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“Commit your way to Jehovah, trust also 
in Him, and He will do it” 

Psalm 37:5 

“Encomienda a Jehová tu camino, 
Confía en Él, y Él hará” 

Salmos 37:5 

  

  

"Bear in mind that the wonderful things 
you learn in your schools are the work of many 

generations, produced by enthusiastic effort 
and infinite labour in every country of the 

world. All this is put into your hands as your 
inheritance in order that you may receive it, 

honour it, add to it, and one day faithfully hand 
it to your children. Thus do we mortals achieve 
immortality in the permanent things which we 

create in common" 

 

Albert Einstein 
 

“Pensad que las cosas maravillosas que 
aprendéis en vuestras escuelas son el trabajo 
de muchas generaciones, logrado con mucho 

esfuerzo y mucha fatiga en todos los países 
del mundo. Las ponemos en vuestras manos 

como herencia, para que las respetéis, 
desarrolléis y fielmente las entreguéis a 

vuestros hijos. Así es cómo nosotros, los 
mortales, nos hacemos inmortales, 

transmitiendo el trabajo hecho por todos” 

 

Albert Einstein 
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ABSTRACT 
Nowadays, most of the commercial and research call center applications are created 

using sophisticated and complete development platforms that allow the specification of all the 
details related to the design, deploying, and debugging of such services. In spite of all the 
features and utilities included in them, most of them propose the same kind of accelerations 
and present limitations when designing simultaneously the same service for different 
modalities and kinds of users. 

In this thesis, we propose different innovative, dynamic, and intelligent acceleration 
strategies that allow the prediction of the information required to complete the different 
aspects of the design. In our proposal, the accelerations are based on using the data model 
structure and database contents, as well as cumulative information obtained from the previous 
and sequential steps in the design. Thanks to these accelerations, the design is reduced, most 
of the times, to simple confirmations from the designer to the “proposals” that the platform 
automatically provides. 

In detail, we propose the semi-automatic generation of different kinds of proposals that 
can be used to complete the application flow, the actions that make up each dialogue, or to 
solve specific modality problems such as user confirmations and the presentation of the lists 
of results retrieved after querying the backend database. Additionally, we propose the 
creation of different assistants that contribute to accelerate the process of creating speech 
grammars and the definition of the functions used to access the database. The results that we 
have obtained in objective and subjective evaluations have shown the viability, relevance, 
and functionality of the platform and the proposed accelerations presented in this thesis. 

On the other hand, the wide variability of the final users of the service raises different 
challenges such as the possibility of correctly identify the language to be used to interact with 
the users, as well as the possibility of providing the same service using different modalities 
according to the user preferences or needs or to the current conditions of the dialogue. 

In relation with the improvements applied to the language identification module, we 
have implemented a new technique based on using a discriminative ranking of n-grams that 
allow the incorporation of contextual longer-span information into the language models used 
by the system. The proposed technique has been evaluated in the identification of spoken 
sentences in English and Spanish obtaining better language recognition rates than a PPRLM 
based system, probably because the technique copes better with the classical problem of 
obtaining reliable estimates with a reduced training set, so we can use higher order language 
models. 

Finally, we have incorporated several improvements into an automatic speech-to-sign 
language machine translation system that extends the multimodal capabilities of the platform, 
so we can offer the same service, developed with the design platform, to deaf people. In this 
case, the translation system is used to automatically translate system prompts into an 
animated sequence played by a 3-D avatar. In this thesis, we propose an innovative 
adaptation technique that improves the quality of the translated sentences in situations when 
there is not enough training data to obtain reliable language models used by the translation 
system. The adaptation is done at the count level, using the Maximum A-Posteriori (MAP) 
technique. We use in this case the original occurrence counts of the n-grams that appear in 
the target language and the frequency counts of the equivalent n-grams in the source language 
retrieved from the Web and previously “translated” into counts in the target language using 
an independently trained phrase-base translation model. 
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RESUMEN 
 

Hoy por hoy, la mayoría de los sistemas comerciales y de investigación de atención 
telefónica se realizan mediante el uso de sofisticadas y completas plataformas que permiten 
especificar todos los detalles relacionados con el diseño, ejecución, y depuración de tales 
servicios. Pese a todas las funcionalidades y utilidades incluidas para acelerar el diseño y 
permitir servicios avanzados a los usuarios, la mayoría de ellas proponen el mismo tipo de 
aceleraciones y presentan limitaciones al desarrollo simultáneo del servicio para múltiples 
modalidades y perfiles de usuario.  

En esta tesis se proponen diferentes estrategias de aceleración innovadoras, dinámicas e 
inteligentes que permiten predecir la información necesaria requerida para completar los 
diferentes aspectos del diseño, usando para ello información de la estructura del modelo de 
datos y del contenido de la base de datos del servicio, así como de la información acumulada 
a lo largo de todos los pasos ya realizados durante el diseño. Gracias a estas aceleraciones, la 
mayor parte del diseño del diálogo se reduce a confirmaciones por parte del diseñador de las 
“ofertas” que le hace la plataforma. 

En concreto, se propone la generación semi-automática de diversos tipos de propuestas 
que pueden ser utilizadas para completar el flujo de la aplicación, las acciones que componen 
cada diálogo, o para solucionar problemas específicos de cada modalidad tales como la 
confirmación de datos al usuario y la presentación de las listas de resultados devueltos 
después de hacer una consulta a la base de datos del servicio. Así mismo, se propone la 
creación de diferentes asistentes que permiten acelerar la creación de las gramáticas usadas 
por el sistema de reconocimiento y la definición de las funciones de acceso a la base de datos. 
Los resultados obtenidos en sendas evaluaciones objetiva y subjetiva han permitido 
demostrar la viabilidad, relevancia y funcionalidad de estas aceleraciones y de la plataforma 
presentada. 

Por otro parte, la amplia variedad de usuarios finales del servicio plantea diversos retos 
tales como la capacidad de identificar adecuadamente el idioma con el cual dirigirse a los 
usuarios, así como la posibilidad de proporcionar el servicio utilizando una u otra modalidad 
según las preferencias/necesidades de los usuarios o las condiciones actuales del diálogo. 

En relación con las mejoras aplicadas al módulo de reconocimiento de idioma se ha 
implementado una nueva técnica para la incorporación de información contextual de más 
largo alcance en los modelos de lenguaje utilizados por el sistema basada en un ranking de n-
gramas discriminativos. La técnica propuesta ha sido evaluada en la identificación de frases 
habladas en inglés y castellano obteniendo mejores tasas de reconocimiento que un sistema 
basado en PPRLM que usa modelos de lenguaje tradicionales gracias a la reducción del 
problema de falta de datos para el entrenamiento de los modelos de lenguaje de orden 
elevado lo que permite la utilización de modelos de mayor orden.  

Finalmente, se han incorporado diversas mejoras a un módulo de traducción automática 
de voz a lengua de signos que permite ampliar las capacidades multimodales de la plataforma 
al permitir la prestación del mismo servicio, desarrollado con la plataforma de diálogo, a 
personas con discapacidad auditiva, permitiendo la traducción de los prompts del sistema en 
una secuencia animada reproducida por un avatar. En esta tesis se propone una técnica de 
adaptación innovadora que permite mejorar la calidad de las frases traducidas en situaciones 
en las que no hay suficientes datos para entrenar adecuadamente el modelo de lenguaje usado 
por el sistema de traducción. La adaptación se realiza a nivel de cuentas, mediante la técnica 
de Maximum-A-Posteriori (MAP), usando las cuentas de los n-gramas originales en el 
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idioma destino y las cuentas de ocurrencia de los n-gramas equivalentes en el idioma origen 
consultadas en la Web previamente y “traducidas” posteriormente a cuentas en el idioma 
destino usando un modelo de traducción basado en frases. 
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11  IINNTTRROODDUUCCTTIIOONN  

1.1 Motivation 

The growing interest from companies in using new information technologies as a 
means to getting closer to the final users has led to the quick growth and improvement of 
automatic dialogue systems for database search tasks. In these systems, users interact with an 
automatic system to retrieve or exchange information that is available in a backend database. 
In this way, it is possible to provide services such as reservations [San-Segundo et al, 
2001a][López-Cozar and Granell, 2004][Lamel et al, 2000][Levin et al, 2000], customer care 
[Strik et al, 1997], information retrieval [Zue et al, 2000][Seneff and Polifroni, 2000], 
interactive voice response systems, etc. 24 hours a day 7 days a week. 

One of the main difficulties of these systems is the process of designing them in a fast 
and flexible way, so that the time needed by the designer to design the service, and the time 
that it will take to the user to obtain the desired information in the real-time system can be 
both reduced. In addition, given the different characteristics and requisites of the final users, 
the service is expected to be available for several languages [Turunen et al, 2004][Uebler, 
2001] and input/output modalities such as speech, Web, interactive maps, gestures, tactile 
screens, animated agents, etc.([Almeida et al, 2002][Gustafson et al, 2000][Oviatt et al, 
2000]) for allowing users from different nationalities and physical abilities to have access to 
the service. Besides, it is expected that the same design can be reused for new languages and 
modalities with minimum modifications and without requiring too much expert knowledge. 

