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Abstract.  
This paper contains a description of the data-sets, systems and fusion alter-

natives developed by the Speech Technology Group (GTH) for the Albayzin 
2012 Language Recognition Evaluation for the 4 conditions: plenty-closed con-
dition (core), plenty-open, empty-closed, and empty-open. In all cases, the pri-
mary system is the fusion of three different i-vector based systems: one acoustic 
system, a phonotactic system using trigrams of phone-posteriorgram counts, 
and another acoustic system based on RPLP features instead of the traditional 
MFCC features. For each plenty condition, a contrastive system was also in-
cluded where the RPLP features or MFCC features where replaced by a differ-
ent system based on using glottal source features. We provide results for the 
plenty conditions using the proposed metrics for the evaluation (i.e. Fact, Fdis, 
and Fcal), as well the known Cavg metric used on NIST evaluations. 

Keywords: Language Recognition, Phonotactic system, iVectors, RPLP, 
GlottHMM 

1 Introduction 

The goal of this paper is to describe the GTH system for the Albayzin 2012 LRE 
task. Our primary submission includes three systems: 

1. Acoustic system based on MFCC + SDC features and RASTA, iVectors  
2. Phonotactic system based on trigram Posteriorgram Counts, iVectors 
3. Acoustic system based on RPLP + SDC features and RASTA, iVectors 

Fig. 1 shows a block diagram of the submitted system. Detailed information about 
each system, as well as the calibration and fusion process will be provided throughout 
the paper. We also submitted a contrastive system for the plenty conditions based on 
using glottal source features (called GlottHMM-iVector, see section 6). In this case, 
we replaced system 3 by a system based on using glottal source information and iVec-
tors. 
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As many of current state-of-the-art systems, our three systems make extensive use 
of sub-space projections in the form of iVectors [1] combining different, but comple-
mentary, kind of information. 

The paper is organized as follows: Section 2 describes the data-sets used for train-
ing, development and test prior to the final evaluation. Section 2.2 explains the acous-
tic system, section 4 the phonotactic system, section 5 describes the RPLP system, 
and section 6 the Glottal source based system. Finally, section 7 covers the fusion and 
calibration results. 

 

Fig. 1. Block diagram of the primary submitted system. 

2 Data description 

2.1 Plenty conditions 

Table 1 shows the statistics of the number of files used in our setup for training, 
development and test in both plenty conditions. For the three systems reported in this 
paper we have always used the same file sets. 

 

Closed Open Plenty 

Train Dev. Test Train Dev. Test 

No. Files 4656 458 457 5265 725 725 

No. Langs 6 7 

No. of clean files 3060 N.A N.A 3060 N.A N.A 

No. of Noisy files 1596 N.A N.A 1596 N.A N.A 

Table 1. Statistics for the training, development and test set for the plenty conditions 

We have divided the original development set into two subsets with a similar lan-
guage distribution. We did not apply any k-fold strategy. The first one is the “Dev.” 
set used to calibrate the system, and the second one is the “Test” set, which we have 
used to obtain the results presented in the paper.  

For the final evaluation, we have added the “Test” set to the Train set to have more 
training data, calibrating the system with the “Dev.” set. 
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2.2 Empty conditions 

Table 2 shows the statistics of the number of files used in our setup for training, 
development and test in both empty conditions.  

 

Closed Open Empty 

Train Dev. Test Train Dev. Test 

No. Files - 304 305 - 571 571 

Our experiments 7400 (1) 304 305 10141 (2) 571 571 

No. Langs 4 5 

Table 2. Statistics for the training, development and test set for the empty conditions 

As we did not have any training data for the 4 new languages, we have reused the 
training set from the plenty conditions and merged them with the development data 
available duplicated three times to give it more relevance. We did not apply any adap-
tation technique to the models from the plenty conditions. 

In detail, for (1) we have merged the data from the plenty closed (PC) training data 
with the PC Development data and 3 times the empty closed (EC) Development data, 
giving a total of 7400 training examples. In the same way, for (2), we have merged 
the data from plenty open (PO) training data with the PO Development data and 3 
times the empty open (EO) Development data, giving a total of 10141 training exam-
ples. 

