
Expert Systems with Applications 39 (2012) 5665–5680
Contents lists available at SciVerse ScienceDirect

Expert Systems with Applications

journal homepage: www.elsevier .com/locate /eswa
Application of backend database contents and structure to the design
of spoken dialog services

Luis Fernando D’Haro ⇑, Ricardo de Córdoba, Juan Manuel Montero, Javier Ferreiros, José Manuel Pardo
Grupo de Tecnología del Habla, Universidad Politécnica de Madrid, Madrid, Spain

a r t i c l e i n f o a b s t r a c t
Keywords:
Development tools
Automatic design of dialog systems
Data mining
VoiceXML
0957-4174/$ - see front matter � 2011 Elsevier Ltd. A
doi:10.1016/j.eswa.2011.11.104

⇑ Corresponding author. Address: ETSI Telecomun
s/n, 28040 Madrid, Spain. Tel.: +34 91 453 35 43; fax

E-mail addresses: lfdharo@die.upm.es (L.F. D
(R. de Córdoba), juancho@die.upm.es (J.M. Montero),
pardo@die.upm.es (J.M. Pardo).
Current development platforms for designing spoken dialog services feature different kinds of strategies
to help designers build, test, and deploy their applications. In general, these platforms are made up of sev-
eral assistants that handle the different design stages (e.g. definition of the dialog flow, prompt and gram-
mar definition, database connection, or to debug and test the running of the application). In spite of all
the advances in this area, in general the process of designing spoken-based dialog services is a time con-
suming task that needs to be accelerated. In this paper we describe a complete development platform
that reduces the design time by using different types of acceleration strategies based on using informa-
tion from the data model structure and database contents, as well as cumulative information obtained
throughout the successive steps in the design. Thanks to these accelerations, the interaction with the
platform is simplified and the design is reduced, in most cases, to simple confirmations to the ‘‘proposals’’
that the platform automatically provides at each stage.

Different kinds of proposals are available to complete the application flow such as the possibility of
selecting which information slots should be requested to the user together, predefined templates for
common dialogs, the most probable actions that make up each state defined in the flow, different solu-
tions to solve specific speech-modality problems such as the presentation of the lists of retrieved results
after querying the backend database. The platform also includes accelerations for creating speech gram-
mars and prompts, and the SQL queries for accessing the database at runtime.

Finally, we will describe the setup and results obtained in a simultaneous summative, subjective and
objective evaluations with different designers used to test the usability of the proposed accelerations
as well as their contribution to reducing the design time and interaction.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

The growing interest from companies in using new information
technologies as a means to getting closer to the final users has led
to the quick growth of and improvement in automatic dialog sys-
tems for tasks involving a database query. In this kind of task, users
interact with an automatic system to retrieve or exchange informa-
tion that is available in a backend database. Examples of this kind
of service are flight reservations, information retrieval about enter-
tainment events, or customer care services, etc., 24 h a day; 7 days
a week.

One of the main difficulties with these systems is the process of
designing them in a fast and flexible way, so that the time needed by
the designer to design the service and the time that it will take the
ll rights reserved.

icación, Ciudad Universitaria
: +34 91 336 73 23.
’Haro), cordoba@die.upm.es
jfl@die.upm.es (J. Ferreiros),
user to obtain the desired information in the real-time system can
both be reduced. Given the different characteristics and requisites
of the final users, the service is also expected to be available in sev-
eral languages and modalities. It is also expected that the same de-
sign can be reused for new applications with minimal modifications.

Fortunately, the increasing demand for automatic dialog sys-
tems has resulted in several companies and academic institutions
working in the development of fully integrated platforms that pro-
vide all of the aforementioned requirements. In general, all current
development platforms allow rapid development, debugging,
maintenance and deployment of the service; at the same time,
thanks to their being made of different and independent assistant
modules, they allow different teams of developers to work on the
same project at the same time (i.e. collaborative role-based devel-
opment). Using these modules, designers can specify, among oth-
ers: the application flow, grammars and system prompts, actions
for error handling, integration with backend databases, etc. On
the other hand, all these platforms include as their main strategy
for accelerating the design, built-in components such as dialog
libraries, grammars, and prompts for common situations (e.g. for

http://dx.doi.org/10.1016/j.eswa.2011.11.104
mailto:lfdharo@die.upm.es
mailto:cordoba@die.upm.es
mailto:juancho@die.upm.es
mailto:jfl@die.upm.es
mailto:pardo@die.upm.es
http://dx.doi.org/10.1016/j.eswa.2011.11.104
http://www.sciencedirect.com/science/journal/09574174
http://www.elsevier.com/locate/eswa

1 http://www.w3.org/TR/voicexml21/.
2 http://www.voicexml.org/specs/multimodal/x+v/12/.
3 http://www.w3.org/TR/ccxml/.
4 http://www.speechvillage.com/home/.

5666 L.F. D’Haro et al. / Expert Systems with Applications 39 (2012) 5665–5680
requesting a phone number, an address, names, etc.). Finally, the
usability of these platforms is increased thanks to a clear and fully
integrated graphic user interface.

However, in spite of all these advantages, it is surprising to ob-
serve that all current development platforms lack of some kind of
acceleration based on basic business intelligence and data mining
methodologies applied to the contents of the task database and
from the data model structure (i.e. the set of object-oriented clas-
ses and attributes that model the database tables and fields to-
gether with their relationships). In order to cope with this, we
have included several dynamic and intelligent acceleration strate-
gies in our platform such as the prediction of the necessary infor-
mation required to complete the definition of a dialog state, the
definition of the database access functions, incorporation of
built-in solutions for presenting lists of retrieved results after que-
rying the database, selection of the information slots to be re-
quested to the user at the same time given their complexity, or
the possibility of creating complex dialog states, among others.

1.1. Relevant definitions

Throughout this paper we will refer to some widely used terms
which do not necessarily have a general accepted definition but
that we want to clarify beforehand.

Acceleration: This term will refer to the different methodolo-
gies incorporated into the assistants in order to simplify the design
and reduce the design time.

Action: This term will refer to any kind of procedure required to
complete the dialog flow, for example calls or jumps to other dia-
logs, arithmetic or string operations, programming constructs (e.g.
if-conditions, while loops), etc.

Data model: This is a graphic and object-oriented representa-
tion specified by the designer to represent the fields, tables, and
relationships in the database that are relevant to the service, i.e.
information to show to or retrieve from the user.

Dialog, state, and slot: In general, the term dialog will refer to a
specific action used to ask for or show information from/to the
users. The term state will refer mainly to a set of dialogs and other
actions, such as a database access, that are grouped together to
achieve a given goal. The term slot will refer to any compulsory
information that the system requests from the user. For instance,
in a banking application, the designer can define a single state for
carrying out a transaction between two accounts; in this case,
the slots for this state would be the debit and credit accounts and
the amount to be transferred, and in turn, the state would include
several dialogs such as one for asking for the credit account or an-
other one for telling the customer the available balance.

Mixed-initiative and over-answering: ‘Throughout this paper
the term mixed initiative refers, in accordance with the definitions
of the VoiceXML standard, to the system ability for asking for two
or more compulsory slots simultaneously from the user, and,
where the user answer is incomplete or wrong new sub-dialogs
are started to obtain the unfiled slots (for instance, in a flight res-
ervation service, the system asks for the departure and arrival city
simultaneously). The advantage of using mixed-initiatives is that
they allow more natural interactions between the user and system,
and if there are not too many recognizer errors the interactions and
time to obtain the information are drastically reduced. On the
other hand, the term over-answering means that the user is provid-
ing additional data – not compulsory at the current state – to the
system (for instance, the system asks only for the departure city
but the user provides it together with the arrival city). According
to the standard, the creation of mixed-initiative dialogs is compul-
sory for any platform, but over-answering is not required; how-
ever, in our platform both are allowed in such as way that the
running script can be used in any voice browser.
1.2. Paper organization

This paper is organized as follows: Section 2 provides a brief re-
view of the state-of-the-art on development platforms and acceler-
ation strategies for designing speech-based dialog systems. In
Section 3 we present an overall description of the platform archi-
tecture and the main accelerations included in the assistants of
the platform; then, in Section 4 we will show the setup and results
of a subjective and objective evaluation to test the proposed strat-
egies. Finally, Sections 5 and 6 show the future work and conclu-
sions, respectively followed by acknowledgments.
2. State-of-the-art on development platforms and acceleration
strategies

This section describes relevant platforms and tools for design-
ing VoiceXML-based applications that were studied and compared
with our design platform. In this study, we have made a distinction
between systems developed for both research and commercial
purposes, since this allows us to make a fair comparison between
them and to extract relevant features. For instance, commercial
platforms usually present a clear and elegant interface that reflects
the great effort that companies are making in this respect, as well
as the high level of use of standard languages to increase flexibility
and simplify the sharing of files across platforms; features that
developers often value highly when they use or compare plat-
forms. For further and more detailed information about these or
other development tools, please check the Web address of each
of them or refer to López-Cózar and Araki (2005), McTear (2004),
and D’Haro (2009).

2.1. Commercial platforms

Summarizing, we can say that all commercial platforms include
state-of-the-art modules such as speech recognizers, language
identification, speaker verification, and high quality speech synthe-
sizers. They also allow the creation of the service using widespread
standard languages and protocols such as VoiceXML,1 X+V,2

xHTML, Call Control XML (CCXML),3 etc., to guarantee the integra-
tion between different vendors and platforms. These platforms are
often supported by advanced hardware modules that can be used
with a minimal programming effort and adapted easily to the run-
time system. Interestingly, the most common acceleration in these
platforms is the incorporation of a large number of predefined
libraries for typical dialog states such as requesting card or social
security numbers. They also include assistants for debugging and
logging the service, for defining speech grammars and pronunciation
dictionaries, or for obtaining service metrics. Finally, they present a
very friendly graphical user interface that simplifies the develop-
ment of very complex dialogs. Since these features are common to
most platforms, many of them included in ours, we will only focus
on those that are relevant to our system.

