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Abstract 

The purpose of this paper is to present a system which 
breaks input speech into segments and identifies each 
new appearance of the same speaker with a consistent 
label. This task adds up to a topic detection system that 
makes use of key-word recognition to obtain suitable 
labels for an automatic indexing system project. Both 
the segments definition and the identification of the 
speaker for each segment are performed using an 
acoustic similarity measure.  

Our task is to separate and identify the different 
speakers who appear in a video-conference session 
without any prior knowledge of the speakers or their 
number. The first aim is to detect the time points where 
a speaker change takes place using a robust acoustic 
change detection (ACD) system. Afterwards, the 
regions defined by these time marks are labeled with the 
use of a clustering algorithm. The Bayesian Information 
Criterion (BIC) is the key element in the system, and is 
used in several ways as a measure to compare speech. 
EERs of 13.66% are obtained for this task with a soft 
feeding back of clustering information to enhance ACD 
performance. 

1. Introduction 

Under the contract TIC2000-0198-P4-04 ISAIAS with 
the Comisión Interministerial de Ciencia y Tecnología, 
a project for automatic indexing of video-conference 
sessions have been developed. The aim is to end up 
with a system that prepares the proper labels as to be 
able to answer questions as “Play for me what 
[username] told about [topic]”. 

In this paper we discuss the part of the project 
concerning the blind speaker recognition needed. Our 
database consists of a set of audio files of three-hour 
length containing different video-conference sessions, 
including speech from both genders of medium age 
speakers. The speech comes from an unknown and 
widely varying number of speakers. 

In the system, we first employ an ACD procedure on 
the input speech resulting in a set of acoustically 
homogeneous segments. This basic ACD is enhanced 
via the clustering of these segments. Finally, an 

additional clustering stage and a filter for silence 
segments is included to obtain the definitive labels. 

Although our system has been designed for indexing 
video-conference sessions, the same system has been 
also tested with other recordings from radio broadcast 
news with similar performance.  

2. System Architecture 

Our system is composed of the modules shown in Fig. 
1. First of all, we extract the features of the signal: 10 
unsmoothed cepstral coefficients plus the frame energy 
for each 10 ms. frame. That number of features has 
proved to be enough to achieve acceptable performance 
using full-covariance Gaussian models [1]. The 
following module generates a set of initial hypothesis 
for the ACD. The purpose is to save computing power 
not hypothesizing a break point for each single frame.  
A hypothesis can be defined as the time point (frame) in 
which an acoustic change might be present. 

The Acoustic Change Detector, ACD, is the module 
which decides whether a hypothesis will be validated as 
an acoustic change or not.  

 

 
Figure 1: System Architecture 

 
This decision is taken using the BIC. After this, a 

clustering of the segments with similar acoustics is 
carried out using the same criterion than in the ACD.  

The information conveyed in this clustering of 
segments is fed back to the ACD to refine the decisions 
making them more robust as it will be shown below. A 
simple filtering of this segments is implemented to 
eliminate those with non-speech events. Finally, a new 



clustering of the final segments identifies them with a 
proper speaker label. 

2.1 Break-point hypothesis generator 

Once we have the speech features for each frame, 
instead of hypothesizing a break point in every frame of 
the input signal, we select a reduced set of frames for 
which the system estimates that the likelihood of an 
acoustic change is high enough. This set will contain 
the most silent regions in the recording. This allows us 
to save an important number of calculations in the ACD 
procedure. The hypotheses of the ACD are the initial 
and final time points of the hypothesized segments. To 
decide whether a frame belongs to a silence region or 
not we only take into account the frame energy. 

It is essential to know the characteristics of the 
silence and the speech with respect to their energy and 
automatically obtain them from the new recordings to 
be processed. As a first step, we obtain the energy 
histogram and set a threshold to split it into two regions. 
An example is shown in Fig. 2, where we represent the 
energy in dB in abscissas plotted against the number of 
frames.  

 

 

Figure 2: Example of an energy histogram. 