As for the plenty conditions, for the final evaluation we have also added the “Test” 
set to the Train set to have more training data, calibrating the system with the “Dev.” 
set. For training the logistic regression classifier for the EC condition, we have unified 
the “Dev.” and “Test” sets but the calibration was done only on the “Dev.” Set. For 
the EO condition we have used 10141 files for training the LR classifier and the cali-
bration was done on the 571 files.  

3 Acoustic system based on MFCC + SDC features and 

RASTA, iVectors 

In this section, we provide a brief summary of the acoustic feature extraction and 
UBM training used for training our acoustic system. 

The first step in our system is to extract the feature vectors from variable duration 
segments of recorded speech. In order to do this, we first parameterize each file using 
SPRO51 extracting 12 MFCC coefficients (including C0) from 24 Mel filter banks 
plus the energy for each frame. Finally, Cepstral mean and variance normalization is 
applied to the feature vectors for each file. 

                                                           
1 https://gforge.inria.fr/projects/spro 
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The Voice Activity Detector (VAD) used for all the systems is the output from the 
the BUT Hungarian phone recognizer2. Then, we suppressed all segments marked as 
silence or noise in the output. After discarding the silence segments, every 10 ms 
speech frame was mapped to a 56-dimensional feature vector. The feature vector is 
the concatenation of SDC features [3] using the common 7-1-3-7 configuration and 
stacking them with the first 7 MFCC coefficients out from the 12 MFCCs. Finally, a 
RASTA filter was applied in order to reduce short-term noise variations in each fre-
quency subband. No Vocal-Tract Length Normalization (VTLN) was applied.  

Then, we train a language-independent GMM, a.k.a universal background model 
(UBM), through five iterations of the EM-algorithm and using all the acoustic feature 
vectors coming from all the 6 (or 7 for the open condition) languages that appeared in 
the training set. 

3.1 Acoustic iVectors 

Currently one of the main techniques used for speaker recognition [2] and language 
recognition [4][5] is the iVectors technique. In this framework, the language and 
channel-dependent GMM supervector M can be modeled as: 

 M = m+ Tw (1) 

Where m is the UBM GMM mean supervector, T is the total variability matrix (i.e. 
the iVector extractor) and w is a standard normal distributed vector of size M (i.e. 
iVector). The main advantage of w is that it maps most of the relevant information 
from the variable-length audio file to a fixed-length and small dimensional vector.  

Finally, the iVectors are normalized by first subtracting the mean of all the training 
iVectors and then dividing them by its corresponding norm.  

3.2 Results 

Table 3 shows the results for the systems presented. 
 

Closed Open Condition System 

Fact Cavgx100 Fact Cavgx100 
300iv, 512 Gauss. 0.176646 9.08 0.202484 10.54 

400iv, 512 Gauss. 0.172519 9.25 - - 

Plenty 

400iv, 1024Gauss. 0.172484 9.19 0.196182 10.37 

400iv, 64 Gauss. 0.075818 0.43 0.092105 3.32 

400iv, 128 Gauss. 0.092308 0.83 0.115086 4.24 

400iv, 256 Gauss. 0.109475 1.57 0.149377 5.70 

Empty 

400iv, 512 Gauss. 0.120738 2.10 - - 

Table 3. Reported results for the acoustic MFCC system on the test set 

                                                           
2 http://speech.fit.vutbr.cz/software/phoneme-recognizer-based-long-temporal-context 
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As we can see, in the plenty conditions, 400 iVectors provide better results than 
300, and there is little difference between 512 and 1024 Gaussians, so we will use the 
512 Gaussians, as it is faster and probably more robust for unseen test examples. 

For the empty conditions, as there is little data, best results are obtained for 64 
Gaussians, so this is the system used in the evaluation. 

4 Phonotactic system based on trigram Posteriorgram Counts, 

iVectors 

4.1 System description 

In this case we have used a novel approach to phonotactic LID reported in [10], 
where instead of using soft-counts based on phoneme lattices, we use posteriorgrams 
to obtain n-gram counts. In this approach, the high-dimensional vectors of counts are 
reduced to low-dimensional units for which we adapted the commonly used technique 
iVectors. The reduction is based on multinomial subspace modeling and is designed 
to work in the total-variability space. In comparison with the other techniques based 
on soft-counts, the new technique provides better results, reduces the problems due to 
sparse counts, and avoids the process of using pruning techniques when creating the 
lattices. Previous reported results for the NIST 2009 LRE data-set showed better re-
sults compared to a system based on using soft-counts, and with very good results 
when fused with an acoustic i-vector LID system. For this reason, we decided to use 
this technique in this evaluation and check its behavior on a different database. Next, 
we briefly describe the proposed technique. 