Fortunately, the increasing demand of automatic dialogue systems have resulted in 
several companies and academic institutions working in the development of fully integrated 
platforms that necessarily have to provide the maximum number of features to the designer 
and the final users, a high level of portability, standardization and scalability in order to 
minimize design time and costs. Moreover, these platforms have to enable the rapid 
development, maintenance, and deployment of automatic dialogue services, as well as to be 
flexible enough to allow the creation of a wide range of services and to be adapted to the 
special characteristics of each one. In general, these platforms are made up of different and 
independent modules allowing collaborative role-based development, so that different teams 
of developers can work on the same project at the same time. Through these modules, the 
designer can specify for instance: the application flow, grammars and system’s prompts, 
actions for error handling, integration with backend databases, etc. Besides, they also include 
debugging and edition modules to improve the service (for instance loggers, call/flow 
analyzers, grammars and vocabularies generators, etc.), built-in components such as dialogue 
libraries, grammars, and prompts for common situations (e.g. for requesting a phone number, 
an address, names, etc.), etc. Finally, the usability of such platforms is increased thanks to a 
clear and fully integrated graphical user interface, as well as to built-in libraries and dialogue 
components that accelerate the design and simplifies to reuse previous knowledge. 

However, in spite of all the advantages provided by current platforms, it is surprising to 
observe that, in general, all of them share the same kind of accelerations to the design. For 
instance, most of the accelerations offered by these platforms rely on the possibility of using 
configurable built-in libraries or dialogues modules for common situations. Unfortunately, 
they lack of some kind of accelerations based on basic business intelligence and data mining 
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methodologies applied to the contents of the task database and from the data model structure 
(i.e. the set of object-oriented classes and attributes that model the database tables and fields 
and their relationships). To cope with this, our objective is to use these dynamic and 
intelligent acceleration strategies so that we can, among other things, predict the necessary 
information required to complete the definition of a dialogue state, accelerate the 
specification of the application flow and the definition of the database access functions, and 
help designers with built-in solutions for presenting lists of objects (generated after executing 
a database query) for the speech modality, not forcing designers to define this information 
from scratch. Additionally, most of these platforms do not offer the possibility of creating the 
same service for users with disabilities, e.g. deaf users, or present reduced capabilities for 
designing the same service for different modalities at the same time. 

Taking into account the limitations of the best commercial platforms and the limited 
number of research projects for creating, accelerating, and improving such design platforms, 
and based on the results and experience obtained in previous projects [Cordoba et al, 
2001][Lehtinen et al, 2000], we undertook the European Project GEMINI1 (Generic 
Environment for Multilingual Interactive Natural Interfaces) developed from 2002 to 2004. 
The result was a complete, flexible, and highly automated development platform that consists 
of a set of tools and agents that guide the design process and allow the definition of the 
different levels of knowledge needed to complete and run state-of-the-art speech and Web-
based services. Then, after finishing the project, we decided to continue working on the 
development platform in order to propose new accelerations strategies and improving the 
capabilities of the final version generated during the project. 

In this thesis, we will describe in detail the main strategies applied to the different 
assistants that make up the platform in order to speed up the design process, as the possibility 
of handling mixed-initiative and over-answering dialogues using the same framework. 
Detailed procedures to handle the presentation of lists of objects and confirmation handling 
for the speech modality will be presented too. Features like user modelling, speaker 
verification, language identification can also be included easily through runtime modules 
included in the platform, although several accelerations to these assistants and modules are 
left for future work. On the other hand, the generation of the runtime scripts of the dialogue 
using standard languages like VoiceXML and xHTML kept the platform open for further 
development and to the possibility of extending its capabilities with third party tools and 
technology. However, and even most important, our work also allowed us to contribute to the 
development of these standard languages and to overcome some of its limitations. Another 
important result of the GEMINI project was a newly designed abstract dialogue description 
language called GDialogXML, to which we have also contributed during this thesis. Finally, 
we carried out an objective and subjective evaluation that demonstrated the user and 
designer-friendliness and robustness of the platform, as well as the fulfilment of all the 
objectives initially planned, together with a proposal for improvements and plans for the 
platform. 

On the other hand, the wide range of final users of the service creates diverse 
challenges such as the capability of the system to properly identify the language to be used to 
communicate with the users, or the possibility of providing the service using different 
modalities according to the user preferences or needs, or to the state of the dialogue. In 
general, this kind of functionalities are not totally considered in most of the current platforms 
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although they are, in real world applications, essential for the correct execution of the service 
and to provide a better user experience. 

In this thesis, we will describe the improvements made to a language identification 
system through the integration of an interesting technique based on long-span language 
models and to an automatic speech-to-sign-language translation system through an innovative 
adaptation technique that improves the quality of the translated sentences. In the former case, 
we will describe the creation and use of a discriminative ranking of phone-based n-grams that 
allows the LID system to use higher-order models and reduces frequent problems that appear 
in the estimation of most statistical-based language models. In the latter case, we will explain 
the process of accelerating and improving the translations of the written/spoken prompts of a 
given service into an animated representation in the sign language for deaf people. In this 
case, our main contribution is the adaptation of the language models used to increase the 
quality of the translated sentences when there is not enough training data to obtain a reliable 
statistical-based language model. Finally, we will also show the evaluation results of both 
techniques. 

1.2 Objectives 
The most important objectives of this thesis are focused on the study and integration of 

innovative strategies applied to simplify and speed up the design process in a unified 
environment with multimodal and multilingual capabilities, as well as the development and 
improvements on the different modules that make up the runtime system. In detail, we will 
pursue de following goals: 

1.2.1 Design platform 

The main objective in relation with the design platform is to propose different 
acceleration strategies to the main assistants of the development platform, through the 
incorporation of heuristic information extracted from the backend database and the data 
model structure, and by sharing information among assistants. This objective involves the 
fulfilment of the following sub-objectives: 

• To propose accelerations that can help in reducing the overhead produced by 
performing repetitive or common procedures in the design. In this case, we propose 
to accelerate the passing of arguments between actions, the definition of 
prompts/grammars, the semi-automatic generation of SQL statements to access the 
backend database, and the definition of the system behaviour for error handling in 
the speech modality. 

• To evaluate the different proposed accelerations and acceptability of the platform 
through a subjective and objective evaluation. In this case, the evaluations have to 
demonstrate the contribution of the proposed accelerations to reduce the design time 
and to simplify the design process, as well as to demonstrate the designer-friendless 
of the proposed platform and assistants. 

1.2.2 Language Identification System 

In this case, the objectives we will pursue will be the following ones: 
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• To study of the incorporation of a long-span language model as phonotactic 
constraints for a language identification system based on PPRLM, which reduces 
the problem of having a reduced training set to obtain reliable high-order language 
models. 

• To study the integration of long-span, acoustic, and duration information as input 
features for a Gaussian classifier, evaluating the contribution and discriminative 
power of each one. 

 

1.2.3 Machine Translation 

Regarding the automatic machine translation system, we propose the following sub-
objectives: 

• To include a new modality to the runtime platform extending the functionalities 
of the platform allowing that the same service can be provided to a handicapped 
user. 

• To study the viability of a new language model adaptation methodology that can 
be used to improve the quality of the sentences generated by a machine translation 
system. 

 

1.2.4 Relevant Definitions 

Throughout this thesis, we are going to use some terms that do not necessarily have the 
same meaning as the ones used in common literature or that do not present a general accepted 
definition. To clarify them and avoid confusions we want to define them here from the 
perspective of our platform. 

• Designer and user: The term designer will refer to the person that uses the 
platform to build the service, and user will refer to the final client of the developed 
service. 

• Mixed-initiative and over-answering: It is well known that the concept of 
mixed-initiative includes over-answering, as mixed-initiative is a generic term used 
to refer to a flexible interaction between the user and the system to get together to 
reach a common final solution [Allen et al, 1999]. However, we preferred to 
differentiate them to maintain the consistence with the specifications and 
implementation of the VoiceXML2 standard. In this sense, we will use the term 
mixed-initiative to indicate the system’s ability to ask simultaneously for two or 
more compulsory data from the user, and, if the user’s answer is incomplete—or the 
recognizer fails—new subdialogues are started to obtain the missing data. With 
over-answering, we indicate the user’s ability to provide additional data—not 
compulsory at that state—to the system. 

                                                 

 
2 http://www.w3.org/TR/voicexml20/   

http://www.w3.org/TR/voicexml20/�


Chapter 1: Introduction 

5 

• Multiple modalities: The common usage of the term multimodality in dialogue 
applications refers to the ability to support the communication with the user through 
several channels to obtain and provide information [Nigay and Coutaz, 1993]. The 
most widely used modalities are voice, gestures, mouse, images, or writing, which 
can be combined simultaneously or otherwise during the dialogue. In our platform, 
we have focused on applying this term from the designer point of view, referring to 
the platform’s ability to generate the service for two modalities in a unified and 
simultaneous way: Web and voice. Right now, these modalities work apart from 
each other instead of being combined (synchronized) in the real-time system. 

• Dialogue and state and action: From the terminology established by the W3C 
for an event-driven model of dialogue interaction3, we can find the following 
definitions: 

o Dialogue: “a model of interactive behaviour underlying the interpretation 
of the markup language. The model consists of states, variables, events, 
event handlers, inputs and outputs” 

o State: “the basic interactional unit defined in the markup language . . . A 
state can specify variables, event handlers, outputs, and inputs”. 

In spite of the differences in these definitions, throughout the thesis we will use both 
terms with very little difference, as they will refer, from the perspective of a finite 
state machine, to each interaction with the user—or a set of them—needed to fulfil a 
service task. Nevertheless, the term dialogue will be more associated to the interaction 
with the user, whereas state will mostly refer to a set of interactions and other 
additional actions, such as a database access. 

• Action: This term will refer to each procedure needed to complete a state or a 
dialogue, for example calls to other dialogues, arithmetic, or string operations, 
programming constructs, variable assignments, etc. 