The system estimates a first threshold separating 
silence from speech as the minimum smoothed-
histogram value between both maximums. Under this 
initial threshold, we calculate a Gaussian model for the 
noise, while the rest of the frames are used to generate 
the speech model. The maximum likelihood estimation 
can be used to select the adequate class for every frame: 
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where µn, µs and σn, σs are the means and standard 
deviations of noise and speech, respectively. We have 
taken logarithms in both terms for easier computing. 

Because of the difference between the variances of 
the two models (speech has always much more energy 
variance than noise), the speech Gaussian overcomes 
the noise Gaussian in the region of low energies. The 
problem can be seen in Fig. 3, where we observe that 
the expression 1 would classify the frames whose 
energy is lower than the lowest energy cross point of  
both curves (~40 dB.) as speech instead of noise. 

 

Figure 3: Log-likelihood vs. frame energy for speech 
(wider curve) and background noise. 

 
To avoid these errors a simple solution is proposed: 

We choose the highest energy cross point as the final 
threshold (~63 dB. in Fig. 3). The comparison of the 
frame energies with this threshold gives us the 
classification criterion: if the frame energy is higher 
than the threshold, the frame is labeled as speech, 
otherwise the frame is considered noise. 

A median filter will smooth up the result for 
consecutive frames to obtain the final hypothesized 
break points. 

2.2 The Acoustic Change Detection System 

Our approach is based on the ideas shown in [1]. Here, 
we present the basis of the Acoustic Change Detection 
system that can be also found in [2] and [3], underlining 
the differences and particularities of our new system. 

The Bayesian Information Criterion (BIC), a 
likelihood measurement penalized by the complexity of 
the assumed model, is used as the model selection 
criterion because of its properties: robustness, threshold 
dependence desensitization and optimality. This 
measure will be used widely in both the ACD and in the 
clustering stages. For adjacent acoustic segments 
(delimited by break points that are hypothesized by the 



previous module), an actual break point is inserted by 
comparing the fit of a single multidimensional Gaussian 
model for the entire segment to the conjunct fit of 
separate models for each side of the break. We compare 
these two alternatives using the BIC. Given a set of N 
vectors X = { xi : i =0 … N-1 }, that we want to 
represent by a model M, the BIC is calculated as 
follows: 
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where the penalty weight, λ, should be 1, at least in 
theory1. #(M) is the complexity of the model measured 
by its free parameter count and L(X,M) is the likelihood 
of data X under model M. 

For each hypothesized break point, we have to 
decide if the whole segment comes from the same 
acoustic conditions or, in contrast, there are two 
acoustically different segments that we should break 
apart using the break point. Using Gaussian models we 
have: 

H0:  x0 ... xN-1 ~ N (µ , Σ ) 

 H1: x0 ... xN1-1 ~ N (µ1 , Σ1 ) 

      xN1
 ... xN-1 ~ N (µ2 , Σ2 ) 

 
where N1 represents the hypothesis break point. We 
arrive to the following hypothesis test, assuming that  
N2 = N - N1: 
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If the equation 3 is positive, we decide H1 and break 
the whole segment into the two sub-segments. In this 
expression, the complexity of the model is penalized via 
the factor d + d(d+1)/2, i.e. the number of free 
parameters in a full covariance Gaussian model for d-
dimensional feature vectors. 

In our system, unlike the procedure described in [1], 
where the non-speech regions were not processed by the 
ACD, we process the full input signal. The reasons are 
mainly two: we have a much less powerful and reliable 
hypothesis generator than in [1] and, moreover, in the 
database used in [1] silence regions were not common, 
while our video-conference task frequently contains 
large segments without speech. 

                                                           
1 We have found throughout our experiments that the 
value of λ had to be tuned in order to end up near the 
EER. 

2.3 Clustering to enhance ACD 

The clustering of the segments generated in the ACD 
can be used to improve the ACD performance feeding 
back its information. The same acoustic measure, the 
BIC, is used in the clustering algorithm. As a result of 
this clustering, we obtain a set of clusters, 
agglomerating a set of segments with homogeneous 
acoustic conditions. 