Feature extraction.  
 
Fig. 2 shows the process of creating the vector of posteriorgram-based n-gram 

counts. In the figure, we consider the bigram counts for simplicity, but in our system 
we used trigrams. The process can be divided into four main steps:  

1. The first step is to tokenize speech by the means of running a phone-recognizer 
that, for each frame, provides the posterior probabilities of the phone occurrences. 
In our experiments, we used the BUT Hungarian phone recognizer. 

2. The second step is to sum up and average the posterior probabilities for the frames 
that are considered to be within the same phoneme unit (A, B, C in the Figure).
The phone boundaries are obtained by running Viterbi decoding on the posterior-
gram. The averaged posterior provides a good de-correlation and smoothness for
the resulting matrix that we call averaged posteriorgram. 

3. The third step is to create the joint-posteriorgram – a sequence of matrices of joint
probabilities for the n consecutive frames. Here, we take the averaged posterior-
gram of each frame and we do the outer product with the posteriorgram of the pre-
vious frame. Then, the process is repeated for all the phone-grams considering the
n-1 phone-gram history.
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4. The final step is to sum up all frames (matrices) of the joint-posteriorgram. This 
way, we create a matrix of n-gram counts that is converted into a 1xD vector 
(where D is the total number of possible n-grams, in the case of trigrams is 35937, 
333, 33 phonemes and order 3) and then used as a feature file for training the iVec-
tors using Subspace Multinomial Models. 

 

Fig. 2. Procedure to generate posteriorgram counts features 

Subspace Multinomial Models.  
The goal of the Subspace Multinomial Model is to model the discrete representa-

tion of the posteriorgram counts created in the previous step. Thanks to the Subspace 
Multinomial Models we can train low dimensional vectors of coordinates in the total 
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variability subspace, i.e. iVectors, and then use these iVectors as a feature vector in-
put for training a discriminative LID classifier. Next, we briefly describe the process 
for training the subspace multinomial models. For further details please refer to [11] 
and [12]. 

The log-likelihood of data D for a multinomial model with C discrete classes is de-
termined by model parameters φ and sufficient statistics γ, representing the occupa-
tion counts of classes for all N utterances in D: 

 

 
(2) 

Where γnc is the occupation count for class c and utterance n and φnc are probabili-
ties of (utterance dependent) multinomial distribution, defined by a subspace model 
according: 

 
 (3) 

Where tc is the c-th row of subspace matrix T and wn is an r dimensional column 
vector (i-vector) representing language and channel of utterance n.  

For training the iVectors, we have followed the algorithm reported in [11] with 
slight modifications in order to iterate several times the estimation and maximization 
steps (further details can be found in [10]). Finally, in our experiments, we have con-
sidered a set of 1089 multinomial models when using trigrams (i.e. considering all the 
possible number of bigram histories, 33x33, using 33 phones for the Hungarian rec-
ognizer). 

Finally, it is important to mention that for the empty condition we have imple-
mented the following algorithm. First, we obtain the T matrix by using the created 
training set described in section 2.2 together with the development set and applying 
two epochs and two iterations for the EM iVectors extraction process. Then, the new 
T matrix is used to extract the final iVectors for all sets. 

4.2 Results 

Closed Open Condition System 
Fact Cavg  

x100 
Fact Cavg 

x100 

Plenty 400iv_Trigrams 0.138718 9.43 0.163411 10.37 

Empty 400iv_Trigrams 0.037714 0.17 0.047180 2.40 

Table 4. Reported results for the phonotactic system on the test set 

-534-

IberSPEECH 2012 – VII Jornadas en Tecnología del Habla and III Iberian SLTech Workshop