• Slot: This term will refer to each piece of compulsory information that the system 
has to ask the user in order to offer the service. 

• Acceleration: This term will refer to any methodology implemented into the 
different assistants of the platform in order to reduce the design time and to make 
easy the definition of the different dialogues, actions, and elements required to 
design and run the service. 

 

1.3 Organization 

The thesis is organized as follows. Chapter 2 is divided into four sections. The first one 
presents the state-of-the-art on development of dialogue applications, including descriptions 
of several commercial and academic platforms, as well as different kinds of acceleration 
strategies included in them for designing the service. The second section describes the state-
of-the-art on language modelling, including information about the most common strategies to 
train and improve the statistical-based language models. The third section describes the state-

                                                 

 
3 http://www.w3.org/TR/voice-dialogue-reqs/  
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of-the-art on language identification techniques with special emphasis on the PPRLM system. 
Finally, the fourth section describes the state-of-the-art on machine translation systems; In 
this case, several strategies are described, with emphasis on the statistical approaches. This 
section also provides a brief description of the phrase-based translation approach and current 
metrics for the evaluation of machine translation systems. Finally, an overview on important 
aspects and research about speech-to-sign language translation are also presented. 

 Chapter 3 describes the overall architecture of the development platform proposed in 
this thesis, including detailed information about the assistants that make it up, the runtime 
system, the internal XML language used to share information among the assistants and create 
the service, as well as a description of the platform scope and main limitations.  

Chapter 4 describes the main acceleration strategies applied to the different assistants in 
the platform. In chapter 5, we will show the results of an objective and subjective evaluation 
of the whole platform, the assistants, and the proposed acceleration strategies.  

Chapter 6 shows the development and improvements applied to the runtime system in 
order to allow the multimodality and multilinguality capabilities of the platform. The first 
improvement consists of the creation and incorporation of a new long-span language model 
based on using a N-gram frequency ranking, as well as the study of combining the proposed 
technique with additional information, mainly acoustical and durations, to a state-of-the-art 
language identification system based on the PPRLM technique and using as final backend a 
Gaussian classifier. The second improvement is the creation of a new online adaptation 
technique that improves the quality of the translated sentences of an automatic machine 
translation system that translates system prompts into an animated representation in the 
Spanish sign language in order to provide the service to users with hearing disabilities.  

Chapter 7 presents a list of future improvements to the platform and the main 
conclusions, followed by the complete bibliography used in the thesis. Appendix A provides 
a small list of abbreviations used in the thesis. Appendix B provides detailed information 
about the characteristics and accelerations included in several commercial and Web-based 
development tools. Appendix C describes the templates used in the assistant that creates the 
flow for the presentation of lists of objects after retrieving information from the backend 
database and for handling user confirmations. Appendix D describes the questionnaire used 
for the subjective evaluation. Finally, Appendix E includes detailed tables with the results of 
the objective and subjective evaluation done to the development platform and the 
accelerations described in this thesis. 
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22  SSTTAATTEE--OOFF--TTHHEE--AARRTT  

This chapter describes the platforms, tools, algorithms, and methodologies we have 
studied and used to accomplish the objectives of the thesis. The chapter is divided into four 
sections representing the different topics tackled in this dissertation. 

The first section presents detailed information about current commercial and non-
commercial platforms that allow the design, debugging, and execution of automatic dialogue 
services. Information about different kind of methodologies used for accelerating the design 
process is also presented. 

The second section describes the main algorithms and methodologies for training, 
adapting, and improving language models. From the perspective of the present thesis, this 
information is relevant since they establish the foundations to explain the techniques we have 
applied to improve the language models used by the language identification system (LID) and 
the automatic translation system. The former is used to detect the language to be used by the 
system to communicate with the user, and the latter is used to translate system prompts (i.e. 
text or speech messages presented to the final user) into an animated representation in the 
sign language in order to allow deaf users to use the developed service.  

The third section shows the most important algorithms and research lines for language 
identification. Among the reported algorithms, the Parallel Phone Recognition followed by 
Language Modelling (PPRLM) is the most successful and widespread technique. For that 
reason, and because it was used as our baseline system, we will describe it in more detail. 

Finally, the last section presents the main methodologies and algorithms used for 
training, evaluating, and using statistical machine translation systems. The section makes 
emphasis on current research systems for translating text/speech into Sign Language, and in 
the phrase-based translation methodology used by most research systems. 

 

2.1 Development Platforms and Acceleration Strategies for 
Designing Multimodal Dialogue Systems   

This section describes the most important platforms and tools that were studied and 
compared with our design platform. In this study, a distinction between systems developed 
for research and for commercial purposes was done. This classification is important because, 
in general, platforms developed for commercial purposes present a clear and elegant interface 
that reflects the big effort companies usually make in this respect. In addition, these platforms 
make use of several standards in order to provide flexibility and to simplify sharing files 
across platforms. However, their big disadvantage is that most of them just allow the creation 
of services for one or two modalities such as speech and Dual-Tone Multi-Frequency 
(DTMF), but do not provide support for other modalities such as animated agents, Web, 
touch screens, remote controls, etc. On the other hand, non-commercial platforms do not 
provide many of these characteristics but present more capabilities for integrating different 
modalities and languages at the expense of making the design process slower and difficult to 
mimic for other systems. In addition, this distinction is also important because if not taken 
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into account it would be a difficult task to compare and to extract conclusions from all these 
platforms. 

The following sub-sections provide a brief description of the main features included in 
most of the commercial and research platforms. Since the number of modalities, language 
specification formats, and architectures is too high, we have focused in platforms that allow 
the creation of VoiceXML-based applications and speech grammars. For further information, 
about these and other development tools, environments, and modalities, please check the 
Web address mentioned for each one, or refer to [López-Cozar and Araki, 2005] and 
[McTear, 2004]. 

2.1.1 Commercial Platforms 

In order to summarize the main efforts done by most of the current commercial 
platforms to accelerate the design of multimodal and multilingual dialogue applications, we 
can say that they include state-of-the-art modules such as speech recognizers, high quality 
speech synthesizers, language and speaker identification capabilities, and several other high-
level tools, that allow the creation of very complex and advanced dialogue services. In 
addition, these platforms support the creation of the service using widespread standard 
languages and protocols such as VoiceXML, SALT [Wang, 2002], X+V4, J2EE, xHTML, 
Voice Browser Call Control XML (CCXML)5, etc, to guarantee the integration between 
different vendors and platforms. Besides, these platforms are often supported by advanced 
hardware modules, which can be used with minimum programming effort and adapted easily 
to the runtime system. These platforms also include a high number of predefined libraries for 
typical dialogue states such as requesting card or social security numbers. In addition, they 
incorporate assistants for debugging, logging, and simulate the service. Finally, they present a 
very friendly graphical user interface that simplifies the development of very complex 
dialogues.  

Below, we provide an overview of the main features and accelerations included in three 
of the most widely known commercial platforms. In this case, we describe the IBM 
Websphere, Nuance, and SpeechDraw development platforms. In Appendix B we have 
included detailed information regarding other platforms such as the ones offered by Audium, 
Avaya, Genesys, Envox, Vocalocity, VoiceObjects, among others. 

IBM Webshpere Voice Platform6: This platform is a complete commercial 
application for developing, setting up, and debugging VoiceXML and CCXML applications. 
The platform requires the installation of several packages in order to design and run the 
service, for instance IBM WebSphere Application Server, IBM Rational Application 
Developer (RAD), IBM WebSphere Voice Server, and IBM WebSphere Voice Toolkit7. 

The IBM Application Server allows the system administration of the WebSphere Voice 
Server. The IBM RAD is an integrated development environment (IDE) for designing, 
testing, and deploying Web or speech services, with support for backend database 
connections, among others. The development of dynamic VoiceXML applications is 
accelerated using the J2EE platform and through two basic wizards for creating JSP/Servlets: 

                                                 

 
4 http://www.voicexml.org/specs/multimodal/x+v/12/  
5 http://www.w3.org/TR/ccxml/  
6 http://www-01.ibm.com/software/voice/  
7 We want to thank IBM for letting us use their platform for evaluation purposes 
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one for Database Web pages and another for Java Bean Web Pages. In addition, the IBM 
Voice Server provides the middleware to allow the service to be accessed from a telephone, 
cell phone, or Web browser. The Voice Server includes software for speech recognition and 
Text-To-Speech in several languages, as well as other development tools to support 
applications written in VoiceXML. The platform supports the dynamic modification of the 
TTS using the SSML (Speech Synthesis Markup Language) specification and Speaker 
Verification features. 

In addition, the IBM Voice Toolkit includes several tools to build, debug, and deploy 
the dialogue flow through an intuitive graphical environment. The Voice Toolkit allows the 
creation and testing of grammars, pronunciation dictionaries, and natural language 
understanding models (NLU). In addition, the toolkit makes possible to generate reports and 
obtain service metrics based on the analysis of the call flow.  

In detail, the IBM Voice Toolkit provides the following tools and features: 

• The Communication Flow Builder that makes possible to simulate and debug the 
service using the graphical environment, or using a SIP-phone and a MRCP server. 
The graphical interface allows traditional debugging features such as breakpoints, 
step-by-step walkthrough, variable inspection, and modification of any variable on 
the fly as the program is debugged. 