The basic iteration of the clustering algorithm is as 
follows: 

 
1) Pick one ACD segment. 
2) Remove this segment from its cluster and 

update cluster data. 
3) Find the "closest" cluster (if any) to the 

segment. 
4) If there is a representative cluster, go to 6) 
5) Generate a new cluster with only this segment 

in it. Goto 7) 
6) Update this cluster with the segment 

information. 
7) If last segment then stop, else go to 1) 

 
We perform 10 iterations like this one (or come to 

an end when not enough average distance 
improvements are obtained). We use likelihood values 
as distances between data sets and define a distance 
between two acoustic segments as: 

YYXXYXYX NNNNYXd Σ⋅−Σ⋅−Σ⋅+= logloglog)(),( U  (3) 

where X and Y are two data sets that can be both single 
acoustic segments (we will use the letter S in these 
occasions) or clusters of agglomerated segments (for 
which we will use the notation C). The idea is to 
consider the distance between the representative 
clusters for both segments to be compared: 

),( 21 CCdG =                                  (4) 

where Ci is the cluster to which the segment Si belongs 
(is nearer to). 

These clusters are supposed to represent well the 
segments to compare. Thus, the distance between these 
representative clusters should be relevant to make the 
ACD more robust. The breaking decision will not be 
taken only on direct comparison of the two segments 
that some times might be too short, but will also use the 
distance between the representative clusters of the two 
segments. Because the clusters agglomerate all the 
segments in the file with similar acoustics, much more 
robust information is now used to make the decision.  

There are different options in the integration of the 
clustering into the ACD. A summary of the strategies 
we have tested can be seen in table 1. In the “hard 



decision” alternative, we only allow a break between 
segments coming from different clusters. The second 
“soft integration” alternative calculates a linear 
combination of the distances between segments and 
between clusters to obtain the actual distance. It has a 
parameter α that has to be tuned on some training 
material. 

 
Strategy Validation of hypothesis 

Hard  
decision 

0),( 21 ≠CCd  

Soft 
integration 

 

Table 1: Summary of the strategies for clustering 
integration into ACD  

2.4 Silence Filter 

In this video-conferencing task, a filtering of the silence 
chunks must be done following the reasons given 
above. The filtering rate, defined as the percentage of 
frames labeled as non-speech to decide that a segment 
does not contain speech, has been tuned so that the 
chunks with some speech inside will not be filtered out. 

2.5 Final Labeling 

A new clustering of the remaining speech segments is 
performed. The clustering system is similar to the one 
described in Section 2.3. λ has to be set considering a 
tradeoff between two behaviors of the system: 

• If we use a low λ, the system may detect slight 
changes of acoustic conditions even within the 
same speaker speech segments.  

• If we use a high λ, the system may assign the 
same label to utterances coming from different 
speakers. 

 
λ optimization is performed on a hand labeled 

training database. 

3 Experiments and results 

We have tested our system on a 45 minutes hand-
labeled video-conference session including speech from 
11 speakers. Following the evaluation directions in [1] 
and [2] for the ACD task, we have tested both options 
in the feeding back of the clustering information to the 
ACD with the results shown in table 2. Our best result 
has been achieved by the soft integration of the 
clustering information. 

 

Strategy EER 

Baseline ACD 19.42 % 

Hard feedback 15.70 % 

Soft integration 13.66 % 

 
Table 2: Summary of the best results 

4 Conclusions 

In this paper, we present a system mainly based in [1] 
which performs the speaker change detection and 
identification. We have used a simpler hypothesis 
generator based on the comparison of the frame 
energies with an estimated threshold to classify the 
frames into the noise and speech classes. With respect 
to the ACD, a soft integration has been found to be the 
best strategy for feeding back the clustering information 
into the ACD module. The result is a robust, accurate 
and reliable system that matches the purposes of the 
video-conference indexing system for which it has been 
designed, performing 13.66% EER. 
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