Speechdraw4: Allows the development of very complex dialog
applications such as ‘‘How may I help you’’ (Gorin, Riccardi, & Wright,
1997) without requiring any knowledge about VoiceXML. For com-
plex dialog applications, the platform incorporates a graphical flow
editor that can switch between the application logic (i.e. the dialog
flow with its states, actions and transitions) and the error recovery
logic (i.e. the actions and prompts that control the system behavior
against typical errors in the recognizer or runtime platform). As an

http://www.w3.org/TR/voicexml21/
http://www.voicexml.org/specs/multimodal/x+v/12/
http://www.w3.org/TR/ccxml/
http://www.speechvillage.com/home/

L.F. D’Haro et al. / Expert Systems with Applications 39 (2012) 5665–5680 5667
acceleration strategy, the error recovery is automatically drawn by
using pre-defined rules specified by the designer (following a similar
approach as the one we follow in our platform, see Section 3.3). The
platform also provides mechanisms to enable different designer pro-
files (i.e. flow design, grammar and backend design) to work on the
same project at the same time. Finally, the IDE allows database emu-
lation by simply entering debugging data into precompiled tables and
defining the parameters that must be sent and returned when com-
municating with the backend. This way, the platform avoids access
delays and the strong interdependence between the designer inter-
face and the integration layer when debugging the application (in
Section 3.1.2 we describe a similar assistant in our platform that fol-
lows the same underlying idea but incorporating new features).

OpenVXML Studio5: This platform includes configurable built-in
modules, similar to some of the templates included in our develop-
ment platform, which provide the main functionalities supported by
the VoiceXML language. Each time a module is used, the visual inter-
face allows the designer to set it up. However, the system only pro-
poses default values when configuring the modules and not state
dependent values as we do. In order to reduce the amount of infor-
mation displayed in the workspace, the GUI uses multiple parallel
canvases and a special kind of connector between canvases called
wormholes. Our platform includes a similar functionality, as well
as the possibility of encapsulating dialog actions in order to provide
basic or detailed information.

On the other hand, the platform incorporates the concept of
Business Objects that represent the fields of the database that
the designer defines as necessary for the current service (a similar
concept to the classes and attributes used in our platform, see Sec-
tion 3.1.1). These objects are used later, among others, during the
definition of the database queries to retrieve complex objects. At
design time, the platform asks the developer to match each partic-
ular attribute of the object to a dialog variable that is used to pro-
vide the information retrieved from the database to the user. In our
platform, we follow a similar approach but we go a step forward by
creating a semi-automatic procedure that proposes the best
matching, which automatically creates the dialog variables (see
Section 3.2.2). Finally, the platform accelerates the creation of sys-
tem prompts allowing the designer to type in the words that make
up the message and then complete it by using dynamic values
stored in the dialog variables following a procedure similar to
the one we have implemented in our platform (see Section 3.3).

Vocalocity App Center6: This platform provides several configu-
rable object-models that can be connected to each other through
conditioned or direct transitions. Each object includes its own kind
of configurable parameter and may have one or several outputs
depending on its configuration for error handling or if there are dif-
ferent output results. The most interesting feature of the platform is
that the design of almost any basic service can be specified in four
steps, i.e. dragging and dropping three objects into the application
canvas and connecting them sequentially. The first step, called the
Ask step, consists of the creation of an action for requesting informa-
tion from the user. The second step, called the Data step, represents
the process of accessing and retrieving information from the back-
end database. The third step, called the Tell step, corresponds to
the action of providing the retrieved information to the user. Finally,
during the fourth step, called the Publish step, the designer creates
the VoiceXML script and configures the platform in order to make
the service available. In our platform we have developed a very sim-
ilar approach where most of the actions required to define a dialog
correspond to the first three steps described above (see Section
3.2.2) and the final script is also automatically created.
5 http://www.eclipse.org/vtp/openvxml-announce/content/html/index.htm.
6 http://www.vocalocity.com/products/productdetail.cfm?productid=100007.
2.2. Academic and research platforms

In contrast to most commercial platforms, academic and re-
search platforms allow designers to create more complex dialog
interactions by providing features not included in any standard
description language. They also allow the creation of more com-
plex dialogs, some are freely available as open source, and their
functionalities can be extended by using proprietary or third party
modules. The following are noteworthy examples of tools devel-
oped in academic environments.

DialogStudio: Described in detail in Jung, Lee, Kima, and Geun-
bae Lee (2008), this platform integrates several tools that cover the
different steps in designing a data-driven spoken dialog system, i.e.
from preparing the data to testing the service. One of the main
objectives of the platform is to provide a complete set of function-
alities for preparing the input files to be used by the speech recog-
nizer, language understanding, and dialog manager modules. The
platform also provides an annotation environment for tagging
semantic and knowledge information, as well as dialog examples;
in this case, the platform uses a meta-model language that allows
the quick definition and adaptation of semantic and dialog struc-
tures to domain specific knowledge. Thanks to these accelerations
the platform also provides an average time reduction of 30% when
compared to other editors on the creation and annotation of differ-
ent tasks.

CSLU RAD Toolkit7: Allows the development of multimodal sys-
tem initiative dialogs (combining voice, DTMF, interactive images,
and animated agents), by using a representation based on state-tran-
sition networks (McTear, 1998) that describe the different functions
and actions in the dialog. The states and transitions of the dialog flow
are created using a toolbar with objects that can be dragged and
dropped into the canvas and connected with arrows to other objects.
The toolkit reduces the information displayed on the canvas by
grouping repetitive or common actions. The toolkit includes embed-
ded configurable speech recognition and text-to-speech systems,
and an animated agent with configurable and synchronizable facial
expressions (i.e. the face/lip movements of the agent can be aligned
with the speech prompt).

Finally, Paternò and Sisti (2010) describe an integrated environ-
ment for designing ubiquitous multi-device dialog applications.
One of the main advantages of this platform is the use of a high-le-
vel definition language that can be automatically transformed
using XLST sheets into the corresponding script for each modality
(e.g. VoiceXML for speech or any Web-based standard). For the
speech modality, this language allows designers to specify all of
the typical actions and elements included in the VoiceXML stan-
dard, for instance: menu-based dialogs, grammars, error recovery,
prompts, recordings, fields, scripts, etc. In our platform we have
developed a similar high level XML syntax that is also automati-
cally transformed into the final VoiceXML script used by the run-
time system (see the beginning of Section 3). They also describe
in this paper interesting solutions to support the same kind of user
interaction provided in visual interfaces (e.g. Web) such as: spin
boxes or multiple vocal selections by using only elements sup-
ported in the VoiceXML standard. In this paper, we also describe
similar solutions in our platform to allow over-answering dialogs
or to jump back to previous dialogs in the flow.
2.3. Research platforms that provide assisted dialog design

As we have already said, surprisingly most of the aforemen-
tioned commercial and academic platforms do not include any
kind of acceleration based on the content and structure of the
7 http://cslu.cse.ogi.edu/toolkit/.

http://www.eclipse.org/vtp/openvxml-announce/content/html/index.htm
http://www.vocalocity.com/products/productdetail.cfm?productid=100007
http://cslu.cse.ogi.edu/toolkit/

5668 L.F. D’Haro et al. / Expert Systems with Applications 39 (2012) 5665–5680
backend database, which provide important information to accel-
erate the design when developing the dialog service. This section
describes examples of the most relevant systems and strategies
that we can find in the literature based on using the database con-
tents to accelerate the design of the dialog applications.

In Polifroni, Chung, and Seneff (2003) and Polifroni and Walker
(2006) a rapid development environment for creating spoken dia-
log applications using online content is described. The develop-
ment process starts by extracting knowledge from various Web
applications and composing a dynamic database from it. The dialog
flow is determined at runtime depending on the content of this
database. The authors propose a methodology for creating auto-
matic clusters that group together and organize numerical data
into symbolic data. Thus a symbolic concept such as cheap/med-
ium/expensive in the domain of a hotel reservation is automati-
cally created according to the information in the database (i.e.
hotel rates vary depending on the city). At runtime, the system also
summarizes the partially retrieved information and dynamically
creates the prompts to present it to the users, determining at the
same time the order in which they appear based on the most useful
set of attributes to narrow down the current data subset.

In Chung (2004), the database content is used together with a
simulation system in order to generate thousands of unique dia-
logs that can be used to train the speech recognizer and under-
standing module, as well as diagnosing the system behavior
against problematic user interactions or unexpected user answers,
etc. In Wang and Acero (2006), the database contents are used to
accelerate the creation of grammars for the speech recognition
and spoken language understanding modules. The system uses
the database to generate a large number of artificial sentences that
are integrated into semantic frames in order to create customized
grammars for different scenarios.

Feng, Bangalore, and Rahim (2003) present a different approach.
In this case, they do not extract information from a backend data-
base but they apply data mining techniques to the content of cor-
porate websites for automatically creating spoken and text-based
dialog applications for customer care. The process is carried out
through a Website analyzer that exploits the content and structure
of the site in order to generate structured and semi-structured task
data. Then, the generated data is classified according to predefined
information units (e.g. menu, question-answer, topic-explanation,
etc.). With this information, the dialog manager, at the runtime
system, will identify the focus or expectation of the user question
and will provide a concise answer. Although the dialog flow is not
Fig. 1. Summarized version of
defined using a GUI, it checks that important knowledge for the
different modules of a dialog system can be extracted from well-
designed contents.

