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Although there has been a lot of interest in recognizing and
understanding air traffic control (ATC) speech, none of the
published works have obtained detailed field data results. We
have developed a system able to identify the language spoken and
recognize and understand sentences in both Spanish and English.
We also present field results for several in-tower controller
positions. To the best of our knowledge, this is the first time
that field ATC speech (not simulated) is captured, processed,
and analyzed. The use of stochastic grammars allows variations
in the standard phraseology that appear in field data. The
robust understanding algorithm developed has 95% concept
accuracy from ATC text input. It also allows changes in the
presentation order of the concepts and the correction of errors
created by the speech recognition engine improving it by 17% and
25%, respectively, absolute in the percentage of fully correctly
understood sentences for English and Spanish in relation to the
percentages of fully correctly recognized sentences. The analysis
of errors due to the spontaneity of the speech and its comparison
to read speech is also carried out. A 96% word accuracy for read
speech is reduced to 86% word accuracy for field ATC data for
Spanish for the “clearances” task confirming that field data is
needed to estimate the performance of a system. A literature
review and a critical discussion on the possibilities of speech
recognition and understanding technology applied to ATC speech
are also given.
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R. de Córdoba, J. M. Montero, R. San Segundo, and L. F.

d’Haro, ETSI de Telecomunicación, Ciudad Universitaria,

28040 Madrid, Spain, E-mail: (pardo@die.upm.es); V. Sama,

UNIDIS–(UNED-Fundación MAPFRE) Centro de Atención a

Universitarios con Discapacidad, C/Fuente de Lima, 22 28024

Madrid, Spain; J. Macias-Guarasa, Escuela Politécnica Superior,
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I. INTRODUCTION

Speech technology is the area of science that
allows the processing of human speech for its
recognition, understanding, translation, and generation.
Current speech technology applications can be
divided into online and offline applications. Online
applications include the following: 1) dictation, in
which a person speaks to a computer and the system
transcribes what is spoken [1—3], 2) telephone-based
applications, in which the computer interacts with
the user by recognizing/understanding the question
and generating a useful answer [4], 3) applications
in a car or an environment in which the hands of the
user are busy in which the system helps with user
needs, for instance at home or a production factory
or in the case in which there are no keyboards (i.e.,
a mobile phone) [5—7], and 4) Language learning in
which the system acts as a tutor to the student [8—10].
Offline applications include processing recorded audio
for indexing it and its subsequent rapid recovery or
extracting information from it.1 Speech technology
applied to ATC speech can be used in both scenarios,
online for an ATC training application or offline for
the analysis of an ATC task load. The sophistication
of the techniques used depends on the application.

Several researchers have tried to process ATC

speech in the past for different purposes. The first

reference to it that we found in the literature dates

back to 1975 in which a limited speech understanding

system was studied for use as a component in a

military training system [11] mentioned by Beek,

et al. [12]. In 1990, while discussing the potential of

speech processing in military computer-based systems,

Weinstein mentions the application of training air

traffic controllers as a way of eliminating the need

for a person to act as pseudopilot thus reducing the

cost of training personnel [13]. Methods of training

air traffic controllers include the use of human

pseudopilots that mimic a working scenario. The

controller interacts with the pseudopilot in the same

way as he/she would interact when he/she is on

duty. One of the problems of this methodology is the

cost of training and paying the human pseudopilots.

The idea of the ATC training simulator comprises

the following: 1) the ATC speech is processed and

understood by a speech understanding module of

the pseudopilot system; 2) the central control of the

automatic pseudopilot system includes a model of

air traffic procedures (and possibly a model of the

air traffic controller’s behavior and performance

modeling) which then generates a response that is

sent back to the air traffic controller for the following

interaction.2 The use of the proposed automatic

1http://www.sail-technology.com/, http://www.quaero.org/.
2For instance in [4] a model of air traffic controllers conflict

detection and conflict resolution that can be used in these tasks is

developed, and in [5] a method to automate ATC within simulation

environments is presented.
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pseudopilot instead of a real person would drastically

reduce the cost of such a system. Several systems are

mentioned by Weinstein in [13] to justify the early

military interest in this application [16—19]. More

recently, other projects have worked on the same

idea [20—23]. Although the controllers are expected

to speak in a constrained stylized language, they will

frequently stray from the constraints so it is essential

for the recognition system to be able to process any

deviations from the grammar effectively. In fact,

according to [20], with years of practice human beings

change their behavior and only a small percentage of

their instructions fully conform to the International

Civil Aviation Organization (ICAO) recommendations.

The minimum requirement would be the need for the

recognition of the deviation and request to the trainee

to rephrase his speech input [13].

The system developed in this paper effectively

copes with variations from the official grammar

in contrast to previous systems [21, 25, 23]. If

feedback from the user is allowed, one way to

recognize the deviation is to use modern confidence

estimation algorithms [26]. In a more recent ATC

training simulator development, Adacel was using

automatic speech recognition in their Adacel MaxSim

training simulator. Unfortunately we do not have any

further data on the evaluation of the system [27].

Several other commercial products for ATC training

using speech recognition and synthesis have also

recently appeared on the market such as ATVoice

from UFA.3 The brochures of the product promise

appealing features such as lowering operating and

recurring human resource costs, increasing efficiency

and throughput during high volume exercises, and

allowing the user to train independently without using

extraneous resources, but we do not have evaluation

data or feedback from customers to give educated

advice to prospective users. The languages available

are also limited: ATVoice only works for American

English speech.

Other authors have proposed alternative potential

applications for ATC speech recognition such as

handling electronic flight progress strips [25, 28].

In a study carried out by Ragnasdottir, et al. [29],

a new application for speech recognition and

understanding in air traffic control (ATC) is proposed.

This application is intended to support controllers

in their work by making the system give warnings

when a discrepancy is found in the communications

between the controller and the pilot. A detailed

analysis of voice communication in ATC shows that

there is some sort of miscommunication in about 1%

of transmissions [30]. The proposed system should

recognize the read back of the pilot as a response to

3http://www.ufainc.com/brochures/ 200803%20UFA%20

ATVoice%20Brochure.pdf.

the ATC order and check it with its internal flight data

processing system to detect errors and warn the ATC

controller. The difference between this application and

other applications mentioned in this section is that in

this case, the speech to be recognized comes from

the pilot instead of the ATC controller, thus adding

problems of typical disturbances of the RF channel.

A completely different use of ATC speech

recognition was made in [25] in which they worked

on a project to integrate speech recognition into

a C-CAST system (controller communication and

situation awareness terminal) which was able to

transmit, display, and receive clearances inside the

aircraft through a data link channel. The objective of

the system was the transcription of the speech of the

ATC controller into text which would then be sent to

the pilot through the data link channel.