• The Visual Grammar Builder is a MRCP-based tool that allows the creation and 
testing of JSGF, BNF or XML-based grammars and pronunciation lexicons using 
the IBM WebSphere Voice Server. This tool can also be used to detect words that 
cannot be recognized within the grammar, to convert between grammar formats, or 
to generate all the sentences that it is possible to recognize given a grammar file 
(similar to the assistant described in section 4.7.1.3, page 120). It is also useful to 
test grammar files using text/speech based utterances, providing debugging 
information such as semantic interpretation results, n-best matches, and confidence 
scores. Finally, it also includes a tool for CCXML edition, validation, formatting, 
and preferences management.  

• The Prompt Manager tool allows the organization, edition, and recording of audio 
files.  

• The Voice Trace Analyzer allows the analysis of log files from the Voice Server.  

• The toolkit includes tools for the development of Natural Language 
Understanding (NLU) models. In this case, this tool supports the creation of 
different types of statistical models and grammars in SRGS (Speech Recognition 
Grammar Specification) format, the classification of the data used to train the 
models, and the possibility of allowing multiple developers to work in parallel with 
the same training data. The toolkit allows setting up a DB2 database for the 
development of the NLU models. This feature is used to import/export XML-
formatted data into/out-of the database, as well as the possibility of making searches 
in the database and navigating through the results, the possibility to reclassify large 
training data, and the validation of NLU models. 

• Finally, the toolkit includes pre-written and working code, called Reusable 
Dialogue Components (RDC), which can be copied, edited, and incorporated into 
the VoiceXML file through a configuration wizard that helps in selecting and 
customizing these RDC. The use of these components is highly recommended since 
they reduce development time and contribute to the learning process. Among the 
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RDCs included are spelling, browsable selection list, confirmation, currency, date 
info, postal code, telephone number, URL, airports, stocks, time or date range, 
billing application, shopping cart shipping information, etc. These libraries include 
predefined prompt messages, error-handling actions, suggestions to spell an input or 
discard it, SRGS grammars, and predefined help information, which can be used 
with/without modifications. Two types of RDC components are allowed: 
Subdialogues and Templates. Subdialogues allow the designer to create dialogues 
that request a single slot to the final user (e.g. the name of a person), whereas 
templates are predefined dialogues where several slots are requested to the user 
(e.g. the name, the address, the zip code, etc.). 

 
(a) 

 
(b) 

 
(c) 

Figure 2.1. Appearance of some tools provided by the IBM WebSphere Toolkit. (Source: 
IBM WebSphere home page) 
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Figure 2.1 shows a) the appearance of the Communication Flow Builder, included in 
the Voice Toolkit, which is used to develop the dialogue flow represented as a flowchart 
diagram, with nodes, transition and decision points. b) a pop-up window for including 
pronunciations using International Phonetic Alphabet (IPA) symbols. c) the built-in 
VoiceXML and Call Control Extensible Markup Language (CCXML) editor, which features 
a context-sensitive auto-completion, colour coding, drop-down menus, and validation 
capabilities, for allowing fine-tuning of the applications.  

Nuance Voice Platform8: Compared to other commercial platforms, this is one of the 
most complete development environments currently available. In addition to the big number 
of features included in the platform, it also includes some of the most advanced speech 
recognition, text-to-speech synthesiser, and speaker identification engines available at the 
market. The platform provides an off-the-shelf solution to design, deploy, and monitor the 
service. The Nuance Voice Platform consists of four main components: Nuance Conversation 
Server, Nuance Management Station, Nuance Application Environment, and Nuance CTI 
Gateway9.  

The Conversation Server enables the caller to interact with the application using a built-
in VoiceXML browser, the Nuance speech recognition, text-to-speech, and verification 
engines. These engines run as services and can be started, stopped, and monitored separately.  

The Management Station allows the designer to remotely manage, analyze, and tune the 
service, as well as to check the status of the servers that run the service, through a centralized 
Web-based graphical interface.  

The Nuance CTI (Computer Telephony Integration) Gateway provides a Web-based 
interface that allows the integration and control of the Nuance platform with third-party CTI 
servers, from leading vendors such as Cisco, Avaya, or Genesys. The CTI Gateway includes 
different plug-ins to translate API requests into commands supported by the server.  

Finally, the Application Environment provides the graphical user interface for the 
development and deployment of the voice service. It consists of two applications: Nuance V-
Server and Nuance V-Builder. The former allows the integration with backend databases and 
CTI servers, controls the execution of transition rules that allow an application to switch 
between dialogue states, and acts as gateway interface with the Management Station in order 
to monitor and control the service. On the other hand, the V-Builder is managed and executed 
at runtime using the V-Server, and it is used to create the VoiceXML application graphically. 
To do so, the V-Builder allows the creation of the application flow using a palette of objects 
and specifying their properties. After creating the flow, the V-Builder automatically generates 
the underlying VoiceXML code, without requiring the developer to know VoiceXML. This is 
also the aim of our assistants. In addition, it includes a complete set of tools for project 
management, document edition, grammars and prompts edition, application debugging, 
prompt playback, and a large number of ready-to-use grammar libraries to accelerate the 
design.  

As previously stated, Nuance Inc. is the owner of some of the most advanced 
commercial engines for speech recognition, synthesis, language identification, and 
verification, the platform takes advantages of the main key features allowed for them, in 
order to improve the quality of the service and increasing the user satisfaction in the 

                                                 

 
8 http://www.nuance.com    
9 We want to thank Nuance for letting us use their platform for evaluation purposes 
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interaction. Among the most relevant features included by these modules we can mention the 
following ones:  

• The automatic detection of start and end of speech with echo cancellation to 
improve barge-in and recording of messages. 

• The recognition of Hot-Words (i.e. word or phrase spotting), which are useful to 
improve the barge-in feature because the prompt is not stopped until a successful 
recognition occurs (i.e. prompts are not stopped due to noises or sentences with 
non-sense).  

• The incorporation of Skip-lists, i.e. an array of previous bad recognised 
words/sentences, is used to avoid the system to confirm a previous misrecognized 
word or sentence with an inadequate format. 

• Call-logs allow the creation of customizable reports of the service, including 
information about task completion, latency, dialogue status and returning values, 
CPU load, speed of the speech recognition, baseline recognition, accuracy, etc., 
which can be used to improve and tune the service. 

• Context-files are XML documents that allow an expert to tune the VoiceXML 
service without requiring a complex knowledge of the specification. These files are 
used to set confidence values, timeouts, n-best properties, etc. specific to each 
dialogue state. 

• Voice-enrolled grammars allow the creation of a grammar file and pronunciation 
dictionary using the ASR engine. This way, the process of adding sentences to the 
grammar or words to the vocabulary is accelerated. 

The V-Builder also includes more than 100 different pre-built and ready-to-use 
grammars, as well as a grammar debugging tool that is useful to determine the grammar 
coverage, interpretation results, ambiguity (i.e. with multiple interpretations), detection of 
words with unknown pronunciations or misspelling, and the verification that the grammar 
does not accept the recognition of unwanted sentences. Finally, V-Builder includes a set of 
pre-defined java-classes called SpeechObjects that provide reusable dialogues to accelerate 
the design. A typical SpeechObject includes pre-recorded prompts, error management, and 
default confirmation handling, as well as some default actions such as playing a prompt, 
recognizing speaker input, interpreting and processing the recognition result, and returning a 
result. These actions and default properties are configurable by the designer according to the 
requirements of the service.  

Speechdraw10: It is another interesting IDE that can be used for developing from basic 
up to very complex dialogue applications such as “How may I help you”. The responsible of 
the platform development claims that it is a zero programming interface, i.e. designers are not 
required to be experts on VoiceXML at all. The platform allows, among others, the creation 
of mixed-initiative speech applications, the design of speech recognition grammars, the 
automatic generation of documentation reports including detailed information about the flow, 
prompts, and grammars. The platform automatically checks the application looking for 
design errors, and points out where the errors appear and suggests solutions for them. In 
addition, the platform provides mechanisms to enable different designer profiles (i.e. flow 

                                                 

 
10 http://www.speechvillage.com/home/  
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design, grammar and backend design) to work on the same project, this way the development 
is centralized and the mismatch between designer teams is minimized. 

On the other hand, the platform allows database emulation simply entering data into 
precompiled tables and defining the parameters that must be sent and returned when 
communicating with the backend. In this way, the platform avoids access delays and a strong 
interdependence between the designer interface and the integration layer when debugging the 
application. The platform incorporates a graphical flow editor that consists of two layers: 
application logic and error recovery logic. Using the application logic the designer specifies 
the dialogue flow with its corresponding states, actions, and transitions. On the other hand, in 
the error recovery layer the designer specifies the actions and prompts that control the system 
behaviour against the different kind of errors that could appear when interacting with the user 
or providing the service. An important acceleration included in this assistant is that the error 
recovery is automatically drawn using pre-defined rules specified by the designer. Another 
contribution of the platform is the use of sub-diagramming in order to reduce and keep 
readable the dialogue flow view readable when developing very complex services. 

Finally, the platform incorporates an interesting acceleration for the design of prompts 
and grammars. In this case, the platform uses a pane that shows all the prompts and pre-
recording messages reflecting the call flow structure. Through this pane, the designer can edit 
and visualize the prompts without wasting time going through the different states and actions 
of the dialogue. In addition, the pane also provides access to syntax checking, grammar and 
pronunciation development, debugging and grammar compilation, parsing of input sentences, 
and the visualization of keys and values of semantic tags. 