3. Platform architecture

Fig. 1 shows the architecture and information flow between the
modules of the platform described in this paper. The platform in-
cludes several independent modules that have been integrated into
a common GUI to guide the designer in the design, step by step,
and at the same time, let him go back and forth. The platform is di-
vided into three main layers in order to separate the aspects that
are service specific, those corresponding to the high-level dialog
flow of the application (modality and language independent), and
the specific details imposed by the speech modality and languages.

On the other hand, it is important to mention that in order to
allow the sharing of information between modules in the platform
and to facilitate the process of converting the generated model into
the corresponding script required for different modalities, we have
developed an object oriented XML language named GDialogXML
(Schubert & Hamerich, 2005). The main feature of this specification
is its flexibility, allowing the modeling of all application data, data-
base access functions, definition of dialog variables and actions
needed at each state, system prompts, grammars, user models,
etc. The syntax also allows the updating to new versions of the
VoiceXML standard with little effort since the platform includes
an automatic translator module that can be modified accordingly.
Throughout the paper we will include fragments of the generated
code for the assistants giving suitable explanations of them; how-
ever, the complete specification can be consulted in Web page of
the GEMINI Project (2010). In order to clarify the design process,
the assistant functionalities, and the proposed acceleration strate-
gies throughout this section we are also going to use a running
example to show the process of creating a typical dialog where
one of the goals is to perform a bank transfer between accounts
by asking the user for a known and customized alias of the source
account and destination account, and the amount of money to be
transferred.

3.1. Accelerations to the definition of the data model and database
access

Following the diagram in Fig. 1, first the designer needs to spec-
ify the overall aspects of the service and data. For instance, in the
the platform architecture.

L.F. D’Haro et al. / Expert Systems with Applications 39 (2012) 5665–5680 5669
first assistant, the designer defines general default values for the
speech modality such as the number of results to be provided,
number of times to repeat a question before redirecting the call
to an operator, confidence values for different kinds of confirma-
tions, languages of the service, etc.
3.1.1. Creation of the data model structure
The next step is to specify the database structure by using an

object-oriented Data Model representation using classes, attri-
butes, and relationships (see Fig. 2). The idea of these classes and
attributes is to allow designers to provide information to the assis-
tants as to which fields in the database are relevant for the service
(i.e. to provide or request information to/from the users), as well as
the relationships between the attributes and the table and field
that they refer to in the backend database.

In the figure we can see that the Transaction class includes three
attributes corresponding to the information required to carry out
the transfer: the TransactionAmount (defined using a basic type,
i.e. Float) and two object references to the class Account that the
system will use to have access to the account alias (AccountAlias)
and the available balance before or after carrying out the transfer
(AvailableBalance). The class Account also includes other informa-
tion such as references to other complex classes not shown in
the figure. The figure also shows a section of the GDialogXML code
for the classes (number 1) and attributes in the example, as well as
information on the database table and its related fields (number 2,
i.e. table accounts and field account_alias).

In order to define the classes and attributes, the assistant in-
cludes a wizard window that allows the designer to select from
all the tables and fields in the database and which ones to use. After
selecting the fields, the assistant automatically sets the field type,
name, and relationship to the database for each new attribute.

As well as the definition of the data model structure, the assis-
tant uses an open SQL statement to extract information from the
database contents such as the name and number of the tables,
fields, and records. In addition, the following heuristic information
for each field is also calculated: (a) field type, (b) average length in
characters, (c) number of empty records, (d) language dependent
fields, (e) proportion of records that are different, (f) number of dif-
ferent words (i.e. vocabulary), (g) average number of words, (h)
average length of the words, and (i) number of different records.
This information is used afterwards to simplify the design or to im-
prove the presentation of information in later assistants. For in-
stance, when using the wizard window to define the data model
classes, the system uses these heuristics to reduce and sort by rel-
evance the fields that can be used to define the class attributes.
Fig. 2. Example of object oriente
Thus, if we have a field in a table with a high number of empty val-
ues or if the field type is considered complex (e.g. URL addresses,
bitmaps, auto-incremented fields), or the field has a long number
of words (e.g. as in a memo type field) they will not be shown since
they are not usually used in speech applications. We also use them
to propose which slots can be unified in order to be requested at
the same time by the user (see Section 3.2.1), or for creating auto-
matic dialog proposals (see Section 3.2.2).
3.1.2. Creation of database access functions
The next assistant in the platform is used to define the proto-

types of the database access functions needed for the real-time
system. The advantage of using prototypes is that their actual
implementation is not required during the design of the dialog
flow. The main acceleration strategy included in this assistant is
the possibility of relating the input/output arguments to the attri-
butes and classes of the data model.

Fig. 3 shows the XML code and a section of the assistant win-
dow to define the input and output arguments of the function pro-
totype. In the figure, number 1 corresponds to the input arguments
(i.e. account aliases and amount to transfer) and number 2 the out-
put argument (i.e. the available balance after carrying out the
transfer). Number 3 and 4 are the information on the related class
and attribute in the data model (Account.AccountAlias) and the rela-
tionship to the table and field in the database (accounts.account_
alias). This information is then used to create dialog/state proposals
and to propose database access functions automatically for a given
dialog in the design (see Section 3.2.2).

We have also included a wizard window that semi-automati-
cally creates the SQL statements for the given prototype and pro-
vides a preview of the results that the system would retrieve in
the real-time system (see Fig. 4), thus reducing the need to learn
a new programming language (SQL), and simplifying the inclusion
of the generated query in the Java servlet created for accessing the
database at runtime. Currently, few development platforms in-
clude this kind of help. The few platforms that include a similar
SQL wizard only provide debugging tools or support for many
query language standards but no automatic query proposals.

For creating the SQL query, the assistant uses the output argu-
ments (defined in the function prototype) as returned fields for
the SELECT/UPDATE clause, and the input arguments as constraints
for the WHERE clause. During this process, the wizard uses the
heuristic field type in order to propose and debug the SQL state-
ment correctly (i.e. the statement to retrieve the information from
a string field is different from the one used to retrieve a number).
Since the input/output arguments could be defined using different
d classes in the data model.

Fig. 3. Example of a database access function prototype.

Fig. 4. Wizard window for the automatic creation and testing of SQL queries.

5670 L.F. D’Haro et al. / Expert Systems with Applications 39 (2012) 5665–5680
types (i.e. atomic or object oriented), several strategies are applied
in order to create SQL queries that can use such kind of parameters.
For instance, if the argument is atomic the query uses the argu-
ment directly, but if the argument is an object the system flattens
it and provides a list with only the atomic elements allowing the
designer to select which ones to use in the SQL query from that
class.

Moreover, the assistant allows the inclusion of new input or
output arguments if the function prototype is not complete or if
the designer wants to test new combinations of arguments. The
assistant also allows the inclusion of several constraints supported
by the SQL language such as math functions (average, max, min,
etc.), sorting, selection (Top or Distinct), clustering (Group By),
Boolean operators (And, Or) for combining the query restrictions,
among others. Finally, the wizard allows the designer to preview
the records that the proposed SQL statement will retrieve in real-
time. In order to debug the query, the designer specifies the values
for the input arguments of the function, using a pop-up window, to
test the query (for acceleration, the wizard automatically proposes
the most common values for the given field in the database using
the heuristic information).

3.2. Accelerations to the definition of the dialog flow

The following step in the design is to define the dialog flow at a
high-level, i.e. without specific language or modality information.
The first assistant is used to define the states, transitions between
states, and the compulsory information that has to be asked to the
users at each state (which we call slots). Then, in the second assis-
tant, the designer defines all the actions (e.g., variables, math or
string operations, conditions for making transitions between
states, calls to dialogs to provide/obtain information to/from the
user) to be done in each state defined previously. Thanks to this
two-step process, the specification of all the detailed actions in
the last assistant is accelerated considerably. Since these assistants
are the most complex ones, here we have incorporated the most

L.F. D’Haro et al. / Expert Systems with Applications 39 (2012) 5665–5680 5671
important accelerations. Below we will describe the most interest-
ing ones. For further details please refer to D’Haro et al. (2006) and
D’Haro, Cordoba, Lucas, Barra-Chicote, and San-Segundo (2009).

3.2.1. Creation of the dialog flow
There are currently two major kinds of dialog models: Non-

structured and Structured. In the former, the model allows the
highest degree of freedom interaction between the user and the
system, since both of them are able to reason and to negotiate
the goals and information. In the latter, the dialog follows prede-
fined paths; here the richness of the dialog is limited because of
the current limitations of the technology (i.e. speech recognizers,
understanding modules, and language generation). On the other
hand, structured models can be divided into two major categories:
Finite-state (where the dialog is expressed as a state-transition
network that is naturally and easily represented using a graphical
interface) and Frame-based models (that follow the form-filling
concept in which predetermined information is required to be
filled in from the users) which is the only one supported by
VoiceXML.

In our platform we have followed, in order to display and define
the dialog flow, the same kind of representation used in most of the
current development platforms, i.e. a state transition network that
is made up of different states (forms or frames in VoiceXML) con-
sisting of several pieces of information that have to be filled in (i.e.
slots). The GUI allows the definition of new states by using wizard-
driven steps and a drag-and-drop interface. Below, we describe the
most important accelerations included these assistants.