Other potential applications include the analysis

and calculation of the objective task workload of

the controller by analyzing ATC speech. Some

authors relate the objective task workload to both

measurements of communication events and that of

the variations of ATC activity (traffic complexity)

[31, 32]. Communication events include time spent in

the ATC-pilot communications and the content of the

communications. The content of the communications

can be extracted automatically by using speech

understanding algorithms. It is important to note

that a fully correct transcription is not required for

this application inasmuch as the main keywords

are detected.4 For this kind of application a speech

recognition system with a certain amount of errors can

be used.

Finally, a very ambitious objective was presented

in [34], in which a system was developed to embed

a speech-based interface into an unmanned aircraft

(UA) or unmanned aerial vehicle (UAV) that could

understand ATC speech in the same manner as

does a normal pilot. It controls the vehicle with the

same commands used by a pilot and responds with

speech synthesis with the same type of sentences

that are used in a normal ATC procedure. The

authors concentrated on the demonstration of only

one of the en-route tasks: the flight-path-change

directive. Unfortunately no quantitative data on the

speech understanding performance of the system was

reported.

From the aforementioned experiences, we can

confirm that there is an increasing interest in learning

about the capabilities of current speech understanding

algorithms when processing ATC speech and

exploring how to improve the ATC process.

4An important area of research in speech recognition is that of

keyword spotting [33]. By using keyword spotting systems, many

understanding tasks can be carried out without the need to make a

full transcription of the sentence, thus reducing the computational

cost.
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TABLE I

Number of Sentences used to Train Language Models for Each ATC Task, Number of Words in the Dictionaries and their Perplexity

Spanish English

Language Model Language Model

Task Training (sentences) Dictionary (words) Perplexity Training (sentences) Dictionary (words) Perplexity

Clearances 4535 1001 15,23 2703 656 19,91

Arrivals 2512 452 19,57 721 267 16,68

Takeoffs 3717 753 11,50 1090 351 11,94

North Ground taxiing 12326 1522 23,19 2766 479 17,92

South Ground taxiing 12915 1612 29,34 3040 535 43,32

In a previous work [24] we described a summary

of the results that we obtained in the INVOCA

project, a project endorsed by AENA (Aeropuertos

Españoles y Navegación Aérea–Spanish Airports

and Air Navigation Authority) to analyze to

what extent the processing of ATC speech can

be done automatically with speech recognition

and speech understanding systems and explore its

possible applications, reporting results of the project

concerning only the “clearances” task.

In this paper we describe in detail the development

of the system, the five different tasks addressed

(clearances, arrivals, takeoffs and the control of

ground surface taxiing, divided into two areas:

north and south), together with their vocabularies.

All of the tasks pertain to air traffic controllers

distributed between two control towers at Madrid

Barajas International Airport. The methods used

to carry out both speech recognition and speech

understanding and, more importantly, the results

of different experiments comparing training data,

evaluation data, simulated task data and field data

are given. Finally we discuss our results and compare

them with other previously published results.

The paper is organized as follows. Section II

describes the definition of the tasks of the ATC

considered in the project and the data used to carry

out the experiments. Section III describes technically

how the system has been built. Section IV presents

the experiments carried out and the results obtained.

Section V analyzes the source of errors in more detail

presenting a new set of experiments. Section VI

contains a critical discussion and finally the paper

ends with the conclusions in Section VII.

II. DESCRIPTION OF THE TASKS AND DATA USED

The project comprised the work of air traffic

controllers located at the two airport control towers in

five different positions: arrivals, clearances, takeoffs,

and the control of ground taxiing (divided into two

different areas at Madrid airport at the time of the

experiments presented here).

Clearances: This position authorizes flight

plans, engine startup and transition to surface ground

control.

Arrivals: This position controls the final approach

phase of the plane for landing. It consists of clearance

for landing, instructions on how to exit the runway,

and the communication of the next control frequency

for the controller: ground taxiing.

Takeoffs: In this position the controller supervises

the takeoff process from the waiting point, entry to

the runway, clearance to take off and transition to the

suitable traffic control frequency.

North and South Ground Taxiing: These comprise

the process of ground routing in the North Area or

South Area of Barajas airport.

The languages to be processed were Spanish and

English since the controllers at this international

airport use sentences mixing both languages. The

system had to detect and process both languages at

the same time.

In order to develop the system we recorded many

hours of speech distributed between the different

ATC tasks and languages. However, most of the

development, and particularly the acoustic training of

the system, was carried out using only the clearances

task. 7.1 hr of speech (4,026 sentences) were used

to train the acoustic models of the recognizer for

Spanish and 4.7 hr of speech were used for English

(2,200 sentences). These sentences together with

1,531 sentences for the testing set for Spanish, 774

sentences for the testing set for English, and 1,005

sentences for the field test were the only files which

our experts fully labeled due to the limited budget of

the project. These full labels included the intended

text (the text the expert considered the speaker was

intending to say) and actual text (including labels for

spontaneous language artifacts like coughs, repetitions,

bad or alternate pronunciations, etc.) along with

semantic interpretation labels (concepts with their

attributes and values carried by the sentence). More

text was obtained for language model training by

simply transcribing recordings into text files (neither

preparing the full labeling nor the semantic reference

interpretations, and not creating the individual

sentence files needed for acoustic training).

Two measurements that describe the linguistic

complexity of the different tasks are given: the

dictionary size of the task and its perplexity. Table I
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Fig. 1. Block diagram of ATC speech understanding system.

TABLE II

Dictionary Overlaps Among Tasks

English Spanish

Accumulated dictionary 869 words 2086 words

Common to all tasks 18.3% 10.9%

Specific to just one of the tasks 39.6% 24.9%

presents the number of different words for each

language and task in the third and sixth column, as

observed in the training material. Clearances has the

biggest dictionary for English and the “South Ground

taxiing” for Spanish. The lighter dictionary is found

for “Arrivals” for both languages. It is known that the

number of words for the ATC in the tower control is

much higher than the number of words for en-route

controllers, which is around 300 words [21].

Table II shows the dictionary overlaps between the

different tasks. The accumulated dictionary obtained

by merging the words in all tasks is 2.4 times bigger

for Spanish indicating the higher proficiency and

ability of the ATC controller to both use more and

different words in Spanish (their mother tongue).5

In English 18.3% of the words are common to all

tasks while only 10.9% of the words are common

to all tasks in Spanish. One explanation for this is

the greater variability of expressions in the mother

tongue. By measuring the specifity of other parts of

the vocabulary, we find that 39.6% of the English

words in the vocabulary and 24.9% of the Spanish

only appear in one of the tasks and not in the others,

so in English the controller seems to use more specific

words than in Spanish for this application.