2.1.1.1 Web-based development tools and portals 
In addition to the previously described platforms, currently there are different Web 

portals that provide similar functionalities as the ones offered by the PC-based interfaces, 
allowing in addition access to different kinds of resources, documentation, and development 
tools. According to [Beasley et al, 2001], these portals present several advantages over the 
PC-based simulator environments provided by most of the toolkits described in the previous 
section. For instance, Web-based environments are comprehensive and relatively easy to use, 
and allow starting the development of the service inexpensively without setting up 
complicated platforms or complex simulated VoiceXML networks. Another advantage of 
Web portals is that they allow developers to deploy the VoiceXML code using a Web server 
and accessing the service through a voice service provider (VSP). This way, the service can 
be tested without requiring any investment on proprietary hardware, and using the same 
interface as the real users, allowing the designer to detect network latency and other interface 
issues that are not possible to detect when using simulated environments. Finally, most of the 
Web-based environments are supported by leading companies that allow these portals to offer 
sophisticated and state-of-the-art modules such as speech synthesizers, recognizers, speaker 
or language identification modules, etc., which can be used to improve the quality of the 
service without requiring companies to buy them. The main disadvantages are that these 
portals restrict the control over the platform and the creation of dynamic VoiceXML 
applications, reduce the possibility of obtaining knowledge about how the VoiceXML 
interpreter and gateway work, and make difficult the transition and sharing of information 
between the Web-based applications and PC-based applications. 

In general, designers can use the Web-based platform after applying for a developer 
account, which is most of the times free or inexpensive, and can be done through the Web 
site. Additional services or support for more complex applications will require a professional 
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or enterprise account, which can be obtained after paying an additional fee that, in any case, 
is low in comparison to the price of the licenses for using PC-based platforms. In the first 
versions of these systems, after the service is created and deployed, it could be accessed 
through conventional Public Switched Telephone Network (PSTN) lines using a toll-free 
number and providing an ID of the service. Unfortunately, this kind of access limited the 
possibility of providing advanced multimedia services and turned out to be frustrating for 
developers living in other countries (since international calls are not free). In order to reduce 
these problems, most Web sites offer now the possibility of accessing the service using a SIP 
(Session Initiation Protocol) phone number and a VoIP (Voice over IP) phone. Currently 
there are many hard (e.g. 3Com, Avaya, Siemens, etc 11.) and soft phones (e.g. sipXphone, 
SightSpeed, SJPhone, etc 12.), which can be used to make calls using an Internet connection. 
However, the most common and cheapest solution is to use soft phones since they are simple 
computer programs that do not require dedicated hardware and are easily downloadable from 
many internet sites. An advantage of using these soft phones is that they add new features to 
standard telephony like video and wideband audio, providing new services and allowing 
interactions with the final users using other modalities. In this thesis, when it was required, 
we used X-Lite 13 for testing the runtime platform. Appendix B includes detailed information 
about the most important Web portals (e.g., Bevocal Café, TellMe Studio, Voxeo Evolution, 
VoiceGenie) and their main features. For further information, please refer to the 
corresponding Web page or read [López-Cozar and Araki, 2005] [Beasley et al, 2001]. 

2.1.1.2 Grammar development 
One of the most important aspects of a well-designed and user-friendly speech-enabled 

service is the capability of the dialogue manager of being able to understand and correctly 
parse the unlimited range of users’ utterances for a given system prompt or request. In order 
to do this, the dialogue manager uses static or dynamic speech grammars which are 
responsible of modelling the set of possible and valid recognized sentences, as well as the 
semantic interpretation (i.e. the values to be returned by the grammars) of the user responses. 
It is important to highlight that an incomplete or bad-designed speech grammar will make the 
system fails in the process of understanding the user and completing the dialogue goal. 

Given the complexity of developing speech grammars, the most of the above-
mentioned commercial platforms include assistants for debugging and testing grammars, as 
well as built-in grammars for common situations (e.g. for requesting card numbers, phone 
numbers, dates, currencies, airports, cities, social security numbers, etc.). Below we provide 
some examples of the more sophisticated wizards or specialized development tools for 
creating speech grammars. 

Grammar Studio 14: This tool provides a complete GUI for creating and debugging 
complex speech grammars through a clear and easy to use workspace layout, even for 
designers with little knowledge on speech grammars and format languages. The toolkit uses 
grammar icons and connecting lines in order to create a visual representation of the grammar. 
The graphical representation is automatically parsed in order to create the final definition of 
the grammar file in SRGS format. Besides, the toolkit includes the possibility of importing or 
exporting partial or complete grammar files. Finally, the designer can also write directly the 

                                                 

 
11 http://www.voip-info.org/wiki-VOIP+Phones  
12 http://en.wikipedia.org/wiki/List_of_SIP_software  
13 http://www.counterpath.com/  
14 http://www.voicewebsolutions.net/grammar_speech_tools.html  
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grammar in SRGS format and the system will automatically converted it into its graphical 
representation. The platform accelerates the process of writing the grammars using auto-
complete capabilities and auto-tagging in order to avoid typing errors. The main window can 
be split into two main sections, one for the graphical definition of the grammar, and another 
one for the written representation of the grammar defined in the graphical view. 

Microsoft Speech Grammar Editor (Visual Studio) 15: This tool is included in the 
freeware Microsoft Speech Application SDK, which can be downloaded from the Microsoft 
Web site. The tool uses a basic graphical interface (see Figure 2.2) with drag-and-drop 
capabilities, allowing the creation of lists of words, references to other rules or grammar 
libraries, groups of words, creation of semantic tags, wildcard rules, etc. The toolkit also 
features a grammar checker and a sentence tester for debugging the grammar. 

Semantic Grammar Studio (SGStudio): Reported by [Wang and Acero, 2006], they 
present an innovative Microsoft tool that allows the rapid creation of grammars through a 
supervised algorithm with examples provided by the designer. Besides, the tool allows the 
definition of rules that can be applied for different situations accelerating, in this way, the 
design and taking advantage of previous knowledge (i.e. previously generated grammars). 

Visual JSGF 16: This tool is included in the Matrubhasha platform that provides a text-
to-speech and speech recognition system for Indian languages. The main features included in 
this tool are a point-and-click interface, automatic grammar and sentence generation, reusable 
templates, and an assistant for the creation of pronunciation dictionaries for the speech 
recognition and TTS engines. The toolkit allows the designer to define and save groups of 
words, i.e. optional words in a grammar rule, and import them later as templates in other 
grammars. Finally, the designer uses the graphical interface for creating the grammar rules 
through a hybrid combination of words and group of words, and setting the respective 
connection between them. 

 

 

Figure 2.2. Example of creation of a Speech Grammar using the Microsoft Speech 
Application SDK 

                                                 

 
15 http://msdn.microsoft.com/  
16 http://www.ncb.ernet.in/matrubhasha/visualjsgf.shtml  
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2.1.2 Academic and Research Platforms 

In contrast to most of the commercial platforms, academic and research platforms allow 
designers to create more complex dialogue interactions providing features not included by 
any standard description language. They also allow the creation of more complex multimodal 
dialogues, some are freely available as open source, and their functionalities can be extended 
using proprietary or third party modules. 

The following are noteworthy examples of tools developed in academic environments:  

 

 
(a) 

 
(b) 

Figure 2.3.CSLU’s RAD Toolkit: a) Example of the main canvas, available objects, and 
dialogue states definition. b) Example of possibilities using the included animated agent: 

Baldi. (Source: CSLU Toolkit home page) 
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CSLU’s RAD Toolkit 17: Created at the Center of Spoken Language Understanding 
(CSLU) at Oregon Graduate Institute [McTear, 1999][Cole, 1999], it allows the development 
of multimodal system initiative dialogues (combining voice, DTMF, interactive images, 
graphs, text, and animated agents), using a representation based on state-transition networks 
[McTear, 1998] that describe the different functions and actions in the dialogue. The states 
and transitions of the dialogue flow are created using a toolbar with objects from where they 
can be dragged and dropped into the canvas and connected with arrows to other objects. The 
toolkit reduces the size of the information displayed in the canvas using sub-dialogues, which 
group repetitive or common actions.  

In addition, the toolkit includes an embedded speech recognition system that can be 
configured in different ways; for instance, it is possible to define task-dependent or 
independent models for recognizing alphanumeric or digit strings, to use continuous or 
isolated models, or to use a recognizer based on Hidden Markov Models (HMMs) or on 
Artificial Neural Networks (ANNs). At the same time, the toolkit incorporates a free Text-
To-Speech (TTS) engine based on Festival 18, and a module called Baldi Sync that it is used 
to align speech files or synthesised sentences with the face/lips movements of the animated 
agent. Another tool, called CU Animate [Ma et al, 2002], allows selecting the animated agent 
to use in the application, and configure facial expressions such as blink frequency, head 
movements, colours, emotions, eyebrows, etc. of the animated agent. The tool controls and 
renders the animated agents in real-time. Finally, the toolkit includes an interface to run 
Tcl/Tk scripts that can be used to perform better dialogue analysis or grammar development, 
as well as to allow a higher interaction of the platform with backend databases and internet 
resources, among others. Figure 2.3 provides an example of the toolkit environment and 
capabilities of the animated agent. 

 

Figure 2.4. Detailed graphical presentations of a dialogue model using DialogDesigner 
(Source: DialogDesigner Web page) 

                                                 

 
17 http://cslu.cse.ogi.edu/toolkit/  
18 http://www.cstr.ed.ac.uk/projects/festival/  
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DialogDesigner 19: [Dybkjær and Dybkjær, 2005] present a tool for designing and 
evaluating dialogue models. The platform allows the definition of the dialogue flow through a 
single window where the designer can specify states, groups of states, transitions between 
states, conditions, prompts and grammars (see Figure 2.4). The platform also includes 
functionalities for running a Wizard of Oz simulation through a text-based interface, the 
possibility of providing detailed information about the dialogue flow using the graphical view 
options, and the possibility of converting the flow into a set of linked HTML pages that the 
designer can also use to debug the service.  