Reduction of the confusability in the canvas: In this assistant
we have implemented an automatic algorithm that helps the de-
signer place the objects on the canvas in order to reduce the visu-
alization problems produced when all the transitions between
states are displayed. Here we have used the main idea incorporated
into the OpenVXML Studio platform (see Section 2.1), i.e. using
connectors between states when they are far from each other
(i.e. circles in Fig. 5). The proposed algorithm detects when to
use connectors or solid lines to represent the transition between
states. The final decision depends on two factors: (a) the distance
Fig. 5. Example of creation of a
in pixels between the connected states in the GUI, and (b) the num-
ber and size of the objects that are along the path of the connection
line. Thus, for instance, if the distance is longer than one third of
the size of the canvas or if when placing a solid line the number
of objects that collide with the candidate line is greater than two,
then the system uses the connectors (see circles with number 8
in Fig. 5). The direction of the flow is indicated using arrows; in
number 4, we can see that the TransactionDialog and AskOther-
Transaction states are linked together with a forward and backward
arrow that indicates the possibility of returning back from the lat-
ter to the former. Finally, the GUI allows the possibility of quickly
finding states by name or by clicking the connector to go to the
connecting state.

Automatic State Proposals: In order to accelerate the creation
of the states we have included several configurable state tem-
plates, available in a floating window through the GUI, that include
the information as to the slots to be requested to the user at each
state. Three kinds of proposal state templates are available: (a) cre-
ated from the classes in the data model, (b) created from attributes
with database dependency, and (c) created from the database ac-
cess functions. In detail, the first kind of template is created for
each class defined in the data model. When these templates are
used, the assistant allows the designer to select which attributes
to use as definitive slots in the new state. Italso expands complex
attributes (with inheritance and objects) allowing only the selec-
tion of atomic attributes because only these can be asked to the
user in the real time system. The second kind of template is created
from any attribute defined in the data model related to a database
field only if it has been used as an input argument in any of the
database access functions. The main motivation for proposing
these states is that these attributes are very likely to be asked to
the user. The proposed states contain only one slot and its name
corresponds to the name of the attribute in the data model. How-
ever, the designer can select several states before doing the drag
and drop and allowing the creation of states with multiple slots
(as we can see in Fig. 5 in numbers 1 and 2). Finally, for the third
kind of template the system analyzes all the prototypes of the
database functions containing input arguments defined as atomic
state with mixed-initiative.

5672 L.F. D’Haro et al. / Expert Systems with Applications 39 (2012) 5665–5680
types. Then, the system uses the name of the function as proposal
for the name of the state, and the input arguments as slots for that
state. Fig. 5 shows an example of the floating window with the
template proposals (number 1) and how the designer, for the cur-
rent example, selects three attributes with database dependency
(i.e. state_TransactionAmount, state_DebitAccountAlias, and state_
CreditAccountAlias), and then the three attributes to be used as slots
(number 2) in the new state TransactionDialog (number 4).

Automatic proposal of unifying slots: This is one of the most
innovative accelerations since the system suggests when two or
more slots in the state must be requested one by one (using direc-
ted forms) or together (using mixed initiative forms) according to
the VoiceXML standard. The main goals of this functionality are:
(a) to improve the performance of the speech recognition system
by avoiding difficult data to be asked simultaneously (e.g. two
dates, long number, or fields with a high vocabulary), therefore
increasing the time users spend with the system due to confirma-
tions, (b) to increase user satisfaction by allowing them to answer
system prompts by using more natural expressions, and (c) to pro-
vide an objective criteria for selecting the slots that can be espe-
cially useful for designers with a reduced knowledge of speech
technologies.

The proposal is based on the heuristic information extracted
from the database contents related to the corresponding slots to
ask to the user and on a set of predefined, but editable, rules in-
cluded in the platform from our knowledge by carrying out dialog
applications and from known guidelines in this area (Balentine &
Morgan, 2001). In total, we provide a list of 30 different rules (16
for allowing mixed-initiative and 14 for using directed forms) that
ranges from analyzing from two to three slots with different field
types (e.g. three strings, one string and one integer, two dates,
two floats). Thus, for instance, if we need to ask for two numeric
data with a proportion of different values close to one (heuristic
e in Section 3.1.1), and the total number of records of both fields
is high (heuristic i), then the system determines that these slots
have a large vocabulary and a high probability of misrecognition,
therefore it is better to ask one slot at a time (i.e. directed forms).
In another rule, mixed initiative is not allowed if there are two slots
defined as strings (heuristic a) and the sum of the average length of
both is longer than 30 characters (heuristic b). In this case, the sys-
tem tries to avoid the recognition of very long sentences. Finally, an
example of a rule that allows mixed-initiative is when we have two
slots (one string and the other float) but the vocabulary size of both
fields is no larger than 2000 words (configurable value). The assis-
tant includes a rule editor that the designer can use to add, edit, de-
lete or disable rules. In addition, the editor allows the designer to
export or import a rule file in order to be able to include rules that
have been successfully used in previous applications.

In Fig. 5 we see an example where the designer is trying to cre-
ate a state for carrying out a banking transaction, where three slots
are needed: debitAccountAlias (string), creditAccountAlias (string),
and transactionAmount (float) in accordance with the heuristics of
each one and the predefined set of rules, the system shows a list
with different kind of unifications for these slots (number 3). By
default the assistant selects the option that covers the higher num-
ber of slots at the same time (i.e. second option in the figure); how-
ever, the designer can choose another one (i.e. selecting the third
option as in the figure).

3.2.2. Definition of dialog actions
The next step in the design is to define the actions to be carried

out at each of the previously-defined states. Here, for instance, the
designer specifies the control logic within each state and the con-
ditions to jump to other dialogs, the dialogs to ask for or to show
information from or to the users, the slots that can be filled by
using over-answering dialogs, the functions to be used each time
to retrieve or modify information in the database, the procedures
to modify dialog variables (e.g. using math or string operations),
etc. Below only three of the most important accelerations in this
assistant are described; for other strategies or further details
please refer to D’Haro et al. (2006).

Automatic dialog template proposals: The first time the
assistant is started it analyzes the data model information in or-
der to create automatically, from all attributes defined as atomic
types, configurable and generic dialog templates that can be used
to request or provide information to the user (with prefix DGets
and DSays respectively) at any time in the design. If the attributes
are complex or include object inheritance, the assistant provides
configurable DSay dialogs by using a template that shows the
class and its attributes, expanding the complex attributes (with
inheritance and objects) and selecting any attribute that will form
part of the prompt. The assistant does not generate DGet dialogs
from these complex classes since they cannot be requested from
the users in real-time (i.e. users can only fill in information about
atomic attributes). Other DSay dialog templates are also available:
generic DSay to provide concepts (useful in case of providing help
to the users), configurable DSay to present variables from a dialog,
DSay to present lists of objects retrieved from the database, and
predefined DSay such as: Welcome, Goodbye, Transfer to opera-
tor, etc. All these dialogs are available to the designer to be used
at any time through a dockable toolbar near to the workspace.
The list of all the generated dialogs is then filtered in the next
strategy in order to provide relevant actions for defining each
state.

Automatic action proposals for each state: The idea of this
acceleration is to show the designer in a single window all of the
typical actions in an information retrieval sequence required to
complete a state, i.e. the dialogs to fill in the slots (DGet), the func-
tion to carry out the database access, the dialog used to show the
results (DSay) and the conditions to jump to following states (sim-
ilar to the steps proposed in the Vocalocity platform, Section 2.1).

Fig. 6 shows the proposals for the state that carries out a trans-
action between two accounts. By using this window the designer
would only need to drag and drop into the state edition window
(not shown in the figure) first the mixed-initiative template
(DGet_Mixed_Initiative_Template) in order to request both account
aliases, then the dialog to ask for the amount (DGet_Transaction-
Amount), then the database access function (PerformTransaction),
and finally the dialog to inform the user of the available balance
(DSay_AvailableBalance).

In order to decide which actions are relevant, the wizard applies
the following rules:

A. For the selection of the DGet dialogs: the system filters out
the list of automatic dialog templates (mentioned above)
by selecting only those that have the same data model rela-
tionship (i.e. from the same attribute or database informa-
tion) as the slots to be filled in the current state; if the
filtered list is empty, the system searches similarities in
the name or attribute type.

B. For selecting the database access functions: the system first
considers functions with the same number and type of input
parameters as the defined slots for the current state. The
next criterion is to apply a partial matching in the number
of arguments but maintaining the same relationship with
the data model. Finally, the relaxed criterion is to find func-
tions with similar names or arguments to the slots and dia-
log. If even with the relaxed filter no function is selected/
proposed, it would probably mean that there is no database
access function suitable for that state. Therefore, the assis-
tant offers the possibility of going back to the assistant for
creating a database function and then reload the proposals.

Fig. 6. Window with proposal of actions to complete a state.

L.F. D’Haro et al. / Expert Systems with Applications 39 (2012) 5665–5680 5673
C. For selecting the DSay dialogs the system uses the same pro-
cedure as for the DGet dialogs; here we also include DSays
specific to the values returned by the database functions
selected in the previous step.

D. For selecting the dialogs and slots to jump to: the system
directly uses the information from the dialog flow. The infor-
mation about slots in the following states is used to allow
the designer to create dialogs with over-answering.

Creation of over-answering and mixed-initiative dialogs: As
we mentioned in Section 2, current development platforms include
the possibility of creating mixed-initiative dialogs since this is
compulsory in the VoiceXML standard. However, in our platform
we have included the possibility of creating over-answering dia-
logs by creating a special flow using standard elements in Voice-
XML (i.e. form, initial, block, goto, and if conditions). First we will
briefly explain the procedure to create these dialogs and then the
special flow designed to overcome the limitations of VoiceXML.