For the creation of the stochastic language models

(stochastic grammars) we have used transcriptions of

recorded sentences for each task. In Table I we show

the number of sentences that we have used to train

the language models for the different tasks together

with the perplexity for each task.6 The perplexity

is a measurement of the average number of words

that may follow a particular word in the language

5The number of sentences used to train the systems also has some

influence, but this point has not been researched.
6The total number of words in the training sentences corresponds

roughly to 10—15 times the number of sentences.

domain of the task. The perplexity is calculated from

a text document. When the perplexity is low, even if

the number of words in the recognition dictionary

is high, the task is simpler than when the perplexity

is high. Thus, perplexity is a measurement of the

problem complexity. For instance the arrivals task

has about half the number of words in the dictionary

compared with the clearances task but its perplexity

is higher for Spanish. The consequence is that the

arrivals task will theoretically be more difficult to

recognize than the clearances task and this fact will

be confirmed in practice as we see later when we

compare performances.

III. DESCRIPTION OF THE SYSTEM

In Fig. 1 a block diagram of the system is shown.

In the following subsections of the content of each

module is briefly explained.

A. Speech Detection Module

This module analyzes the activity in the line and

classifies it into two categories: speech and silence.

It detects speech based on the energy relationship

between speech and silence. Only the speech signal

is delivered to the next module. This module also

decides whether the pause is long enough to mean that

the command has ended.

B. Front end Processing

The speech is preprocessed to deliver a set of

parameters every 10 ms. The window width is 25 ms.

The parameters extracted are LPC-Cepstral (linear

predictive coding-cepstral) coefficients with CMN

(cepstral mean normalization) and CVN (cepstral

variance normalization) [36]. As the channel has

some background noise, we decided to apply these

two normalization techniques, which are especially

designed to compensate for channel variations. The

effect of inserting a transmission channel into the

input speech is to multiply the speech spectrum by the

channel transfer function. In the log cepstral domain,

this multiplication becomes a simple addition which

can be removed by subtracting the cepstral mean

from all input vectors. This is the objective of CMN:

subtract the mean of all vectors. Its only drawback
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TABLE III

Evaluation Results for the Off-Line Test for Spanish

% Dictionary % Test Words

Multiple Words without Perprlexity of without Language

Task Dictionary Pronunciations Language Model the Test Set Test Sentences Model Word Accuracy

Clearances 1001 86 5.2% 15.2 503 0.7% 86.26 (§0:75)
Arrivals 452 38 6.2% 19.5 211 3.1% 76.41 (§1:61)
Takeoffs 753 67 8.9% 11.3 233 1.7% 85.29 (§1:25)
North

Ground

taxiing

1522 86 5.7% 23.9 349 0.5% 67.93 (§1:47)

South

Ground

taxiing

1612 90 5.6% 29.5 235 1.2% 72.45 (§1:5)

TABLE IV

Evaluation Results for the Off-Line Test for English

% Dictionary % Test Words

Multiple Words without Perprlexity of without Language

Task Dictionary Pronunciations Language Model the Test Set Test Sentences Model Word Accuracy

Clearances 656 122 5.5% 23.2 453 1.2% 73.26 (§1:11)
Arrivals 267 52 3.4% 16.7 57 0.6% 77.45 (§3:02)
Takeoffs 351 66 1.1% 12.1 71 1.9% 80.11 (§2:6)
North

Ground

taxiing

479 86 1.3% 17.9 70 0.7% 75.90 (§3:06)

South

Ground

taxiing

535 92 7.9% 42.4 123 2.0% 64.22 (§2:27)

is that the mean has to be estimated over a limited

amount of speech data, so the subtraction will not

be perfect. Nevertheless, this simple technique is

very effective in practice where it compensates for

long-term spectral effects such as those caused by

different microphones and audio channels. CVN adds

a new normalization: every parameter is multiplied

by the quotient of the standard deviation of the

parameter in the whole database and the deviation

of the parameter in the specific file. This way, the

variability of the parameters throughout the database

is compensated.

C. Speech Recognition

Two speech recognizers work in parallel, one for

Spanish and the other for English. We have developed

a continuous speech recognizer, with HMMs (hidden

Markov models) with context dependent generalized

triphones with 1,500 states and 8 mixtures per

state (Spanish) and 900 states, 8 mixtures per state

(English) [35]. The search is driven by a stochastic

bigram language model that assigns a score to each

sequence of two words. These scores are learned

by processing text transcribed from actual controller

sentences in the development phase as we mentioned

above (see Table I).

Several pruning techniques only allow our system

to search through about 17% of the hypothetical full

search space and respond well in real-time.7 One

pruning technique is used at the state level to avoid

the computation of hypotheses that have accumulated

low scores compared with the best one. The other

pruning method is applied to the last state of a word

with a stricter threshold. This second pruning is very

relevant as it controls the number of continuation

paths that will survive (and which will eventually

trigger new branches in the recognition search space).

The speech recognizer may use more than one pattern

per word to cover several pronunciations for some

words plus 14 units that we call extra-lexical units

because they are models for nonlexical acoustic

events (like silences, lips noise, speaker noises,

hesitations like “hum,” “eh,” “mm,” etc.) that do not

follow grammar rules in their occurrence probability

[35]. In the third column of Tables III and Table IV

70.63 times real time for the longest Spanish clearances task on an

AMD Athlon (tm) XP 1800+ with 1.5 G RAM.
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the number of word models to cope with multiple

pronunciations is presented for Spanish and English.

The 4th column of Table III and Table IV shows the

percentage of dictionary words that did not appear

in the training text so there is no stochastic language

model for them (although their pronunciation is

included in the dictionary of available words). They

are given an intermediate score (the average between

the largest and the shortest values in the language

model) when they form part of a sentence.

The output of the Spanish and the English

recognizers is a set of words corresponding to the

best hypothesis that the system attributes to the

pronounced sentence together with an acoustic and

linguistic model combined log-likelihood score for the

whole sentence.

D. Language Identification

To carry out language identification we considered

several alternatives. We have to take into account that

the characteristics of this task make it particularly

difficult as the controllers are nonnative English

speakers. Moreover, the domain vocabulary includes

words which do not provide clear evidence to

distinguish which language they were pronounced in,

like: alpha, bravo, charlie, some city names, airline

names, types of aircraft and others with a very similar

pronunciation for both languages. Furthermore,

controllers often mix both languages in the same

sentence, most of the times for greetings, for instance

saying “buenos días” (good morning) in Spanish

while the rest of the phrase is pronounced in English.

Our final choice was to base the identification

on the score given by the full continuous speech

recognizer for both languages running in parallel. As

we demonstrated in [37], the results obtained with this

technique are probably the best that can be obtained,

as it models both acoustic and phonetic information,

together with the sequence of allophones and words.

However there are several disadvantages: a complete

speech recognition system has to be trained, a lot

of labeled data is needed and it would be difficult

to have a real-time system for several languages as

the full recognizer is more time consuming. In any

case, for the identification of two languages, as in

our case, it is the best option with a low error rate

for both languages and it is extremely important to

obtain a very good rate because errors in language

identification cannot be corrected later in the system.