DialogStudio: Described in detail in [Jung et al, 2008], it is a recent platform for 
developing data-driven spoken dialogue systems that integrates several tools that cover the 
different steps of a dialogue design, i.e. from preparing data to testing the service. One of the 
main objectives of the platform is to provide a complete set of functionalities for preparing 
the input files to be used by the speech recognizer, language understanding, and dialogue 
manager modules. The platform also provides an annotation environment for tagging 
semantic and knowledge information, as well as dialogue examples; in this case, the platform 
uses a meta-model language that allows the quick definition and adaptation of semantic and 
dialogue structures to domain specific knowledge. Other included accelerations are the 
possibility of creating and adding new words into the ASR’s dictionary and language models, 
and the generation of new sentences from other domains with similar semantic structure. 
Finally, the platform provides an average time reduction of 30% when compared with other 
dialogue platforms on the creation and annotation of three different domains, i.e. an 
electronic program guide, an immigration simulation, and weather information domains. 

EVITA-RAD: Reported by [Chen, 2004], it is a Web interface tool for building 
VoiceXML applications using a set of predefined system modules. These modules 
correspond to dynamic Web pages consisting of forms, checkboxes, or drop down menus that 
the designers use to define different actions such as dialogue states (including mixed-
initiative capabilities), database queries and updates, variable confirmations, and call 
transfers. Besides, the tool also includes other assistants for developing grammars, 
vocabularies, prompts, and other VoiceXML actions. 

GULAN: Reported by [Gustafson et al, 1998], it is a research platform used to build 
multimodal dialogue services using speech and interactive maps. The platform has been 
successfully used for creating a yellow pages system to make searches for different services 
in Stockholm. The dialogue flow is defined using a tree representation whose nodes model 
the structure, focus, and actions that are executed inside each dialogue state.  

SpeechBuilder: Described in [Glass and Weinstein, 2001], this platform has been 
developed at the Spoken Language Systems Group from the Massachusetts Institute of 
Technology (MIT). In this application, the design is made through a Web interface that 
allows, using an action definition language based on examples, the specification of the 
relevant semantic concepts and actions that are allowed in the application. Then, the 
generated dialogue model is executed using available modules from the Galaxy architecture 
[Polifroni et al, 2000]. The communication and parameter passing between the Web site and 
the runtime platform is achieved using the HTTP protocol and a predefined CGI script 
(similar to the one we have implemented in our runtime platform). 
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Trindikit 20: Initially described in [Larsson and Traum, 2000], it was developed and 
improved during the projects TRINDI 21, SIRIDUS 22, and TALK 23. This toolkit allows the 
creation and evaluation of the dialogue manager and information states. Designers can create 
a complete dialogue application through the definition of the information states (i.e. dialogue 
history), dialogue actions, update rules, dialogue grammars, inference engines, and planners. 
The toolkit proposes a general system architecture and allows experimenting with different 
algorithms, rules, and implementations of information states for the dialogue manager; it also 
includes a GUI for inspecting information states, speech recognition and synthesis modules, a 
debugger module, and ready-made module interfaces to databases, input/output devices, 
interpretation, generation, etc.   

VoiceComposer: described in detail in [Li and Lin, 2006], it is a development tool that 
allows the visual programming of the dialogue flow. The platform architecture consists of 
five main modules: a dialogue flow editor, a dialogue component builder, a database 
integrator, a script generator, and a service simulator. These modules let the designer build 
the dialogue flow using built-in dialogue components (i.e. predefined templates for different 
kind of VoiceXML functionalities and actions), simulate the application, and the 
specification and evaluation of SQL commands to be used to communicate with the backend 
database. In addition, the dialogue component builder allows the designer to edit or create 
new dialogue components allowing the possibility of creating global variables and events, to 
execute a sequence of form or menu elements, or to create returning dialogues. The paper 
reports that the toolkit has been used in a research project for converting part of a Web site 
for life education into a voice-enabled Web service. 

2.1.3 Research Platforms that Provide an Assisted Dialogue Design 

As it has been described, surprisingly most of the above-mentioned commercial and 
academic platforms do not include any kind of acceleration based on the contents and 
structure of the backend database, which can provide important information to accelerate the 
design when developing the dialogue service. However, in the literature we can find some 
examples of how this information is used to accelerate the design of the dialogue flow and 
other aspects of the design. This section describes the most relevant systems and strategies 
included in them. It is important to mention that most of these strategies are based on using 
predefined templates for different kind of dialogues and situations, or on using the contents of 
the database.  

In [Denecke, 2002], a complete three-layer architecture for rapid prototyping of 
dialogue applications is presented. In the first layer, language and domain-independent 
algorithms are provided to describe the dialogue objectives, discourse history, and the 
semantic representation of the speech recognizer output. In the second layer, the interaction 
mechanism between user and system is described (e.g., variables used by the recognizer, 
database access variables and methods, dialogue states, etc.) Finally, the third layer contains 
the dialogue controller that uses the information from the other two layers and interacts with 
the final user. This system is similar to our proposal in some aspects, as the handling of 
concepts to facilitate multilingual interaction, the use of special variables related to the 
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21 http://www.ling.gu.se/projekt/trindi/  
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23 http://www.talk-project.org/  
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system and dialogue status, and the use of automatic preconfigured templates for each 
dialogue state. Nevertheless, as the author admits, the built-in templates fail when not all the 
states of the dialogue can be covered. In our system, we have tried to avoid this problem by 
using more flexible and general templates, although less automatic. 

Another platform that follows a very similar approach to the platform developed in this 
thesis is the Agenda system (now called RavenClaw) from Carnegie Mellon University 
(CMU) described in [Rudnicky and Xu, 1999] and [Bohus and Rudnicky, 2003]. For 
instance, both platforms are similar in that the designer can create the service using a 
hierarchical representation of the task and its subcomponents, facilitating maintenance and 
scalability, and that each state is described using a set of forms with information regarding its 
restrictions and optional slots. 

In [Polifroni et al, 2003] a rapid development environment for creating spoken dialogue 
applications using online content is described. The development process is started extracting 
knowledge from various Web applications and composing a dynamic database from it. Then, 
the dialogue flow is determined at runtime depending on the contents of such database. In this 
platform, they propose a methodology for creating automatic clusters that group and organize 
numeric data into symbolic data. For instance, the symbolic concept of 
cheap/medium/expensive in the domain of a hotel reservation is automatically created 
according to the information in the database (i.e. hotel rates vary depending on the city). 
Then, at runtime, the system summarizes the partial retrieved information and creates the 
prompts to present to the users, determining also the order in which they appear, based on the 
most useful set of attributes to narrow down the current data subset. Although this algorithm 
is very interesting, it is more limited than ours since we also use the database structure, not 
only its contents, to extract knowledge for the design process. Because of this, the design is 
more domain-independent, as it is more feasible to find data structures that are similar 
between several services and, therefore, can be applied in several applications. Besides, there 
are databases whose contents cannot be easily used for research purposes for security reasons 
as in banking or medical databases where confidential information exists. Another important 
difference is that the speech dialogue applications generated by our platform will be 
implemented in VoiceXML, which allows the generated dialogues to be executed with any 
VoiceXML interpreter. However, the idea of using the database content when it is available 
was also explored in this thesis. 

In [Pargellis et al, 2004] a complete platform to build voice-enabled applications is 
described. The dialogue structure can be modified using a set of templates adapted to the final 
user of the system, as well as several resources and service features. As in the proposal of this 
thesis, the platform automates the generation of the final script in VoiceXML, the grammars 
and prompts, and the application flow; nevertheless, their proposal differs from ours in that 
the automation efforts, in a similar way as in [Polifroni et al, 2003], are more focused on the 
dynamic contents of the database than on its structure, so it could be more domain dependent. 

[Tsai, 2006] presents a multimodal dialogue system that allows users to access the final 
service using a voice or visual interface. In this way, the users can use traditional telephony 
devices (e.g. phones or cell phones) and VoIP-based phones, and at the same time use any 
Web browser to interact with the application. The paper describes a proprietary mark-up 
language that is used to allow the interaction between the VoIP and the Web platform, as well 
as detailed information about the modules that generate and interpret the dialogue scripts, and 
the runtime platform used to access the service through the different devices and modalities. 
Finally, the paper describes some demo services created using the platform, as well as 
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evaluation results of the speech recognizer considering the user level (i.e. novice and expert) 
and the number of attempts required to be successfully recognized. 

[Polifroni and Walker, 2006] describes an interesting technique that allows the dynamic 
creation of system prompts based on partial retrieved database results and the automatic 
selection of the most relevant information to request to the user in order to restrict future 
retrieved results. Besides, they propose to use data mining techniques in order to dynamically 
create system messages with summarized information. The technique is a two-steps 
procedure: the first step consists of calculating the entropy, or information gain, of the data in 
focus at each turn in the dialogue (i.e. retrieved database results using partial information 
provided by the user according to the current dialogue history). The second step consists on 
using a decision tree induction for inferring association rules among the database attributes 
using the entropy calculated in the previous step. From the inferred association rules, the 
system selects an appropriate set of them in order to create the intentional summary messages 
and data-specific queries for the current dialogue state. A preliminary evaluation showed that 
users prefer this system when they are unfamiliar with the knowledge contained in the 
database, but if they are familiar with the data then they prefer direct dialogues (i.e. 
traditional system’s initiative dialogue systems). 