A. Mixed-Initiative: the system offers a configurable template
(see the square item in the field for dialogs to ask informa-
tion to the user in Fig. 6) which the designer can drag and
drop over the dialog that is being edited. The template
shows the slots specified to be requested using mixed-initia-
tive for the current state. In addition, the template gives the
possibility of adding optional slots to be used for over-
answering at the same time. With this information, the sys-
tem generates the same flow proposed in the VoiceXML
standard for mixed initiative dialogs by using the GDia-
logXML syntax (i.e. a form tag containing one initial element
for asking for several slots at the same time, then one field
tag for each slot in order to handle the situation in which
the user answers partially or only some of the slots are filled
after the recognition, so the system has to ask again for
unsolved slots, and handle the keeping of the optional slots
when they are input by the user).

B. Over-Answering: when the designer drops any DGet dialog,
the system shows a pop-up window to allow additional slots
to be selected as over-answering from the current state and
slots from the following states in the flow (with a limit of
two in the hierarchy). By default, the slots defined as
optional in the previous assistant are automatically con-
verted into over-answering slots here.

In order to define the special logic for allowing over-answering
in the VoiceXML script the system checks, before any call to a DGet
dialog, whether the data to be asked for has been already obtained
in a previous state in the flow (as would be the case with over-
answering).

Fig. 7 shows an example of the VoiceXML script and the logic
created to support over-answering dialogs. As we can see, the pro-
posed flow only uses elements supported by the standard although
the code is a little more elaborated. In the example, the system re-
quests the credit account alias as a compulsory slot and the trans-
fer amount as an optional slot. In number 1 we define both slots as
global variables in order to allow the slots to be filled in at any
state and document, or to allow jumping back to previous states
in the flow. Then in the form (number 2 and 3) we declare local
variables to have a copy of the values stored in the global variables.
In number 4 we define a block that analyzes whether the compul-
sory slot has been previously filled in or not (i.e. it is possible that
in the previous dialog we allowed this compulsory slot to be an op-
tional one at that state and the user filled in at that time). If that
the slot is empty, the system will try to fill it in by using the same

Fig. 7. Example of VoiceXML generated for a dialog with over-answering.

5674 L.F. D’Haro et al. / Expert Systems with Applications 39 (2012) 5665–5680
approach as a mixed initiative dialog (number 5, using the initial
tag); if the slot is already filled in then we exit the form. In number
6 the system tries to fill in the slot by using a direct dialog if the
mixed-initiative one fails. In number 7 we can see a block that ana-
lyzes whether the optional slot is empty or not. If it is, a Boolean
variable is set to false in order to forbid this slot to be filled in at
this state (number 8, use a conditional field based on the value
of the Boolean variable). Finally, in number 9, the global variables
are set using the local variables and the state jumps to the next
state (i.e. DGetTransferAmmount).

Passing of arguments between actions is automated: Finally,
another important action that the designer has to carry out in this
assistant is the connection of input and output parameters for
database access functions or dialogs with existing dialog variables.
For instance, the designer needs to connect the variable that re-
turns the available amount after carrying out the transaction with
the local variable of the dialog that shows this information to the
user. In order to automate this connection, the assistant detects
the input/output variables required in each action and, by using
a popup window, it offers the most suitable existing variables of
a compatible type; if there is more than one variable to offer, the
assistant sorts them according to the name similarity between var-
iable and dialog. If there is no compatible variable already defined
or the name proposed by the assistant is not desired, the system
allows the creation of a new local or global variable. The assistant
includes an edition window in case the designer makes a mistake
or needs to modify the matching made in the previous steps.

Other accelerations and capabilities: In addition to the strate-
gies mentioned above, the platform provides four basic dialog
types that cover the usual possibilities in programming: based on
a loop, on a sequence of actions (or sub-dialogs), a switch construct
based on information input by the user (i.e. menu-based dialog), or
a switch construct based on the value of a variable. Empty dialogs,
with no action inside, can also be created (used to specify the call
to a dialog that will be defined completely afterwards) so that a
top-down design of dialogs can be made; in this case, the dialog
type is selected whenever the designer tries to edit the empty dia-
log. Another possibility is dialog cloning, useful when the dialog to
be defined is very similar to an existing one. On the other hand, gi-
ven the large amount of actions that can be carried out in each
state, the assistant allows the creation/edition local/global vari-
ables/constants, the creation of if-then-else structures, selection
structures (switch-case), loops (for, while), assignments between
simple and complex (objects) variables, and an assistant for math-
ematical operations and another one for strings.

We have also included some useful characteristics in the GUI,
such as hotkeys for accessing the most common functionalities of
the assistant, different colors for distinguishing each kind of dialog
(i.e. already filled in, empty, DSay or DGet dialogs, etc.). In order to
reduce the number of dialogs shown in the canvas the designer can

L.F. D’Haro et al. / Expert Systems with Applications 39 (2012) 5665–5680 5675
also switch between a basic presentation of the dialog or a more
detailed visual/textual flow (i.e., including internal information
about variables, dialogs that are called from or call the current
one, type, etc.). There is also a method to display the contents of
complex or nested actions contained in a dialog using tooltips,
which helps the designer in their interpretation, thus avoiding
the need to open or edit them.

3.3. Accelerations to the definition of specific details for the speech
modality

The next assistants in the platform allow the designer to specify
detailed information for each language and modality. For instance,
it is necessary to specify the dialog flow used to present, using the
speech modality, the list of retrieved results after querying the
database (e.g. the last movements in an account or the last credit
card bill), the dialogs to confirm user answers, the speech recogni-
tion grammars, or prompts in different languages. In order to accel-
erate some of these steps we have defined the following strategies:

Presentation of object lists: These lists are the result of retriev-
ing information from the database that need to be provided to the
user in small groups since in the speech modality it is not conve-
nient to present all of the items at the same time. In our platform
we have incorporated a wizard window to specify the actions that
have to be carried out by considering the different cases that can
result depending on the number of items on the list (i.e. the list
is empty, the list has one item, the list has more than one item
and less than a maximum allowed, and the list has more items
than the maximum allowed). For each case, a simple form-filling
window allows the designer to specify the actions that have to
be carried out. After filling out the four forms, all the actions and
new dialogs needed are automatically generated. The assistant also
proposes the most reasonable default values to fill in the forms.

Confirmation handling: One of the main problems in a spoken
dialog system is how to cope with the speech recognition errors
Fig. 8. Process for creating a dialog
due to differences in the speaker voices, environments, channels,
noises, etc. One possible solution would be to request the user to
confirm the recognized information each time. However, this is
not practical since it would extend the dialog time and it would de-
crease user satisfaction. One solution is to use the confidence level
provided by the speech recognition. Thus, if the value is near to 1
then the recognition is very reliable and if it is near to 0 then the
recognition should be rejected. It is usual to define four confirma-
tion types: (a) no confirmation (i.e. the confidence is high, the rec-
ognition is accepted as valid), (b) implicit confirmation (i.e. the
system provides the recognition result to the user as a fact in the
next dialog turn, speeding up the dialog, e.g. ‘‘You want to travel
to London. When do you intend to leave?’’ The user can say ‘‘no’’
or ‘‘cancel’’ at that point to go back in the dialog if London was
not the intended destination), (c) explicit confirmation (i.e. the best
option is to ask the user if the result is correct, e.g. ‘‘Do you mean
London?’’ to confirm that London is the intended destination), and
(d) reject. (i.e. The confidence level is extremely low, so the result
is clearly unreliable. The system rejects it and asks it again.)
Although VoiceXML specifies all the required variables and flow
to access the confidence values and to handle each situation, in
practice designers do not use all of them, i.e. only supporting no
confirmation and rejection, since the definition of the flow for each
case is a laborious task. In order to allow them all, in our platform,
we have incorporated an assistant that analyses the flow and auto-
matically provides the logic for the four confirmation types. The
assistant also detects the states that cannot allow the four confir-
mation types. For instance, for requesting a yes or no answer, we
only need the no confirmation or rejection level (i.e. we need a high
confidence level only), or in the states that carry out the database
access the system does not allow implicit confirmation since it
cannot wait for a user confirmation in the following state since
the access has to be carried out in the current one.

Setting of system prompts: For the speech modality, a high
number of prompts for each kind of dialog (e.g. DGet, DSay, or
in GDialogXML using Diagen.

5676 L.F. D’Haro et al. / Expert Systems with Applications 39 (2012) 5665–5680
for providing contextual help) have to be defined. The designer also
needs to take into account the different user levels (i.e. novice,
intermediate, advance), all possible recognition errors (no input,
no match, service timeout, etc.), and the number of times that
the assistant allows every error to occur (e.g. 1, 2, 3) before trans-
ferring the call to an operator or exiting. To speed up the process of
typing all these prompts, the assistant offers three possibilities: (1)
reuse prompts already available for the current application, (2) re-
use prompts generated in previous applications and saved as li-
braries, or (3) reuse wording libraries saved from previous
applications. The assistant also allows the designer to use SSML
tags to control the voice (e.g. break duration, pitch, rate, volume),
as well as the possibility of including audio files in order to allow
hybrid prompts. Finally, the system allows the designer to select
the arguments of the dialog to be inserted into the prompt.
3.4. Alternative system

In order to allow the manual creation and fine tuning edition of
the different models and libraries generated by the assistants, the
platform includes a built-in editor called Diagen (Hamerich, 2008).
The main acceleration included is the possibility of creating any
section of the specification with minimum effort, so instead of typ-
ing all the tags nodes and children in the XML code, the assistant
uses a set of pop-up windows that are sequentially displayed in
accordance with the information that the designer needs to
specify.