In [38] a full recognizer is also proposed and the

recognizer scores are normalized and compared with a

linear classifier.

Another typical approach seen in the literature is

the so-called “phonotactic approach,” which classifies

languages based on the statistical characteristics

of the allophone sequences [39]. The technique is

called PPRLM (parallel phone recognition language

modeling) and its main objective is to model the

frequency of occurrence of different allophone

sequences in each language. The system has two

stages: in the first stage, a phone recognizer takes

the speech utterance and outputs the sequence of

allophones corresponding to it, this sequence is then

used as input to a language model module; in the

second stage, the language model module scores

the probability that the sequence of allophones

corresponds to the language. The performance of

PPRLM is lower than the method of using full

recognizers.

We could also have tested other approaches based

on acoustic features which are derived from the

speech signal itself, such as mel-frequency cepstral

coefficients (MFCC) or shifted delta cepstral (SDC)

features produced by applying a 7-1-3-7 SDC scheme

[40]. The reason is that the distribution of acoustic

features reflects the statistics of the sound distributions

in a particular language. They have been applied

using modeling techniques such as Gaussian mixture

models (GMMs) [40] and support vector machines

(SVMs) [41]. Although acoustic features can be easily

obtained from the speech signal, the useful language

information is often corrupted by the distortion caused

by the transmission channel or speakers. So, many

studies have focused on improving the expressiveness

of acoustic features for language characterization

and to compensate noise and distortion [40, 42].

The results are comparable to the PPRLM technique,

as we can see in [40]: the system using GMM plus

SDC features obtained worse results than PPRLM,

and only the fusion of both systems provided small

improvements.

E. Understanding

The understanding module processes the output

words of the recognizer and obtains its conceptual

content, taking into account the key concepts of

the task. The algorithm builds the meaning in an

island-driven bottom-up approach making use

of context-dependent rules. It differs from more

traditional approaches in two main points: first,

we do not use formal grammars like the recursive

transition networks of Carnegie Mellon University’s

Phoenix [43] used in several successful applications

or finite state machines of the system used by Duke,

et al. for the Pinocchio UA control system [34] that

both need the expansion of the concepts into word

constituents. In our case, it is the conceptual tagging

of the words processed by the proper set of rules that

elaborate the meaning of the sentences. These rules

are similar to a parsing grammar, but the power of

our system is the possibility of using rules that are

dependent on the context and that this context can

be expressed in various ways including far-reaching

context. The other point different from the traditional
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Fig. 2. Block diagram of understanding modules.

understanding methods is the use of ambiguity in

the semantic tagging (each word can be associated

with several tags) and the use of the “trash” tag as

another tag possibility as further explained below.

Like other laboratories (including [34] and [43]),

our understanding module does not try to understand

every single word in the sentence but tries to extract

as many islands of correctly understood segments

as possible. A task-specific and language-specific

dictionary is needed, while the interpretation rules for

each task are quite language independent. In very few

cases we have used language-dependent knowledge

in the elaboration of the sequence of understanding

rules because our design operates on a very high

(conceptual) level of information.

In Fig. 2 we show our understanding

architecture. The process for each sentence begins

with the labelling of each word using a set of

semantic-pragmatic categories (semantic tagging).

Several tags can be associated with the same word.

The selection of the tags is task dependent. All the

words that do not provide information are tagged as

trash. The system also assigns an on-line trash tag to

the new words found in the recognition evaluation

experiments. This feature is also kept for final

evaluation sessions of the whole system.

The algorithm proceeds by processing sequences

of numbers and translating them into figures. This

step has special characteristics, dependent on the

specific phraseology used. The following step tries to

minimize the level of ambiguity in the tagging of the

words. Context-dependent rules are especially suitable

for this task because the reason for selecting some

tags and rejecting others for a particular word is found

by looking at the presence or absence of other tags in

the sentence that matches or contradicts a particular

interpretation or function of the word. Following

the disambiguation step, we generate the initial

interpretation. Making use of context-dependent rules

again we try to form islands of interpretation. These

islands are often tagged with brand-new tags that do

not exist in the original labelled dictionary. These

new tags help the system recognize the formation of

these islands of interpretation (reliably understood

parts). Interpretation islands can be combined together

or with single words to build larger islands of

interpretation. When no more work can be done, we

remove all words that are uniquely labelled as trash.

The reason for removing them at this time and not

earlier is that although we cannot extract any meaning

from a “trash word,” it sometimes helps us to define

frontiers between blocks whose constituents should be

jointly interpreted but separately from others. This is

only true for the kind of rule that works with “near

context” and that do not cross these borders. We

also use another kind of rule that looks for context

anywhere in the sentence.

After “trash removal” we run the definitive

interpretation stage in which another group of

context-dependent rules carry out their work. This

part of the interpretation module is written taking into

account that the trash words have being removed and

special care must be taken in order not to mix things

up that were previously separated by trash. The final

product is a frame containing a variable number of

slots, each made up of an attribute and a value that

represents the interpretation of the sentence.

In Fig. 3 we show an example of a context-

dependent rule and its application in the context of the

ATC clearances task. We have a set of 12 “primitive

rules or functions” that make up a specific language in

which we write our understanding modules.

The clearances task (the most complex

conceptually) is dealt with by using an initial

interpretation module made up of 56 rules and a

definitive interpretation module, after trash removal,

with another 32 rules. In the example detailed in

Fig. 3 we show a rule that relies on the consecutive

appearance of two segments labelled LABEL1 and

LABEL2. If this condition is satisfied, the rule

selects just one of the two items as specified in the

N parameter (the other item is removed from the

working space) and labels it with the label specified

in NEW LABEL. Thus, this rule (function) has four

parameters that have to be specified. For this rule

the context is a near context (indeed a consecutive

context), but we use also rules able to analyze far

contexts. In Fig. 3 we show two applications of this

rule.
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Fig. 3. Understanding rule example.

In the first example, if the sentence elements

present at the moment of the execution of the rule

include “: : :130 initial: : : ,” the rule selects the first
element (“130”) and labels it as “SLOT initial level.”

Something quite similar occurs for the second

example. The difference is that in this case a change

in the ordering of the elements produces the same

result. The element “initiallevel” is obtained by

previous rules that group the two words together into

just one merged element labelled as level ID.

One advantage of using context-dependent rules

instead of finite state machines (FSMs) such as the

ones used in [34] is, that with a proper sequence

of rules, the system is able to understand some

expression variants (that although not canonical with

respect to the official phraseology, they do occur

in real spoken examples since ATC speech strays

from the canonical model). Another property of our

system is its robustness against recognition errors

as long as the system tries to solve all the islands of

possible interpretations and does so by relying only

on content words. The designer of the understanding

module has to bear this in mind and should not use

rules dependent on words with a high probability

of generating a recognition error. These are, for

Fig. 4. Example of output of speech understanding module.

example, short words without a crucial meaning in the

application considered (like articles or other function

words).