5 Acoustic system based on RPLP + SDC features and RASTA, 

iVectors 

5.1 System description 

The goal of this system was to introduce a new set of features which could be more 
robust to noise. In this case, we decided to use the RPLP (Revised PLP) features used 
in [13] and proposed in [14]. These features can be seen as a hybrid approach between 
MFCC and PLP, combining the advantages of both. Fig. 3 shows the modules needed 
to calculate the traditional features (MFCC and PLP) compared to these new RPLP. 
As we can see, the procedure to calculate them is very similar to the MFCC computa-
tion but the DCT-based transformation is replaced by an auto-regressive (AR) model-
ing with additional decreasing of spectral dynamics using the INtensity-TO-LouDness 
(IN2LD) factor (i.e. the power-law) introduced during the PLP calculation. In [13] 
good improvements were found for ASR recognition in comparison with the standard 
features. One important contribution of this method is that it performs a double sup-
pression of spectral dynamics before calculating the cepstral coefficients (LPC), and 
with less effect on the accuracy when modifying the number of FB bands, shape, and 
non-linearity scaling. 

Finally, we apply a RASTA filter to these coefficients and then we calculate the 
SDC parameters for the first 7 RPLP, obtaining a final vector of dimension 56, using 
the common 7-1-3-7 configuration. 

 

Fig. 3. Module sequence for calculating (a) MFCC features, (b) PLP features, and (c) RPLP 
features  
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5.2 Results 

Table 5 shows the results for the systems presented. 
 

 Closed Open 
Condition 

 Fact Cavgx100 Fact Cavgx100 
400iv, 512 Gauss. 0.159279 7.62 0.173536 10.20 

Plenty 
400iv, 1024Gauss. 0.156287 7.60 0.172224 10.27 

400iv, 64 Gauss. 0.040305 0.099 0.054902 1.84 

400iv, 128 Gauss. 0.041599 0.099 0.053973 1.39 Empty 

400iv, 256 Gauss. 0.038545 0.047 0.050978 1.27 

Table 5. Reported results for the acoustic RPLP system on the test set 

As we can see, in the plenty conditions, there is little difference between 512 and 
1024 Gaussians, so we will use the 512 Gaussians, as it is faster and probably more 
robust for unseen test examples. It is important to see that results are better than those 
obtained with MFCC (see Table 3). For example, for the Plenty-closed condition the 
relative improvement is 6.42%. 

For the empty conditions, we have found much better results than using MFCC 
(see Section 3), and we could even use 256 Gaussians. 

6 GlottHMM-iVector: Glottal source based system  

6.1 System description 

The goal of this system was to check the viability of using glottal source features 
for language recognition based on the good results reported by [6] on speaking style 
identification in the Ircam database, and by [7] for classifying expressive speech. In 
the former, the use of only prosodic information (i.e pitch and rhythm) provided iden-
tification rates of about 74%; for the later, a 95% for styled speech and 82% for emo-
tional speech on a different database. 

GlottHMM [8] is a vocoding technique that was recently developed for parametric 
speech synthesis. It is based on decomposing speech into the glottal source and vocal 
tract through glottal inverse filtering. In our system we have used GlottHMM to ex-
tract the F0 and the Harmonics to Noise Ratio (HNR) of the glottal source. For this 
system, the F0 information is used as VAD to separate between voiced and unvoiced 
frames. HNR is evaluated based on the ratio between the upper and lower smoothed 
spectral envelopes (defined by the harmonic peaks and inter-harmonic valleys) and 
averaged across five frequency bands according to the equivalent rectangular band-
width (ERB) scale. Choosing the same selected parameters reported in [7], our feature 
vector was made by concatenating the: F0 and the five HNR coefficients, and then 
calculating the SDCs coefficients on the same way as for the acoustic systems in our 
primary submission. Then, we used the iVectors technique following the same ap-
proach as for the Acoustic system. 
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In addition, and in an effort to try to select the same parameters reported in [7], we 
also included into our feature vector the selected parameters of the vocal tract ob-
tained using Line Spectral Frequency (LSF) with a vector of length 30, the selected 
parameters of the spectral tilt of the glottal source modeled using LSFs (with 10 
LSFs), and the Normalized Amplitude Quotient (NAQ) [9] and the magnitude differ-
ences between the 10 first harmonics of the voice source.  