Fig. 8 shows an example of the process for adding a dialog and a
global variable into the dialog flow. According to this figure, in
(number 1) the designer specifies that two elements are going to
be added. After accepting, a new pop-up window is displayed
(number 2) allowing the designer to specify the information for
the global variable to be added. In order to add new variables,
the designer only needs to check the corresponding checkbox
(i.e. enter another variable) and a similar pop-up window will be
displayed after accepting the current one. The next step (number
3) is the definition of the dialog state and the relevant information
for this dialog. In the example, the designer selects the specifica-
tion of the help concept defined by using the pop-up window
marked as number 4. A similar procedure allows the incorporation
of different elements such as variables, calls, help messages, reac-
tions, etc. After finishing the process, the system automatically
pastes the GDialogXML code into the editor (number 5).
4. Evaluation of the acceleration techniques

In order to implement the acceleration strategies described
above successfully, two kinds of evaluations were carried out: a for-
mative and a summative one. In order to carry out the former, since
the platform is made up of different assistants and several program-
mers were working on them, each member of the programmer
team was given the role of evaluating one or two assistants differ-
ent to the one that they were working on. Thus, every time that one
of the teams released a new version of the assistants, the other team
responsible for evaluating it spent some time testing the GUI, the
new accelerations, discovering bugs, and providing the respective
feedback. As this process was continuously done throughout the
platform development, as well as the periodical changes in the
members of the teams, we could guarantee diversity of feedbacks
and permanent improvements. As regards the second kind of eval-
uation, we carried out two: one at the end of the GEMINI project,
and another one after incorporating the new accelerations based
on the database content together with some improvements that
we made following the advice from the first evaluation. Below we
explain both, providing further details for the latter.
Right at the end of the GEMINI project, we carried out a summa-
tive evaluation with more than 40 developers in order to test (a)
the friendliness of each assistant in the platform and the whole
platform interface, (b) the complexity and time required to learn
to use each assistant and the whole platform, (c) the level of func-
tionality of each assistant, (d) the level of consistency, transpar-
ency, and intuitiveness of each assistant, and (e) the willingness
of the evaluators to use the platform to develop dialog applica-
tions. During this evaluation, a complete dialog application was
carried out, allowing us to know the amount of time the evaluators
spent on using and learning the application, as well as different
recommended improvements in terms of accelerations and GUI.
For instance, the testers suggested a new GUI for the assistant used
to define the states of the dialog in order to allow the quick inspec-
tion of the whole flow as well as the creation of the states and tran-
sitions, or to include a new wizard window to create complex
classes in the data model quickly (for further details please refer
to D’Haro et al. (2006) and D’Haro (2009)).

Taking into account these suggestions and after incorporating
the accelerations based on the database content information in
certain assistants, we decided to do a new summative evaluation
by introducing some modifications into the survey in order to give
more weight to the evaluation of the acceleration techniques this
time instead of the whole platform or a final service since it was
checked in the previous evaluation. The subjects for the new eval-
uation were undergraduate students and teachers from our univer-
sity with experience in at least one programming language and a
minimum knowledge of the technologies and processes required
for designing dialog applications. The total number of participants
was 9 who were classified, according to their knowledge and expe-
rience on developing spoken dialog services, in the following three
levels: novice (4), intermediate (3), and expert (2). From this group,
only three participants had some knowledge of the platform.

In order to provide the same information about the platform
and the test all of the participants, the evaluation was carried out
at the same time for all of them. Then, each evaluator was placed
alone at a computer with all of the software required for running
the platform and collecting the information. In addition, each eval-
uator received a short handbook with more information about the
platform, assistants, accelerations and examples that they could
consult at any time.

The evaluation was made in two sections of 4 h each. During the
first session, the evaluators received a complete explanation of the
whole platform, the goals of the evaluation, and the interfaces used
to get the statistics. Finally, they also received instructions and
evaluated the assistants used to specify the data model structure
(DMA), database access functions (DCMA), and state flow model
(SFMA). During the second session, the evaluators finished the
evaluation of the SFMA and learnt how to use and evaluate the
assistants to specify the actions to be carried out at each state
(RMA). In turn, the evaluation of each assistant was divided into
three main blocks: in the first one, the evaluators received instruc-
tions as to the capabilities and accelerations included in the corre-
sponding assistant through examples of use. In the second block,
the evaluators carried out an example task that was useful to an-
swer their doubts about the assistant and to let them gain some
practice. Finally, during the third block, the objective evaluation
was carried out and eventually the evaluators were requested to
fill in the subjective evaluation survey. The next sub-sections pres-
ent full details of both evaluations.

4.1. Objective evaluation

For this evaluation we proposed that the participants perform
predefined typical tasks when designing dialog applications using
our assistants and then to compare them with an alternative

L.F. D’Haro et al. / Expert Systems with Applications 39 (2012) 5665–5680 5677
assistant that included fewer accelerations. In order to compare the
performance of the evaluators using any of the v, we defined a set
of quantitative measures that were collected using a background
process during the time that the evaluators carried out the pro-
posed tasks.

Up to the best of our knowledge, there is no current standard
method for evaluating and comparing this kind of development
platforms and their acceleration strategies. In Jung et al. (2008)
they describe DialogStudio, a development platform with some
similarities to ours (see Section 2.2); in order to evaluate this plat-
form and its accelerations, they proposed a set of quantitative mea-
sures when performing different tasks that the evaluators had to
carry out and then to compare it when the same evaluators build
the same tasks but using an open text editor chosen by each partic-
ipant. During the evaluation, different objective metrics were mea-
sured such as mouse clicks, keystrokes, and elapsed time.

For evaluating our platform, we decided to do a similar assess-
ment by introducing the following changes: (1) First, we included
as new objective metric, the number of keystroke errors, i.e. the
number of times the evaluator used any delete keys for correcting
mistakes in the design. The goal of this metric is twofold: (a) to
measure how much the strategies help to reduce human mistakes,
and (b) to measure the difficulty of introducing information into
the assistants or writing the GDialogXML code. (2) Since the devel-
opment of a complete dialog application requires a lot of time, dif-
ferent areas of knowledge, and dealing with many details (e.g.
database, runtime platform, debugger) we decided to propose the
evaluators to perform only a reduced number of tasks specifically
selected for testing the most important accelerations and the most
complex assistants. (3) We decided to compare the quantitative
measures by using our platform with those obtained when anno-
tating the same tasks in the internal language format used by
our platform by using our built-in editor (Diagen, see Section
3.4). In this case, the motivation for using the built-in editor in-
stead of allowing the evaluators to use any XML editor of their lik-
ing was to make a fairest comparison between both applications.
The advantages of using this editor are: (a) it includes several
accelerations especially designed for writing the platform files,
(b) it also reduces the time required to write the models in XML,
and (c) it reduces the need to memorize the XML specification.

On the other hand, it is also important to mention that the main
reasons for making the comparison between the assistants and Di-
agen, instead of comparing them with other development plat-
forms, were that we could not find any commercial or academic
platform comparable to our platform. For instance, most of these
platforms do not take into account the database information nor
do they include all of the accelerations that we wanted to evaluate.
Most of the commercial platforms have an advanced graphical
interface which we were not interested in evaluating (although it
is well known that the appearance of the GUI has had a great
influence on the evaluators). Finally, because these platforms are
Fig. 9. Interface to control and display
optimized for building speech-based applications only, in our plat-
form, thanks to the separation of the assistants into the three lay-
ers, we have the possibility of incorporating new modalities such
as Web or avatars in future releases.

4.1.1. Experimental setup
We have to take into account that since the evaluation that we

did at the end of the GEMINI project not all the assistants in the
platform were improved with the incorporation of the database
content information. So, in the new evaluation we decided to in-
clude only the following: DMA (definition of data model), DCMA
(definition of database access functions), SFMA (definition of
states), and RMA (definition of dialog actions). As we mentioned
before, during this evaluation we collected several objective mea-
sures that were obtained using a background process that could
be started, paused, or stopped (see Fig. 9) to start testing the assis-
tant or to pause/repeat the test. The objective of this system was to
capture all mouse and keyboard events, but only when the mouse
focus was on the platform assistants (i.e. we avoided counting as
events, for instance, the process of checking the tutorial manuals
during the evaluation). Finally, this system also started a parallel
screen recorder application that recorded and saved all the interac-
tion of the evaluators with the application during the evaluation.
These videos were later reviewed in order to obtain a visual feed-
back of the process that the testers followed to complete the tasks
and to find out the main problems the testers found. We also used
them to find out whether the testers used the accelerations or not,
together with the steps that took most of the elapsed time during
the evaluation.

As we can see in the Fig. 9, the control interface allowed users to
select the task to evaluate (1), to start or stop the test (2 and 4), to
save the measured metrics when the evaluator was confident of
having evaluated the step correctly (number 3), and to display
the collected metrics at each task (5, 6, and 7).

4.1.2. Proposed tasks
In order to test the accelerations, we defined a set of typical

tasks that covers those that have to be done at each assistant when
creating a full application. Depending on the number of accelera-
tions to be evaluated, each assistant could have one or more tasks.
Below, we provide a detailed list of all the proposed tasks and
accelerations involved.