In [Chung, 2004], the database contents is used together with a simulation system in 
order to generate thousands of unique dialogues that can be used to train the speech 
recognizer and understanding module, and to diagnose the system behaviour against 
problematic user’s interactions or unimaginable user’s answers, etc. In [Wang and Acero, 
2006] the database contents are used to accelerate the creation of grammars for the speech 
recognition and spoken language understanding modules. In this case, the system uses the 
database to generate a large number of artificial sentences that are integrated into semantic 
frames in order to create customized grammars for different scenarios. 

[Feng et al, 2003] propose a very different approach. In this case, they do not extract 
information from a backend database but they apply data mining techniques to the contents of 
corporate websites for automatically creating spoken and text-based dialogue applications for 
custom care. The process is carried out through a Website analyzer that exploits the contents 
and structure of the site in order to generate structured and semi-structured task data. Then, 
the generated data is classified according to some predefined information units (e.g. menu, 
question-answer, topic-explanation, etc.). With this information, the dialogue manager, at 
runtime system, will identify the focus or expectation of the user’s question and will provide 
a concise answer. Although the dialogue flow is not defined using any GUI application, it is 
interesting to observe that important knowledge for the different modules of a dialogue 
system can also be extracted from well-designed contents. 

It is important to highlight the growing interest in using XML-based languages in order 
to exchange input/output data between different modules and to allow the specification of 
multimodal dialogue systems [Flippo et al, 2003][Katsurada et al, 2002] and [Araki and 
Tachibana, 2006]. Examples of this kind of languages are VoiceXML, SALT, XISL 
[Katsurada et al, 2003], or X+V, etc., which offer portability and flexibility, they also allow 
the quick definition of the dialogue flow, interaction between modalities, management of 
system and user errors for complete voice-enabled services [Komatani et al, 2003][Bennett et 
al, 2002]. Considering also that the selected description language can contribute to make 
independent the generated service from the execution platform, and the big number of tools 
for parsing and checking tag based languages, we decided to create our own language (called 
GDialogXML) to allow the internal communication between platform assistants, and to use 
the standard VoiceXML and xHTML as output scripts for the runtime system. 
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In relation to multimodal systems, we should especially mention the work in [Johnston 
et al, 2002], where a multimodal architecture for a dialogue system based on finite states is 
described. This architecture allows synchronous multimodal input/output data allowing users 
to use speech and/or gestures/images with a pen on a PDA. The authors make emphasis on 
the methodology used to guarantee the multimodal interaction, the features provided for each 
modality, and the architecture that supports the multimodality. In a recent improvement over 
this previous work, [Johnston et al, 2007] extend the proposed architecture to a new domain, 
i.e. multimodal access to contents in the home environment, including new interesting 
modalities such as handwriting, remote control, and dynamic combination of these modalities 
and speech. Even though our present system does not provide this kind of interaction right 
now, future work will be oriented towards the creation of a similar mechanism using a 
multimodal specification language like X+V, SALT [Wang, 2002], XISL [Katsurada et al, 
2003], or MILM [Araki and Tachibana, 2006].  

Another interesting application is presented in [López-Cozar et al, 2005]. In this case, 
they describe a multimodal dialogue system, based on the X+V language specification, that 
helps professors and students in some common academic activities such as obtaining 
information about available books for a specific subject at the library or turning-on/off lights 
at professor’s office. The system also uses user and ubiquitous information for adapting its 
behaviour and capabilities. Besides, the application handles explicit confirmation and mixed-
initiative interaction.  

[Katsurada et al, 2002] describe a modality-independent system architecture. The 
architecture is divided into three main modules: the document server module, the dialogue 
manager, and the front-end module. The first one handles the scripts of the service, the 
second one controls the dialogue flow, and the third one the user’s input and output. An 
interesting contribution of this paper is that the applications are written in a XML-based 
modality-independent language called XISL. This language provides all the required 
information for controlling different user inputs and system actions, output messages to the 
user, arithmetic operations, flow control, etc. Finally, the language also includes tags for 
allowing a basic synchronization of the different modalities. 

We also need to mention the SmartKom 24 project. Described in detail in [Wahlster 
(Ed.), 2006], the main result of this project was the creation of a robust multimodal dialogue 
system that supported symmetric multimodality (i.e. the system allows all input modes, e.g. 
gesture, speech, and facial expressions, to be also available for output) and mixed-initiative 
dialogues. The platform includes an embodied anthropomorphic conversational agent called 
Smartakus, which features coordinated speech, facial expression, and emotional gestures 
allowing face-to-face dialogue interactions between the system and final users. One of the 
main research problems tackled in this project was the integration and mutual disambiguation 
of all the symmetrical modes, including also the resolution of back-channelling, cross-modal 
references, multimodal anaphora resolution, turn-taking, meta-communicative interaction, 
and other discourse phenomena such as ellipsis and deixis resolution/generation. In addition, 
the dialogue manager exploits predefined models of the user, task, context, domain, and 
modalities to adapt the service and provide better interactions. The SmartKom architecture 
also supports multiple parallel recognizers such as emotional prosody, boundary prosody and 
speech recognition, which can help, for instance, to detect user’s emotions or to check if the 
information provided by the system fulfils the expectations of the user or not.  
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Among the main contributions of the SmartKom project was the complete specification 
of a XML-based language called M3L (Multimodal Markup Language) designed for the 
exchange and representation of the multimodal content. The big advantage of this 
specification is that it covers all data interfaces, avoiding using several different languages 
formats for each component of the platform. For instance, the word hypothesis graph, gesture 
hypothesis graph, media fusion results, hypothesis about facial expressions, information 
about segmentation, synchronization, confidences, etc., were all encoded using M3L. 
Besides, the specification was decomposed into about 40 different schemas in order to 
provide a thematic organization of the language that makes it manageable and to allow 
verifications during information exchange. Finally, this language also allows the definition of 
the appearance and contents of the information that has to be provided to the final user 
according to different parameters such as user preferences, current scenario, language, and 
output device. Then a set of XSLT stylesheets transform the M3L files into the format 
required specifically by each output device. In some ways, this language can be compared to 
the GDialogXML (see section 3.1, page 58) language used by our platform, although M3L 
goes beyond in that it is extended to the runtime system, and not only to the design of the 
service. 

Another contribution of this project was the proposal of a distributed run-time 
architecture called MULTIPLATFORM (Multiple Language Target Integration Platform for 
Modules). This architecture differs from the widely used Galaxy Communicator Architecture 
[Polifroni et al, 2000] in that there is not a central hub in order to avoid any information 
bottleneck and to allow more complex interactions between servers. Although this new 
architecture supports more complicated multimodal dialogue architectures, we decided to use 
a similar architecture as Galaxy because it is simple, the complexity of our system is lower, 
and because the messages between our modules were less complicated. 

Finally, regarding tools that can be used to debug and evaluate the application off-line, 
we should mention the SUEDE platform [Klemmer et al, 2000]. This application offers a 
graphical interface to design, test, and analyze a dialogue system using the Wizard of Oz 
(WOZ) technique. The objective is to provide the designer a controlled environment for 
running an electronic WOZ. SUEDE allows designers to test system prompts and user 
responses, simulate speech recognition errors, timeouts, barge-in prompts, analyze logs, 
review responses across participants, etc. This way, the toolkit allows an easy evaluation and 
improvement of a dialogue system without requiring a complete runtime system. 

[Dybkjær and Dybkjær, 2006] also describe a debugging tool for the DialogDesigner 
environment (see section 2.1.2, page 16). In this case, the debugger allows testing the 
dialogue model by selecting transitions and listening to the activated prompts. The simulation 
is logged which allows its posterior analysis. Most commercial applications and Web portals 
provide similar debugging tools. In our case, we have tried to minimize some of these design 
problems using automatic and configurable templates for the treatment of common system 
errors. 

[Ito et al, 2006] present an interesting user simulator tool based on VoiceXML files that 
can be used to evaluate the behaviour of the designed service. The application uses 
synthesized voice in order to evaluate the dialogue flow without requiring real users. 
Although this system is able to predict human-machine interactions, the program has to be 
improved to accept out-of-task behaviours or out-of-vocabulary utterances. In our current 
system we have not implemented this kind of assistant, but because we generate VoiceXML 
files we could take advantage of this program or similar ones provided by third parties. 
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2.1.4 Weaknesses of Commercial and Academic Platforms 

In spite of all the features included in most commercial platforms, a large drawback 
they present is that the runtime platform depends on the underlying technology (speech 
recognizer, text to speech systems, dialogue managers, etc.) therefore the behaviour of the 
service may vary across different platforms. In addition, it is difficult to integrate proprietary 
modules, most of the assistants do not take advantage of the contents of the database or data 
model structure, and they do not offer any proposal for completing or defining the service or 
common modalities issues. Finally, they may present difficulties in integrating new 
modalities, creating the service in multiple languages, adapting the service according to 
predefined user profiles, or for obtaining the same functionalities using the same platform but 
on different operative systems. 

Regarding academic and research platforms, although most of them are easy to use, 
they may show serious limitations such as a low portability level as they are tied to specific 
running platforms being difficult to integrate them with other systems and/or architectures. 
Besides, they require the designer to know several programming languages and non-standard 
formats reducing this way their usability. In addition, they may present limitations when 
trying to implement dialogue strategies that take into account the user level and different 
modalities, or when simultaneously building the application for several languages. 