The design of the understanding module is quite

easy for experts in the domain once they get a

feeling for the set of rules (or functions) available

(the “primitive” functions) and they follow some

guidelines that we have learned from the experience

obtained after applying this procedure to different

domains. One guideline is to think thoroughly

about the tags for the words. The system allows the

processing of multiple tags for each word and this

is relevant when designing the labelled dictionary

mentioned in Fig. 2. The different tags that the

designer writes down for each word should consider

the different meanings of the word in the particular

domain. One interesting possibility for a word is

to express different tags corresponding to different

meanings including the “trash” tag for words that may

or may not have a meaning in a particular sentence.

The context-dependent rules, mainly those present

in the disambiguation module, will try to refine the

multiple tagging by selecting the one (or the ones)

most suitable for a particular sentence. Another key

design guideline is to apply specific rules before

general ones. This is necessary because specific

rules try to match a context with more conditions.

If a general rule is applied beforehand, it will be

used because its general condition will also be met,

often causing the later specific rule to be unable to

find its specific context conditions. This will lead

to a more general, less precise interpretation of the

sentence, leaving elements out of the interpretation

and eventually producing conceptual errors.

Fig. 4 presents an example of the output of the

speech understanding module. In the first part of the

figure, the result of the speech recognition system is

shown. The set of words delivered by the recognizer

is processed by the understanding module providing a

set of slots with attribute-value pairs.

IV. EVALUATION EXPERIMENTS

A. Off-Line Evaluation

The first tests carried out on the system were the

off-line evaluation tests. This is the kind of evaluation
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Fig. 5. Word accuracy versus perplexity for Spanish sentences and English sentences.

that the experts apply regularly in the laboratory to

predict the performance of any system. For this test,

a set of sentences that were not used in training the

recognizer, neither for the acoustic models nor for

the language models, was fed to the system and the

results were computed. The effect of the language

identification algorithm was eliminated in these tests

and will be evaluated in a different test.

1) Speech Recognition: A usual measure of

the performance of a system is given by the word

accuracy rate that accounts for all types of errors

(substitutions, insertions and deletions) compared with

reference data. The formula used to calculate the error

rate is as follows:

% word error rate

=
# substitutions+# insertions+# deletions

# referencewords

% word accuracy

= 1¡% word error rate: (1)

The number of substitutions, insertions and deletions

is calculated with a program that finds the best

alignment between the hypothesis sentence and the

reference sentence by considering a unity cost for

each of the three kinds of error. The last column in

Table III and Table IV gives the word accuracy of

the system for the different tasks and for Spanish and

English. Data is given with 95% confidence intervals

(in parentheses), as in expression (2).

p§ 1:96
r
p(1¡p)
n

(2)

where p=% word accuracy and n= the number of
reference words.

These tables also show the perplexity of the test

set, the number of test sentences and the percentage of

test words that do not have a language model because

they did not appear in the training text. It can be seen

that there are significant differences in performance in

the different tasks. These differences are mainly due

to the perplexity of the tasks.

In Fig. 5 word accuracy performance is plotted

against perplexities for different tasks. It can be seen

that in general the performance decreases as the

perplexities increase.

In Spanish, slight variations in this general trend

are obtained for perplexity 15.2 and perplexity 29.5

which are higher than the trend. One factor for this

improvement is that acoustic models were only

created with sentences that come from the clearances

task which is the task with a 15.2 perplexity value and

the percentage of test words without language model

is small. In the second case (perplexity 29.5, South

Ground taxiing) one reason for the improvement is

that the language model in this case is better trained

because it has the greatest number of sentences to

train it (12,915 sentences).

A source of high perplexity is either a very

variable grammar or a not so variable grammar but

in which some elements have high variability. This

second example is the case for taxiing tasks in which

the number of different expressions is not as high

as in a clearances task (for instance), but where the

number of different paths, specified as a sequence

of fixed points and routes, is high. For English,

the effect of perplexity is also clearly observed.

A conclusion is that, as was expected, for ATC

speech the performance of the speech recognition

system depends on the perplexity of the task, thus,

its perplexity is a good prediction variable.

Fig. 6 plots a comparison of results for Spanish

and English task by task and for all tasks and the

weighted average which is calculated giving a weight

proportional to the number of test sentences for each

language. The plot also shows confidence margins for

each data.

The comparison between English and Spanish

for each task shows, in general, a significant better

performance for Spanish. There are multiple causes to

justify this fact: we had more Spanish data recorded

both for training acoustic models and for training

language models; we have more experience building

Spanish systems and more knowledge of the language,
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Fig. 6. Offline word accuracy results for different tasks with all of them together and in both languages. Weighted average is

calculated giving weight proportional to number of test sentences for each language.

Fig. 7. Offline speech understanding results for Spanish, comparing results using reference words and using output of recognition

module. Middle curve reproduces word accuracy after recognition module.

which influences our ability to describe optimal phone

inventories, multiple pronunciations, etc.; and last but

not least, English examples are uttered by nonnative

speakers with a very high pronunciation variability.

One reason for the differences from Spanish to

English for the North Ground taxiing task (better

performance for English) is the fewer number of

words in the dictionary for the English task and the

lower perplexity of the language model compared with

Spanish.

2) Speech Understanding: Table V presents the

number of semantic slots evaluated for Spanish and

English. The number of slots is important to establish

the confidence intervals of the results. Fig. 7 presents

the percent concept accuracy, across different tasks

for Spanish. Percent concept accuracy is calculated in

a similar way as percent word accuracy calculated in

the previous section. The only difference is that when

we calculate the match between our system output

TABLE V

Speech Understanding Slots Evaluated for Spanish and English

Slots Evaluated Slots Evaluated

Task (Spanish) (English)

Clearances 1545 1032

Arrivals 621 165

Takeoffs 655 207

North Ground taxiing 439 86

South Ground taxiing 297 149

and the reference, we require the coincidence of both

the attribute and the value for each concept to count

it as a positive match. The top line represents the

results of the understanding module on the reference

sentences (the transcription of the test sentences

made by hand). This line shows the power of the

understanding rules by themselves which, in general,

cover the domain of the application quite well (with

2718 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 47, NO. 4 OCTOBER 2011



Fig. 8. Offline speech understanding results across tasks for English, comparing results using reference words and using output of

recognition module. Middle curve reproduces word accuracy after recognition module.

Fig. 9. Comparison of off line speech understanding results for Spanish and English for different tasks and all of them together.

Weighted average is dependent on number of slots evaluated.

a slightly lower performance for the North Ground

taxiing task, 84.05%, due to a different sharing

distribution of the errors across the dictionary. In

fact, for these cases, word accuracy is a misleading

predictor of understanding performance, as the

accuracy on the “carrier phrase” words is less relevant

than the accuracy on the particular paths mentioned in

each case, which have to be correctly understood.).

