose to request them one
by one instead of using mixed-initiative.

Others: Empty states for allowing top-down design and
single-slot states from the input arguments of the database
access functions defined in the DCMA.

282

Figure 3.Objective metrics for all the evaluators/tasks: a) Average improvements, b) Elapsed time in seconds

4. Evaluation
With the objective of evaluating the performance of each of
the assistants that make up the platform and the acceleration
strategies described above, we carried out a subjective and
objective evaluation with 9 developers with different
experience levels and profiles (4 novices, 3 intermediates, and
2 experts) on designing dialogue services, where experts had
previous experience with this platform and at least two others.
All of them were requested to fulfil the same tasks covering
each of the proposed accelerations and assistants to evaluate,
e.g. to create a class model with two atomic and one complex
attributes (DMA), to create a state with mixed initiative slots
(SFMA), and to create a dialogue with over-answering and an
IF-Then-Else condition (RMA). Further details can be
obtained in [1]. Even though improvements in the RMA are
described in [2] and [3], we include here its evaluation results
for homogeneity and to demonstrate the effectiveness of our
accelerations in the most complex assistant.

For the objective evaluation, we collected the metrics
proposed in [6]: elapsed time, number of clicks, and number
of keystrokes. The metrics obtained with the accelerated
assistants were compared with the collected using a built-in
editor called Diagen [5], which features fewer accelerations
but generates the same information specified by our assistants.
As accelerations, Diagen only provides default templates that
the designer has to complete and a guided procedure using
different pop-up windows to fulfil the templates.

The results, see Figure 3a, confirm that the design time
can be reduced, in average for all the assistants, evaluators
and tasks, in more than 56%, the number of keystrokes in
84%, and the number of clicks in 14%. The results in Figure
3b show the elapsed time for comparing our platform with
accelerations and Diagen. It is important to highlight the
important reductions, one order of magnitude, in the RMA
considering that it is the main task in the design. Finally, it is
also important to mention the differences between the
evaluator profiles. In detail, for the AGP the average elapsed
time for the experts was 25% better than for the intermediates
and 53% lower than for the novices. For Diagen, the elapsed
time for experts was 20% lower than for intermediates and
37% lower than for novices. These results confirm that the
differences between experts and novices are reduced when
both are requested to do the same task but without the
accelerations.

In the subjective evaluation, the DMA and DCMA were
both scored with 8.3, the SFMA with 9.0, the RMA with 8.6,
and Diagen with 4.5. Regarding the acceleration strategies,
the evaluators scored the automatic states with 9.3, the SQL
generation and the unification of slots for MI with 9.0, and
the class proposals with 8.9. These results confirm the

designer-friendliness of the assistants and accelerations, as
well as their usability, in contrast to Diagen.

5. Conclusions and Future Work
In this paper, we have described a set of new and innovative
acceleration strategies based on using heuristic information
extracted from the backend database of the service in order to
accelerate the design of multimodal and multilingual dialogue
apps. Our proposals include the creation of automatic state
proposals, the unification of slots to be requested using
mixed-initiative dialogues, and the semi-automatic creation
and debugging of SQL statements. Subjective and objective
evaluations confirm that the strategies are useful and
contribute to simplify and accelerate the design.

As future work, we propose the creation of new rules for
unifying slots for mixed-initiative dialogues, to improve the
GUI to define the database access prototypes by offering more
automatisms, and the extraction of new heuristics to detect
automatically the relationship between tables and fields in
order to propose more complex classes in the DMA.

6. Acknowledgements
This work has been supported by SD-TEAM (TIN2008-06856-C05-
03/05) and ROBONAUTA (DPI2007-66846-c02-02).

7. References
[1] D’Haro. L. F. “Speed Up Strategies for the Creation of

Multimodal and Multilingual Dialogue Systems”. PhD Thesis.
Universidad Politécnica de Madrid. 2009.

[2] D’Haro, L. F., Cordoba, et.al. “An advanced platform to speed
up the design of multilingual dialogue applications for multiple
modalities” Speech Communication (48):8, pp. 863-887, 2006.

[3] D’Haro, L. F., Cordoba, R., et. al., “Strategies to reduce design
time in multimodal/multilingual dialog applications”. ICSLP
2004, pp IV-3057–3060.

[4] Feng, J., Bangalore, S., Rahim, M. “WEBTALK: Mining
Websites for Automatically Building Dialog Systems”. ASRU
2003, pp. 168-173.

[5] Hamerich, S. “From GEMINI to DiaGen: Improving
Development of Speech Dialogues for Embedded Systems”. 9th
SIGDIAL 2008, pp. 92-95.

[6] Jung, S., Lee, C., et. al. "DialogStudio : A Workbench for Data-
driven Spoken Dialogue System Development and
Management". Speech Communications, 50 (8-9), pp. 683-697.
2008.

[7] McTear, M. “Modelling spoken dialogues with state transition
diagrams: experiences with the CSLU toolkit”. ICSLP 1998, pp.
1223–1226.

[8] Pargellis, A. N., Kuo, H. J., Lee, C. “An automatic dialogue
generation platform for personalized dialogue applications”.
Speech Communication Vol. 42, pp. 329-351. 2004.

[9] Polifroni, J. and Walker, M. “Learning Database Content for
Spoken Dialogue System Design”. LREC 2006, pp. 143-148.

283

	Welcome Page
	Hub Page
	Session List
	Table of Contents Entry of this Manuscript
	Brief Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Detailed Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Multimedia File Index

	Abstract Book
	Abstract Card for this Manuscript

	Next Manuscript
	Preceding Manuscript

	Previous View

	Search

	Also by R. San-Segundo
	Also by J. Macias-Guarasa
	Also by J.M. Pardo