For the process of creating the data model (DMA), we proposed
that the evaluators test two different tasks or cases: (a) in the first
one, they were requested to create a class model with two atomic
attributes. Both attributes were related to the database, and (b) to
create a class structure, including two atomic attributes (both re-
lated to the database and with language dependency) and one
complex attribute (a list of embedded objects).

For the DCMA assistant, we proposed that the evaluators do
one single task. It consisted of creating a function with two input
the metrics during the evaluation.

5678 L.F. D’Haro et al. / Expert Systems with Applications 39 (2012) 5665–5680
arguments and one output argument, where all the parameters
were related to the data model. The participants were also able
to test the functionality of creating and testing SQL statements.

For the assistant used to define the dialog states (SFMA), we
proposed that the testers carry out three steps: (a) creation of a
state with one slot related to the database. Here the testers had
the option of creating the state by using the proposal of automatic
states with slots or using an empty state template and then defin-
ing the slot and its relationship to the database. (b) Creation of a
state with two slots, where both slots had to be set up as mixed ini-
tiative, and then to define a transition to another state. This step
allowed the testers to check the automatic unification of slots to
be requested by using mixed-initiative dialogs and the automatic
creation of an undefined state when it is referred to as a transition
state (i.e., top-down design); and (c) the creation of a connection
between two states. This step allowed the testers to check some
of the functionalities included in the graphical user interface (see
Section 3.2.1).

For the complete definition of the actions to be carried out in
each state (RMA), we proposed three tasks: (a) the creation of a
typical menu-based dialog where the system requests the users
to select between three different kinds of information, and accord-
ing to the user selection to jump to the corresponding state. In this
case, we evaluated the proposals of actions and different kinds of
dialogs allowed for the platform, (b) the creation of a dialog with
over-answering and an IF-Then-Else condition. Here the following
accelerations were used: the dialog proposals window, the auto-
matic matching of arguments between actions, the procedure for
including compulsory and optional slots, and the possibility of
defining different programming structures. And (c) the creation
of the same running example in this paper, i.e. a mixed-initiative
dialog for carrying out a transaction between two accounts and
the amount to be transferred, and saving this amount in a global
variable that was required to be created. This task allowed the
accelerations provided by the assistant to be tested for defining
mixed-initiative dialogs, for matching variables, the action propos-
als window, and the assistant for defining local/global variables.

4.1.3. Results
Before describing the results of the objective evaluation we

want to mention two important factors that should be kept in
mind when making the comparison between using the assistants
and Diagen, the built-in editor. First, when we reviewed all the re-
corded videos for Diagen testing, we observed that all of the eval-
uators were getting used to the editor as the GUI and the procedure
to use it were basically the same for all the tasks, therefore the
evaluators were working faster with it, but only in the two first
assistants as their model complexity is low. On the other hand,
each time they were requested to test the platform assistants they
had to learn to use a new interface and new accelerations. Finally,
Fig. 10. Chart with the average improvem
we also found out that the evaluators were spending a lot of time
reviewing the final state created using the platform in order to
check whether it corresponded to the one specified by the evalua-
tion. Although this behavior is normal, we observed that for Diagen
they did not spend so much time in that revision, probably because
a lot of XML text was already generated.

As regards the objective evaluation, Fig. 10 provides an over-
view of the average improvement considering all the tasks per
assistant when comparing the objective metrics obtained for Diag-
en and the corresponding assistant. In the figure, a positive value
means that the assistants of the platform performed better than
Diagen, and a negative value means that Diagen outperformed
the corresponding assistant. As we can see, the accelerations pro-
posed produced an average improvement of 65.5% for defining
the data model structure (DMA), 16.6% for defining the prototypes
of the database access functions (DCMA), 42.2% in the definition of
the finite state model of the application (SFMA), and 84.8% for
defining all the actions of each state of the dialog flow (RMA). Thus,
we obtained an overall average improvement of 52.3% that corre-
sponds to a 56.5% improvement in the elapsed time, 13.4% for
the number of clicks, 84% in the number of keystrokes, and 55.2%
in the number of keystroke errors. These results are consistent
with the number and scope of the accelerations described in this
paper. We can also see that the improvements were greater in
the assistants where the more complex structures and actions
are required; thus, we accelerated the design and guide the de-
signer in the steps where it is more necessary.

4.2. Subjective evaluation and results

In order to rate the acceptability of the evaluated assistants and
the proposed accelerations we provided the evaluators a survey
form that included general questions about each assistant and spe-
cific questions about each of the evaluated strategies. In both kind
of questions we used a 10-point scale (1 = minimum, 10 = maxi-
mum). The total number of general questions was 20 (including Di-
agen, 4 questions per assistant) and 10 for the specific questions
about the strategies. The general questions were:

(1) How quickly did you learn to use the assistant?
(2) Is the assistant easy and intuitive to use? Do you know what

to do at each step?
(3) Is the functionality sufficient?
(4) How do you rate the appearance of the assistant (consistent,

transparent, and intuitive)?

Table 1 shows the average scores for all the general questions
about the different assistants evaluated. We can see that, in gen-
eral, all the assistants were considered as easy to use (question
2) and the appearance was marked with an average value of 8.5
ent by assistant considering all tasks.

Table 1
Results of the subjective evaluation for the general questions.

Assistants DMA DCMA SFMA RMA Diagen

Mean Std. Mean Std. Mean Std. Mean Std. Mean Std.

Question 1 8.1 0.99 8.2 1.03 8.8 0.79 8.0 0.94 5.6 1.50
Question 2 8.6 0.83 8.2 1.23 9.0 0.82 8.8 0.79 4.6 1.42
Question 3 8.3 0.94 8.4 0.96 9.2 0.79 9.0 0.94 4.0 1.41
Question 4 8.2 1.03 8.1 0.99 9.0 0.82 8.8 0.63 4.0 1.41
Av. All 8.3 0.63 8.3 0.85 9.0 0.69 8.6 0.63 4.5 1.1

L.F. D’Haro et al. / Expert Systems with Applications 39 (2012) 5665–5680 5679
(question 4). It is important to mention that although Diagen was
easy to use for the first steps, it got bad qualifications, as shown in
the last column, probably because the generation of the final mod-
els was too cumbersome in comparison to our assistants.

Regarding the specific questions on the strategies, we included
the following: (a) facility to create the data model structure using
information from the DB, (b) facility to define dialogs with Mixed-
Initiative, (c) comparison of speed development between using Di-
agen or the assistants of the platform, among others. Table 2 shows
the results for the questions on the accelerations strategies for each
assistant and evaluator levels. As we can see in the table, all the
accelerations were positively assessed with an average value of
9.0, with the maximum scores in the following accelerations: auto-
matic generation of action proposals (Section 3.2.2) and the ease in
defining the state flow model (Section 3.2.1). These results are con-
sistent, and better in all the cases, with the evaluation made at the
end of the GEMINI project. The improvements are mainly due to
the incorporation of the new accelerations, together with the cor-
rection of some bugs and the simplification of some procedures.

Finally, the survey included a section for comments and sugges-
tions of the subjects with respect to the accelerations of each assis-
tant. A summary of the main comments follows.

� Definition of data model: The evaluators considered the crea-
tion of classes using the database information as extremely use-
ful. However, there are some aspects of the GUI that can be
improved such as the possibility of copying and pasting whole
classes, and the direct edition of the class attributes directly
on the boxes in the workspace instead of using buttons/text-
fields on the toolbar.
� Definition of database access functions: This assistant was con-

sidered easy to use since the menus were clear and simple. The
most valuable accelerations were the automatic creation of SQL
statements and the automatic proposal of data model classes/
attributes and tables/fields when defining the arguments. One
evaluator suggested improving the process of defining the func-
tion parameters using graphic objects instead of the current
text-based interface.
� Definition of the dialog flow: The most valuable accelerations

were the proposal of states from the classes and database func-
tions, as well as the automatic unification of slots as mixed-ini-
Table 2
Results of the subjective evaluation for questions regarding the accelerations.

Assistants Novice Interme

Mean Std. Mean

DMA: Class proposals 8.5 2.38 9.33
DCMA: SQL wizard 8.75 0.96 9.33
SFMA: State proposals 9.75 0.50 8.67
SFMA + RMA: Mixed initiative 9.25 0.96 8.00
RMA: Over-answering 9.25 0.96 8.33
RMA: Pass args between actions 9.25 0.96 8.00
RMA: Action proposals 9.50 0.58 10.00
Diagen: Speed to create models 9.50 1.00 10.00
tiative. Here, the testers requested the implementation of a easy
mechanism for connecting states based on using anchor points
and drawing the connection line with the mouse.
� Definition of dialog actions: In this assistant, the best accelera-

tions were the window with the proposal of actions, the auto-
matic creation of variables when passing arguments between
actions, and the mechanism for creating conditional actions.
The only suggestions were related to the graphical interface,
for instance changing the position of some buttons in the assis-
tants to make them easy to access, avoiding the use of modal
windows that prevent the designer from carrying out other
actions, since the mouse or keyboard focus cannot be redirected
to other windows, etc.
� Diagen: In this assistant, two main problems were detected: 1.)

the information collected through the different pop-up win-
dows can be lost in case of problems. Sometimes it is confusing
for the designer to follow the process of completing many
nested items, 2) the templates were not enough for most
designers. Several other features such as auto-completion and
color tags were also required.

5. Future work

Considering the results obtained during the objective evalua-
tion and taking into account the feedback provided by the evalua-
tors in the subjective evaluation, as well as some ideas that we
have been working on beforehand, we consider the following as
relevant improvements in the platform.