Finally, it is important to mention that in the process of extracting the features us-
ing GlottHMM, it uses a high-pass filter whose purpose is to reduce low-frequency 
components that may cause large fluctuations in the estimated glottal flow signal. The 
tool includes two files with the coefficients required to process files sampled at 
16KHz or 44KHz, that can be specified through the configuration file. In addition, 
files with other sampling rates can be processed thanks to a simple Matlab script for 
designing FIR filters that is provided with the package. In our case, since the original 
files provided by the organizers from the Kalaka3 database are sampled at 16 KHz we 
used the default corresponding coefficients file provided by the tool. 

6.2 Results 

Table 6 shows the results for the systems presented. 

Closed Open 
Condition System 

Fact Cavgx100 Fact Cavgx100 
400iv, 64 Gauss. 0.720873 33.11 0.740958 34.02 

400iv, 128 Gauss.  0.633388 28.61 0.715139 32.26 

400iv, 256 Gauss. 0.673944 30.67 0.710156 32.94 
Plenty 

400iv, 512 Gauss. 0.668717 30.81  0.718101 32.64 

400iv, 8 Gauss. 0.075131 2.38 0.163136 7.99 

400iv, 16 Gauss. 0.082595 2.29 0.162338 7.96 

400iv, 32 Gauss. 0.113325 4.19 0.210829 11.33 

400iv, 64 Gauss 0.160465 5.06 0.304118 15.28 

Empty 

400iv, 128 Gauss. 0.211179 8.18 0.472886  23.32 

Table 6. Reported results for the GlottHMM system on the test set 

As this system provided worse results it was only used in the contrastive systems 
for all conditions. In the plenty conditions, best results are obtained using 128 Gaus-
sians. In the empty conditions, results clearly improved using very few Gaussians. We 
finally decided to use only 16 Gaussians for the contrastive system using this features. 

7 Classifier and Calibration Back-end 

As classifier for our three iVectors systems, we have used a Multiclass logistic re-
gression which generates a different classifier for each language to recognize. Then, 
these classifiers are used to generate scores for the files in our development and test 
sets. For calibration and fusion, a Gaussian Back-end followed by a Discriminative 
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Multi-Class Logistic Regression is used to post-process the scores obtained before. 
Previously, the input vectors were conditioned by within-class covariance normaliza-
tion (WCCN). 

Regarding our calibration and fusion module, it is mainly based on the FoCal tool-
kit3, so we did not use the tools provided by the Albayzin organizers. 

Table 7 shows the results for the systems presented. 
 

Closed Open 
System 1 System 2 System 3 

Fact Cavgx100 Fact Cavgx100 
MFCC-
512G 

Phon-
1089G 

RPLP-512G 0.069258 4.16 0.080184 5.77 

MFCC-
512G 

Phon-
1089G 

Glot-128G 0.071393 4.16 - - 

RPLP-
512G 

Phon-
1089G 

Glot-512G - - 0.079517 5.37 

Table 7. Reported results for the fusion of all systems for the plenty condition 

The first line corresponds to the primary system submitted to the evaluation and 
the second and third lines correspond to the contrastive systems using GlotHMM. We 
can see that the contrastive system in the Open condition is slightly better than the 
primary one, even though the results for GlotHMM and clearly worse than for the 
MFCC system. Also, the GlotHMM with 512 Gaussians provided slightly better re-
sults than with 128 Gaussians. However, we decided to keep the primary system using 
MFCC. 

8 Summary 

As a summary, here is a list of the systems presented for the evaluation: 
 

Condition System 1 System 2 System 3 

Plenty- closed-primary MFCC-512G Phon-1089G RPLP-512G 

Plenty-closed-contrastive1 MFCC-512G Phon-1089G Glot-128G 

Plenty-open-primary MFCC-512G Phon-1089G RPLP-512G 

Plenty-open-contrastive1 RPLP-512G Phon-1089G Glot-512G 

Empty-primary MFCC-64G Phon-1089G RPLP-256G 

Empty-contrastive1 RPLP-256G Phon-1089G Glot-16G 

Empty-open-primary MFCC-64G Phon-1089G RPLP-256G

Empty-open-contrastive1 RPLP-256G Phon-1089G Glot-16G 

Table 8. Summary of all systems presented to the evaluation 

                                                           
3  https://sites.google.com/site/nikobrummer/focal 
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