The average performance of the understanding

module is 95%. The lowest line in Fig. 7 shows the

understanding performance after the recognition

stage. The middle line in the figure plots the word

accuracy from the recognition stage. We notice that

the recognition errors made by the recognition module

have an effect on the final results, thus increasing the

concept error rate. The general performance for each

task follows the performance trend obtained from

the speech recognition results, showing the expected

correlation between recognition (text transcription)

and understanding (semantic content extraction)

capabilities. In Fig. 8 the concept accuracy from the

text (upper line) from speech (lower line) together

with the word accuracy (center line) are plotted for

English. The recognition errors coming from the

recognition stage are augmented in the understanding

stage as it is in Spanish. However, as we see later

in Fig. 10, if we consider the number of correct

sentences the understanding module improves the

performance of the recognition module.

In Fig. 9, a comparison of speech understanding

results for English and Spanish is given across tasks

and for all the tasks together with their weighted

average. The general trend observed in speech

recognition results is also observed here. Spanish

delivers better results in general than English although

in two cases (Arrivals and North Ground taxiing)

there are no statistical differences. Notice that the

speech recognition results for Arrivals were also

similar for Spanish and English (see Fig. 6).

Another way of analyzing the results of the speech

understanding system is by calculating the number of

sentences with no errors (perfect sentences). While in

speech recognition, a single word error in a sentence

causes a sentence error. In speech understanding a

single word error may not cause a concept error.

This happens because some of the words that might

be erroneous in the recognition result are not used

for understanding (i.e., a function word like an
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Fig. 10. Comparison between percentage of correctly recognized sentences and correctly understood sentences for Spanish and English

across tasks and all of them together.

article or preposition) and other crucial words give

the necessary conceptual imprint to form a correct

interpretation. Thus, the speech understanding module

“corrects” the output of the speech recognition module

to a certain extent. This is an important robustness

characteristic of our understanding solution. In Fig. 10

the percentage of correctly recognized sentences

for English and Spanish is presented together with

the percentage of correctly understood sentences

across tasks and all together. All the tasks exhibit

the same trend: the percentage of correct sentences

is improved. For Spanish this improvement is on

average 25% in absolute points and for English it

is a little lower (17% on average) but it is also true

that the base performance of the English recognizer

is lower than the Spanish one and a sentence full of

recognition errors is very difficult to “correct” by the

understanding module. Depending on the use of the

system, the average 50% fully correctly understood

sentences may be enough for some applications (for

example, if one wants to detect the workload of the

controller).8

3) Language Identification Module: The language

identification module was evaluated offline using a

small set of 60 sentences. The percentage of correct

sentences was 96.67% and 3.33% of error.

B. Field Evaluation

After testing the system in the laboratory with

original recordings (field recordings) made at the

beginning of the project we carried out a live test

(i.e., a test carried out with the system connected to

the microphone of ATCs on duty). This test is the one

8The only way to know if it is enough for the application is to build

the application and carry out usability tests.

TABLE VI

Evaluation Results for the Field Evaluation Test for Live

Conversations (Languages Mixed)

# of % OOV in % OOV in Word

Task Sentences Dictionary Test Words Accuracy

Clearances 385 2.72% 1.15% 77.99

(§1:05)
Arrivals 158 1.95% 1.07% 79.85

(§1:63)
Takeoffs 167 2.17% 1.29% 76.16

(§1:79)
North

Ground

taxiing

206 0.9% 0.99% 66.24

(§1:89)

South

Ground

taxiing

89 0.14% 0.67% 62.95

(§2:94)

that gives the real performance of the system. With

this test, we check the performance of all the modules

working together in real time, the Spanish recognizer,

the English recognizer, the language identifier, and

the understanding modules. In this evaluation both

languages are mixed. The results that we present are

the overall results for each of the tasks. Table VI

summarizes these results for the speech recognition

part. In the live test, new words appear that are not

included in the dictionary of the system, these words

are called “out of vocabulary words” (OOVs) and are

presented in Table VI in the third column (the OOVs

as a percentage of words in the dictionary) and fourth

column (the OOVs as a percentage of words in the

test). New words cannot be understood by the system

because they are not known to the speech recognition
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Fig. 11. Comparison between weighted average results and field evaluation results.

module nor to the understanding module in advance

and they reduce the performance. The percentage

of OOV words is never zero even for these tasks in

which the phraseology of the communication has been

designed to be standard. On the one hand, human

communication eventually produces a relaxation of

the norm that alters the expected grammar and, on the

other hand, there are other parts of the message (the

variable part dependent on the particularities of each

airport) that are not specified in the regulation nor

are they kept constant because of the natural dynamic

changes in time (new runways with their new taxiing

routes, their new identifiers, etc.). Even after several

thousand training sentences, we find OOV in test

sentences.

In Fig. 11 we compare the results obtained in

this section with the results obtained in the weighted

average evaluation made in previous sections that we

have called offline. The use of the weighted average is

needed since in the field evaluation both languages are

mixed. If we analyze the results presented in Fig. 11

we can see that field results are lower on average

than the offline results in four of the tasks. The lower

performance for the 4 cases is on average 5% which is

influenced by errors due to the language identification

module (see Table VII), OOVs, and the speech end

point detector. If the language identification module

has an error, the full sentence is wrong since all the

words recognized are wrong (they are in a different

language).

To further analyze the performance of the system,

we calculated the percentage of errors of the language

identification module in the live test. The results

are presented in Table VII. Although the errors

for English identification are greater than those

for Spanish identification, the weighted average

performance is 95% (or 5% error rate), not far from

3.3% in offline tests.

The performance of the speech recognizers both in

Spanish and English follow the expectations obtained

in the offline evaluations. The reason for a higher

performance for the “arrivals” task is still to be

TABLE VII

Performance of the Language Identification Module in the Field

Language Spoken (sentences)

Identified Language Weighted

(# sentences) Spanish English Average

Spanish 757 36

English 17 253

Percent correct 97.8% 87.54% 95.0%

researched. On average, the results of the field test

are only lower than the offline tests in 3.3%, but if

we exclude language identification errors the field

tests outperform the offline tests in 1.7% absolute

points due mainly to the results of the arrivals task.

This result is not strange, since the offline data

are also field data recordings. The main difference

is that offline data is processed in the laboratory

and the field data is processed in real time, with

the computer connected to the microphone of the

controller.

In Fig. 12, the understanding results in the field

are compared with the weighted offline understanding

results. Again the performance of the field results

is lower than the performance of the offline tests

for three of the tasks and not significantly different

for two other tasks. In this case, the relatively low

performance of the speech understanding for the

North Ground taxiing task, coming from the relatively

low Spanish speech recognition results for this

task and the relatively lower performance of the

understanding rules is not degraded any more in the

field test, possibly indicating that the errors in the

language identification have their origin mostly in

the takeoffs task and the South Ground taxiing task.