Creation of the data model structure: To implement a mecha-
nism for retrieving the relationships between tables in the data-
base in order to propose complex classes and attributes
automatically by selecting the most probable tables and fields to
be used as attributes by default; to tag automatically (based on
the heuristics) when a given attribute in a class will be used in
the following assistants to provide or obtain information to/from
the user thus improving the creation of the state/dialog proposals
in the following assistants.

Creation of the database access functions: To extend the capa-
bilities of generating SQL statements by improving the debugger
wizard and including the possibility of offering an N-best list of
SQL statements instead of only one proposal.
diate Experts Av. All

Std. Mean Std. Mean Std.

1.15 9.0 0.0 8.89 1.62
0.58 9.00 0.00 9.0 0.71
1.53 9.50 0.71 9.33 1.00
1.00 10.00 0.00 9.00 1.12
0.58 9.50 0.71 9.00 0.87
2.00 9.50 0.71 8.89 1.36
0.00 10.00 0.00 9.78 0.44
0.00 10.00 0.00 9.78 0.67

5680 L.F. D’Haro et al. / Expert Systems with Applications 39 (2012) 5665–5680
Definition of specific actions at each state: To reduce the
number of automatic generated dialogs in order to simplify the
main interface. The results of both evaluations showed that most
of the proposed dialogs in this window were not used at all. Here,
increasing the use of the heuristic information could help to iden-
tify which fields would be used for requesting information from
the user or to provide information to them.

Definition of user dependent behavior: The platform currently
allows the creation of different user profiles that allow the designer
to modify the system behavior in three different areas: (a) the
thresholds for confirming the speech recognition results in each
state (e.g. novice users require higher thresholds since they usually
provide longer answers than expert users), (b) the limits for differ-
ent error handling (e.g. the number of times the system tries to ob-
tain an answer before directing the call to an operator, or the
number of times the system tries to access the database before
reporting that an error has occurred), (c) different configuration
parameters (e.g. number of items to show in group when handling
a list of retrieved results, allowing barge-in or not, time in seconds
allowed to record messages). In order to improve these capabilities,
we propose the incorporation of new user profiles that allow the
distinction between young and old people (following the indica-
tions suggested by Zajicek (2004) and Wolters et al. (2009)) or be-
tween men and women. On the other hand, the process of
detecting this information could be based on using runtime mod-
ules or based on the information provided from the database after
the user goes through a previous verification process.

6. Conclusions

In this paper, we have described several accelerations strategies
included in a complete development platform to speed up the de-
sign of spoken-dialog systems. The proposed accelerations are, in
most cases, innovative in relation to the current ones offered by
any commercial or research platform. The proposed accelerations
are based on using three different sources of information: (1)
cumulative information shared between assistants throughout all
the steps in the design, (2) heuristic information extracted from
the contents of the backend database, and (3) using an object-ori-
ented representation of the data model structure and relationships
between this structure and the backend database. With all this
information, the platform assistants generate different kinds of
proposals that simplify the process of creating and completing
the dialog flow (e.g. automatic states and dialog actions, the unifi-
cation of slots to be requested using mixed-initiative dialogs, the
semi-automatic creation of SQL statements), help designers to cre-
ate or debug models (e.g. grammars, prompts, SQL functions) re-
quired by the runtime system, or to reduce the information
displayed at each assistant. Thanks to the internal XML syntax of
the platform the creation of the running scripts in VoiceXML is also
accelerated, and at the same time it allows new modalities to be
included in the future.

The results obtained both in a subjective and objective evalua-
tion confirms the usability of the proposed accelerations. For the
objective evaluation, different metrics were proposed and com-
pared with those obtained when using a less-accelerated assistant
for performing typical tasks when designing a dialog application.
Thanks to the accelerations, the design time the evaluators spent
on performing the proposed tasks was reduced by more than
56%, the number of keystrokes by 84%, and the keystroke errors
by 55%. As regards the subjective evaluation all the accelerations
were marked over 8.0 and the whole platform was rated with an
average score of 8.0. According to this evaluation, the most appre-
ciated accelerations were the automatic generation of action
proposals for each dialog and the ease in designing the state flow
model. Although not described in this paper, the platform has been
used for successfully creating complex applications such as a bank-
ing application for a commercial product by a Greek bank with
very good results, as well as for a second application, called
CitizenCare, that offers basic voice information retrieval system
functionality in the context of public authorities available in both
German and English (see D’Haro et al., 2006).

Acknowledgements

We want to thank all the members of the GEMINI project for
making possible the creation of the platform and especially to
the following students for their contribution in the coding of the
platform and runtime system: Rosalía Ramos, José Ramón Jimenez,
Javier Morante, Ignacio Ibarz, and Rubén Martín from the Univers-
idad Politécnica de Madrid. This work has been supported by SD-
TEAM (TIN2008-06856-C05-03) and ROBONAUTA (DPI2007-
66846-c02-02).

References

Balentine, B., & Morgan, D. P. (2001). How to build a speech recognition application. A
style guide for telephony dialogs (2nd ed.). Enterprise Integration Group (414
pages). ISBN-13: 978-0967127828.

Chung, G. 2004. Developing a flexible spoken dialog system using simulation. In
42nd Annual meeting on association for computational linguistics (ACL) (pp. 63–
70).

D’Haro, L. F. (2009). Speed up strategies for the creation of multimodal and multilingual
dialog systems. PhD thesis, Universidad Politécnica de Madrid.

D’Haro, L. F., Cordoba, R., Ferreiros, J., Hamerich, S. W., Schless, V., Kladis, B., et al.
(2006). An advanced platform to speed up the design of multilingual dialog
applications for multiple modalities. Speech Communication, 48(8), 863–887.

D’Haro, L. F., Cordoba, R., Lucas, J. M., Barra-Chicote, R., & San-Segundo, R. (2009).
Speeding up the design of dialog applications by using database contents and
structure information. In SigDial, London, UK (pp. 160–169).

Feng, J., Bangalore, S., & Rahim, M. (2003). WEBTALK: Mining websites for
automatically building dialog systems. Workshop on automatic speech
recognition and understanding (ASRU ‘03) (pp. 168–173).

Web page of the GEMINI Project, October 2010. <http://www-gth.die.upm.es/
projects/gemini/>.

Gorin, A. L., Riccardi, G., & Wright, J. H. (1997). How may I help you? Speech
Communication, 23(1–2), 113–127.

Hamerich, S. W. (2008). From GEMINI to DiaGen: improving development of speech
dialogs for embedded systems. In 9th SIGdial workshop on discourse and dialog
(pp. 92–95).

Jung, S., Lee, C., Kima, S., & Geunbae Lee, G. (2008). DialogStudio: A workbench for
data-driven spoken dialog system development and management. Speech
Communications, 50(8-9), 683–697.

López-Cózar, R., & Araki, M. (2005). Spoken, multilingual and multimodal dialog
systems: Development and assessment (262 pp.). John Wiley & Sons. ISBN: 0-470-
02155-1.

McTear, M. (1998). Modelling spoken dialogs with state transition diagrams:
Experiences with the CSLU toolkit. In International conference on spoken
language processing (ICSLP) (pp. 1223–1226).

McTear, M. (2004). Spoken dialog technology: Towards the conversational user
interface (432 pp.). Springer. ISBN: 1-85233-672-2.

Paternò, F., & Sisti, C. (2010). Deriving vocal interfaces from logical description in
multi-device authoring environments. In B. Benatallah et al. (Eds.). ICWE. LNCS
(Vol. 6189, pp. 204–217). Berlin, Heidelberg: Springer-Verlag.

Polifroni, J., Walker, M. (2006). Learning database content for spoken dialog system
design. In International conference on language resources and evaluation (LREC)
(pp. 143–148).

Polifroni, J., Chung, G., & Seneff, S. (2003). Towards the automatic generation of
mixed-initiative dialog systems from web content. In European conference on
speech communication and technology (Eurospeech) (pp. 193–196).

Schubert, V., & Hamerich, S. W. (2005). The dialog application metalanguage
GDialogXML. In European conference on speech communication and technology
(Eurospeech) (pp. 789–792).

Wang, Y., & Acero, A. (2006). Rapid development of spoken language understanding
grammars. Speech Communication, 48(3–4), 390–416.

Wolters, M., Georgila, K., Moore, J. D., Logie, R. H., MacPherson, S. E., & Watson, M.
(2009). Reducing working memory load in spoken dialog systems. Interacting
with Computers, 21(4), 276–287.

Zajicek, M. (2004). Successful and available: Interface design exemplars for older
users. Interacting with Computers, 16(3), 411–430. Universal Usability Revisited.

http://www-gth.die.upm.es/projects/gemini/
http://www-gth.die.upm.es/projects/gemini/

	Application of backend database contents and structure to the design of spoken dialog services
	1 Introduction
	1.1 Relevant definitions
	1.2 Paper organization

	2 State-of-the-art on development platforms and acceleration strategies
	2.1 Commercial platforms
	2.2 Academic and research platforms
	2.3 Research platforms that provide assisted dialog design

	3 Platform architecture
	3.1 Accelerations to the definition of the data model and database access
	3.1.1 Creation of the data model structure
	3.1.2 Creation of database access functions

	3.2 Accelerations to the definition of the dialog flow
	3.2.1 Creation of the dialog flow
	3.2.2 Definition of dialog actions

	3.3 Accelerations to the definition of specific details for the speech modality
	3.4 Alternative system

	4 Evaluation of the acceleration techniques
	4.1 Objective evaluation
	4.1.1 Experimental setup
	4.1.2 Proposed tasks
	4.1.3 Results

	4.2 Subjective evaluation and results

	5 Future work
	6 Conclusions
	Acknowledgements
	References