The percentage of OOVs here also has an important

impact in the degrading of the results particularly

for clearances and takeoffs. A single OOV causes a

concept error while in the offline tests there were no

OOVs in the understanding dictionary.
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Fig. 12. Comparison between weighted offline understanding results and field evaluation understanding results.

Fig. 13. Results for the same task (clearances) and changing conditions.

V. PERFORMANCE ANALYSIS

We have further looked into the possible source

of errors by analyzing the clearances task [24]. A

detailed analysis of the training data and the test

data showed that there are two situations at Barajas

airport. One appears when the wind comes from the

north (called the north configuration) and the other

is when the wind comes from the south (called the

south configuration). While our original recordings

all contained data for the north configuration (the

most common one), the field experiments were

carried out by chance with the south configuration.

This is a reason for a degraded performance in the

field tests. We made new recordings using the north

configuration and the speech recognition results

improved by up to 88.96% word accuracy and

76.87% concept accuracy (see Fig. 13, “field adapted”

results compared with “field nonadapted” both for

recognition and understanding). Fig. 13 also shows

offline results for completeness. The conclusion

is that the data capture is especially important for

ATC as a change in configuration of the airport

or the loss of a particular circumstance will cause

relevant degradations in the system’s capabilities since

the stochastic grammars that we use need training

sentences. The help from ATC experts is needed in

order to maximize the suitability of the data capture

and repeat the capture several times in different

conditions to ensure a reasonable sampling of the

variability in a real system development.

The next experiment was carried out in a simulated

task experiment in which 7 ATC students freely

generated a set of sentences based on a given

operating scenario. The experiments were carried out

separately for English and Spanish so no language

identification was used. The weighted results are

presented in Fig. 13 (called “simulated free (ATC

student)”). For speech recognition the results are

significantly lower than the field adapted case. A

more detailed analysis comparing results for Spanish

and English showed that the performance of Spanish

recognition was not significantly different from
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Fig. 14. Results for clearances task and simulated (read) speech with ATC students and nonexperts.

the field adapted case while for English the results

were significantly lower and this fact weighted the

combined results downwards.

However, for speech understanding there are

no significant differences between simulated free

experiments and field adapted experiments. A closer

look at the English and Spanish results showed

an improvement in the Spanish results compared

with the field adapted case but a significant lower

performance for English that compensated both

effects. The understanding results of the simulated

free experiments for Spanish demonstrate that a

less spontaneous pronunciation (such as was heard

in the experiments) improves the understanding

results (81.77% concept accuracy versus 76.87%,

although not significantly). One reason for the lower

performance of English both in recognition and

understanding is due to the lower English language

skills of the ATC students. We should also remember

that the field adapted case experiment includes the

language identification module so the comparison

between these results and simulated task results is not

direct.

The results of the simulated free experiments

constitute the best prediction of what one could expect

in an ATC training simulator application since there

is a free framework in which the ATC student has to

perform a defined task.

A third experiment was carried out by giving the

speakers several sentences to read (simulated read

ATC student in Fig. 13). The performance both for

speech recognition and understanding is better than

the field adapted case, however, read speech has a

much lesser spontaneous style. Our conclusion is that

spontaneity in the live speech is difficult to understand

compared with speech obtained in a “more controlled”

experiment (i.e., simulated read) as is well known in

other speech applications. The results obtained from

read speech can be used as an indicator of maximum

performance expected under the best circumstances.

Finally the same sentences given to the ATC

students were read by 16 speakers not familiar with

ATC phraseology chosen from among people working

in our laboratory. The reason for carrying out this

experiment is to highlight that when designing a

system for ATC, it is crucial to work with ATC

professionals and field data and not to rely on

informal tests with nonprofessionals. This concept

is very well known in the speech community but we

have the experience that it is not observed in other

disciplines in which speech technology is applied

without taking these design details into account.

The results for speech recognition and

understanding for both languages are presented in

Fig. 14 called simulated read nonexpert compared

with the simulated read (ATC student) of the previous

paragraph. The results for the more experienced users

(ATC students) yield significantly better results both

for English and Spanish. This is due to the different

style of pronunciation obtained from people who are

not familiar with the task (nonexperts) compared with

the style of ATC controllers present in the training

material. The ATC students present a style closer to

the professional speech in the training material.

The experiment highlights two issues: that

professional speech is quite different from

nonprofessional speech and that our design procedure

ends up obtaining a system well adapted to

professional speech, giving worse performance for

nonexperts inasmuch as they are unable to reproduce

all the characteristics of the professional speech.

In conclusion we confirm for the ATC domain that

in order to determine the performance of the system,

the best approach is to use experiments from the field

PARDO ET AL.: AUTOMATIC UNDERSTANDING OF ATC SPEECH 2723



and that special care has to be taken in order to cover

all different conditions when capturing the training

and testing data. A good estimation of performance

can be made by creating a simulated scenario in

which the user has to perform a task and is free to use

whatever sentences he wants. Experiments using read

sentences demonstrate the maximum capabilities of

the recognizer or understanding module in the domain

but are not a good estimator of the final expected

performance.

VI. DISCUSSION

Commercial off-the-shelf (COTS) systems as

used in previous experiences [20, 44] need a specific

grammar that has to be developed with a great deal

of effort and is never complete. Out-of-grammar

sentences lead to big errors. With a design customized

to the task, as is done in this work, results can

be better and more robust if automatic learning

techniques are used. For these stochastic schemes,

the quantity and completeness of data available

for training is relevant to determine the resulting

performance.

Our speech understanding architecture, based

on a bottom-up island-driven approach using

context-dependent rules, exhibits robustness against

recognition errors and at the same time easily

accommodates different orderings for the sentences

like those present in real ATC conversations. Its

design is easy for the experts once they follow a few

sensible guidelines in the process.

If we compare results for different tasks, they

are diverse as a result of several factors, the main

one being the different perplexities of the tasks. The

different number of sentences used to train each

task (for both language and acoustic models) can

also be a source of lower performance for some

tasks although this has not been researched. Results

obtained by comparing offline data with online

data are not significantly different when taking into

account the errors made by the language identification

module and the set of new words that appear in

the experiments. From the analysis of fully correct

recognized sentences and fully correct understood

sentences it is important to point out that while the

speech recognition module makes errors, some of

them can be corrected by the understanding module.

Results comparing online data with simulated task

data (read) demonstrate that the style used by ATC

controllers in live speech is much more difficult to

recognize than the same sentences read in a controlled

simulated task experiment. The familiarity of the

user with the task is also a positive factor in terms of

recognition performance compared with users that are

not familiar with the tasks and sentences.

It is difficult to compare our results with

previously published results since the conditions are

different. For instance in [21], in the context of an

ATC training simulator development in English and

French, it is reported that 95% of the sentences were

correctly recognized and understood but it was done

with a task covering only 250 words and a finite state

grammar. The results presumably were also laboratory

results since they mention that evaluations by ATC

people were on their way. The problem with finite

state grammars is that the contents of the grammar

cannot vary online in the final system, which implies

that grammatical variants that were not considered

during the development of the grammar will not

be allowed by the recognizer. Instead, if stochastic

grammars are used, although a particular grammatical

variant was not considered (observed in the training

material), the recognizer is nevertheless able to

recognize the new variant because the stochastic

grammar will give a score (although most of the times

lower than when the utterance grammar matches

the observed data) that is not zero (thanks to the

smoothing techniques). Thus the recognizer gives

the right answer if the acoustic evidence is enough.

In this sense, the stochastic grammar exhibits a

robustness behavior allowing unforeseen grammatical

structures not allowed with finite state grammars.

This characteristic adds up to the fact that although

we are dealing with professional speech that should

keep specific grammatical constrains, humans are

unable to strictly keep to this normative language

and always stray from the official phraseology. The

result is that this robustness characteristic of our

system is crucial for speech technology use in ATC. A

similar conclusion holds for the specific understanding

technology that we decided to use for this work as

far as it is powerful enough to admit changes in the

ordering of appearance of the elements that build up

the final meaning of each sentence and is even able

to jump on some irrelevant words when building the

interpretation islands.

A closer comparison with our experiments was

carried out by Hering [20] because he carried out

experiments with live recordings during a simulation

exercise including hesitations, insertions in a different

language and recordings that do not strictly respect

the phraseology. He tested three COTS systems

and reported the value of the percentage correct of

between 26% and 39% in the recognition task–there

was no understanding module–and he used a

different way of measuring the error rate (he did not

count insertions). The tested task was an en-route

task with a 300-word vocabulary which had 11.2%

of OOV words. These results were obtained from a

simulation exercise and not from live recordings.

There is still room to improve the current

performance of the presented ATC speech

understanding system. We could get a significant

improvement just by applying pragmatic constraints

as is done in [20]. These data could be incorporated
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into our system as a set of restrictions which, in

short, would mean a lower recognition uncertainty

and therefore better recognition and understanding

accuracy. We are referring to, for example, the

knowledge on the set of available communication

frequencies and runways, the list of possible

call-signs, flight levels, etc., constraints that have

not been applied to our system (i.e., all possible

combinations of numbers are recognized, but not all

numbers are possible when speaking about frequency

changes).

The application of speech recognition and

understanding methods to ATC speech has shown a

varied range of results across tasks and languages.

The use of these algorithms in a real environment

depends on the requirements of the application. While

a very demanding application (i.e., fully automating

the process of ATC) requires a better performance,

many other practical applications do not, particularly

if a confirmation mechanism is used. Although it

has not been implemented here, the confirmation

mechanism–usually a confirmation question asked

by the system–is generated automatically by the

system when it perceives that the confidence of

the results is low and the user has to repeat the

command (this is a credible situation in the context

of ATC-student training). In this last case, even

a certain level of error is useful in order to better

simulate an understanding problem with a pilot or

with the communication channel. Another example

of a possible application is scoring ATC student

speech for his or her training. Finally an ATC task

workload analysis, ATC controller’s performance

measurement, or detecting possible miscommunication

errors between the controller and the pilot are several

feasible applications using today’s state of the art

systems.

The only way to be sure about the level of speech

recognition and understanding performance needed

for a particular application is to implement it and

involve users giving feedback on the usability of the

product. But again this is very dependent on how the

application is built and not only on the recognition or

understanding results. This objective was out of the

scope of our project.

The fact that there are products for training

ATC using speech recognition (with no or very

limited understanding) lead us to conclude that the

performance of current systems is enough for this

kind of application. But the question “is it enough?”

has to be asked to the users. Unfortunately no data is

published on the usability of these applications.

VII. CONCLUSION

In this paper we have drawn up a revision of

experiments and experiences carried out in the

literature to process ATC speech automatically.

We have also described in detail the results of

the INVOCA project, a project whose objective was

to analyze to what extent the processing of ATC

speech can be done automatically with current speech

recognition and speech understanding systems. The

system is able to process sentences whose content

is mixed in Spanish and English. We have presented

our methodology used to do both. In comparison to

previous systems, by using stochastic grammars our

speech recognition algorithms allow the processing

of sentences that stray from the ICAO standards as

is often observed in real ATC speech and does not

need a lot of effort in writing always incomplete

specific grammars. However, the recording of data

from the field is needed. The analysis of captured

vocabularies renders 2,086 different words for

Spanish compared with 869 different words in English

indicating a higher proficiency of the ATC controllers

in Spanish. We have also developed a robust algorithm

for speech understanding that allows the flexibility

of working with sentences with no restrictions on

concept ordering. The average performance of the

understanding algorithm from text sentences is

95% both for English and Spanish demonstrating

that the understanding module is robust. We have

also demonstrated that the understanding module is

capable of improving the recognition performance

when we compare the number of fully correct

sentences obtained after the recognition module to the

number of fully correct sentences obtained after the

understanding module.

To the best of our knowledge, this is the first

published work that reports results obtained from

field data. We have reported results for different

experiments, comparing offline data, simulated

task data, and field data for the five different tasks

addressed. Our results show lower performance for

English compared with Spanish due to the lesser

amount of training data used for English and the less

experience we have with this language. As regards

the influence of the task in the recognition error rate,

we confirm that for our experiments on ATC speech,

perplexity is a good prediction variable.

The comparison of field data results with simulated

data results recorded in the laboratory for one of the

tasks (read data or free speech) demonstrates that

the spontaneity found in field data decreases the

performance of our original system mainly due to

the naturalness and style of the interactions. From a

96% word accuracy for read speech it goes down to

86% for real recordings (offline) for the clearances

task for Spanish. Consequently, it is not possible to

know the performance of a system without testing

it with field data. However we have demonstrated

that a good estimation of performance can be made

by processing the sentences obtained in a simulated

scenario in which a professional user performs
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a task and is free to use whatever sentences he

wants.

Finally a discussion on application perspectives

in this area has also been given. Some commercial

systems are already on the market for training ATC

controllers based on speech recognition, although

they are only operative in constrained fields and we

have no evaluation surveys from customers. With the

availability of more field data we think that there is

a great potential for the future development and use

of speech recognition and understanding algorithms

applied to ATC speech, some of which are presented

in the paper.
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6th Aerospace Medical Panel Meeting, Symposium on

Virtual Interfaces: Research and Applications, Lisbon,

Portugal, Oct. 18—22, 1993.

2726 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 47, NO. 4 OCTOBER 2011



[23] Schäfer, D.
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