Despite all the advantages and accelerations included in the commercial and academic 
platforms, most of them do not provide any kind of acceleration based on using data mining 
techniques applied to the contents of the task database and using information from the data 
model structure. In this thesis, we have solved this limitation incorporating successfully 
heuristic information into the different assistants and allowing these assistants to collaborate 
between each other in several ways, as they collect the information already provided in the 
first stages of the design to improve and accelerate the design in the last stages. This way, the 
platform assistants classify which fields of the database could be relevant for the design, 
generate different kinds of automatic proposals according to the design step, reduce the 
information displayed to the designer, and accelerate different procedures required to define 
the service. 

In addition, during the design of our platform we also provided solutions to other 
limitations of the commercial and academic platforms mentioned above. For instance, the 
platform was structured into three layers allowing a separation between the general and high-
level definition of the dialogue flow and the specific details imposed by each modality, 
language, and user profile. Besides, we also made a big effort for making independent the 
platform from the operating system and the runtime platform by using several standard 
languages such as VoiceXML, JSGF, SSML, xHTML, etc. In addition, we have incorporated 
several tools and assistants that provide access to new kind of user interactions such as 
animated agents, automatic machine translation, and language identification. 

 

2.2 Language Modelling 
Nowadays, language modelling is a general term that refers to the attempt of capturing 

the properties of a given language as accurate as possible in order to improve the 
performance of a wide range of natural language processing applications such as speech 
recognition, information retrieval, machine translation, language identification, Part-Of-
Speech tagging, text-to-speech, parsing, spelling correction, document classification, 
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handwritten recognition, etc. Depending on the application a different definition and purpose 
is given to the language models. For instance, in speech recognition a language model (LM) 
is mainly used to predict the next word in a speech sequence or to define the set of allowed 
sentences that a user can use when communicating with the system in order to be successfully 
recognized. In machine translation, LMs are used for choosing among different candidate 
hypothesis or to generate a score that measures the quality of a translated sentence. 

In general, there are two different kind of grammars widely used in most spoken 
dialogue applications: a) stochastic grammars, and b) Context Free Grammars (CFG). The 
former is appropriate for recognizing free-style speech and in applications where it is 
important to avoid writing complex grammar rules. Besides, it is the preferred one for 
research purposes. On the other hand, the latter is useful for applications with a restricted 
phraseology such in most automatic dialogue services. Besides, this kind of grammars 
provides good results when there is not enough training data to obtain reliable statistical-
based models. 

In this thesis, three different applications and types of language models were used. The 
first one is used in one of the assistants included in the development platform, allowing both 
the creation of CFG grammars in JSGF format and word-based language models to be used 
by the runtime platform to recognize user utterances and return semantic information to the 
dialogue manager. The second one was used for language identification, allowing the correct 
identification of the language uttered by a user. In this case, the proposed statistical phone-
based language model provides local and long-span information that is integrated into the 
front-end feature vector used for a Gaussian Mixture Model classifier. The third one is a 
statistical word-based language model that has been adapted and used to improve the quality 
of a machine translation system that translates previously defined system prompts into a sign 
language representation in order to provide speech-based dialogue services to deaf people. 

In this section, stochastic and finite-state grammar approaches will be studied in detail, 
explaining, in each case, its advantages and disadvantages, and the most common strategies 
to improve their performance. However, taking into account that the most important 
contributions of this thesis have been obtained using statistical language models for the LID 
and machine translation systems, in this section we will emphasize this kind of grammars, 
describing in detail the main solutions to the problem of insufficient training data and the 
management of long-span information. 

2.2.1 Statistical Language Models 

As mentioned above, statistical-based language models (SLM) are the most widely 
used kind of grammars in most natural language applications. In simple terms, a SLM is a 
probability distribution P(s) over all possible strings S (or documents, spoken utterances, 
phone sequences, or any other linguistic unit, etc.) that tries to reflect how frequently a string 
s occurs as a sentence. In general, it is common to decompose the probability distribution into 
a product of conditional probabilities using Eq. 2.1. Here, wi is the ith word in the sentence, 
and hi is the history. 
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Several SLM techniques have been proposed [Rosenfeld, 2000], but the most widely 
used are the n-gram models. In this kind of models, the next word is predicted using only the 
n-1 more recent words in the history (i.e. Markov assumption) using Eq. 2.2.  
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Eq. 2.2 

N-gram conditional probabilities are trained using Maximum Likelihood Estimations 
(MLE), i.e. the ratio between the observed frequency of occurrence for a given n-gram 
divided by the observed frequency of occurrence of the n-1 gram in the training corpus using 
Eq. 2.3. 
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The great advantage of n-gram based LMs lays in that they are easy to train, provide 
good results very quickly, they are robust (when there is enough text data for training), they 
are widely accepted, and there is a big number of software and algorithms to train and test 
them [Rosenfeld, 2000][Goodman, 2001][Bellegarda, 2004]. However, they present three 
main disadvantages that reduce its predicting and adaptability capabilities:  

1. In theory, it is possible, and desirable, to use a long n-gram order model since they 
will use a larger context that increases the prediction power. However, in practice, the 
value of the order is a trade off between the generalization and stability of the 
estimations of the model. In addition, the size of the training corpus is an important 
factor to choose the order of the model. The biggest the corpus the highest the order. 
Unfortunately, even with a big corpus most of the n-grams will occur just once or 
twice or will not occur at all. In these cases, the ML estimation will result in that those 
n-grams will obtain a high, but poorly estimated, probability or, even worse, a zero 
probability when they do not occur at all. In order to avoid these problems, several 
smoothing and interpolation techniques have been proposed in the literature. Some of 
these solutions will be presented in section 2.2.1.1. 

2. As stated above, the n-gram based models assume some kind of independence among 
different portions of the same document predicting the next word based only on a 
reduced context given by the n-1 more recent words in the history. This simplification 
is useful to keep the model trainable; however, it does not provide a long span neither 
semantic information. The direct consequence is that the model does not take full 
advantage of the dynamic characteristics of the domain or from the dialogue history. 
Moreover, since the n-grams just model the local information of the sentences, it is 
possible that the model assigns a high probability to sentences that do not have a 
correct syntax. In order to solve these problems, it is common to interpolate word n-
gram models with dynamic models (e.g. cache, trigger pairs) or with topic specific 
models. Besides, in order to provide syntactic and semantic information the preferred 
solutions is to use other kind of models as POS (Part-Of-Speech), class based n-
grams, hybrid grammars such probabilistic Context Free Grammars (see section 2.2.2, 
page 35), or to rescore n-best lists results with semantic parsers. Sections 2.2.1.2 and 
2.2.1.3 (pages 30 and 31) will provide more information about solutions for this 
problem. 
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3. The remarked dependency of n-gram based models to the domain of the training data. 
For instance, [Rosenfeld, 2000] and [Rosenfeld, 1996] report that a model trained 
with 2 million words from the same domain as the testing data is better, in terms of 
perplexity and Word Error Rate (WER), than another model trained with 140 million 
words from a different domain. Although this problem is well known, most of the 
times it is not possible to have such kind of large in-domain training data, especially 
for new domains or minority languages. A proposed solution is to generate 
automatically new sentences using templates learnt or defined from the in-domain 
data that capture the phraseology used in the available training data. Then the new 
sentences are filtered and included in the corpus in order to re-estimate the model. 
Another possibility is to adapt the poorly estimated model with more reliable models 
trained with texts from other domains or retrieving online sentences closer to the in-
domain data. In sections 2.2.1.4 and 2.2.1.5 (pages 33 and 34), we will provide more 
details about the proposed solutions for this problem. 

 

Finally, in order to evaluate the performance of n-gram based models several metrics 
have been proposed [Chen et al, 1998]. However, the preferred one is the perplexity. In the 
context of language modelling, the perplexity gives a rough idea of the average number of 
different possible words that can follow a given context and how much information is 
provided by the grammar. This metric is interesting since it can be used to compare different 
language models, to measure the complexity of a speech recognition task, or to estimate how 
well a language model is to match a given corpus. Perplexity is often calculated using Eq. 
2.4. Here, P(xi) is the probability assigned by the language model to the sequence of words in 
the test set, and N is the number of words in the test set. 
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Although perplexity is easy to calculate and provides a simple mechanism for 
evaluating different language models, it is often combined with other metrics in order to 
measure its effect on the application where the language models are applied. Typically, the 
quality of a language model is measured by its effect on the error rate (e.g. word error rate, 
language identification rate, translation rate, etc.). Unfortunately, error rates are difficult to 
calculate, are commonly non-linear, and do not correlate completely with the results provided 
by the perplexity. Several attempts to find correlations between perplexity and error rates 
[Klakow and Peters, 2002], or to find better correlated and easier to optimize metrics have 
met with limited success [Chen et al, 1998]. However, according to [Rosenfeld, 2000] there is 
a rule of thumb to estimate the effect of the improvements on perplexity over the error rate. 
For instance, a reduction of 5% in perplexity is not significant in practice. A 10%-20% 
improvement is usually, but not always, translated into some improvement in performance. 
More than 30% is quite significant but it is too difficult to obtain. 

In the following sub-sections, we will explain in more detail some of the proposed 
solutions to the problems that affect n-gram models. For more information please consult 
[Jurafsky and Martin, 2008], [Manning and Schütze, 1999], and [Rosenfeld, 2000]. 
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2.2.1.1 Smoothing techniques 
As mentioned above, one of the weaknesses of the n-gram based models is that they 

underestimate the probability of words that do not occur in the training corpus, assigning 
them a zero or low probability. In order to avoid this problem, it is possible to re-estimate 
these zero and low-probability n-grams using smoothing techniques. The smoothing is based 
on saving a probability mass, discounted from more frequent or better-estimated events, to be 
distributed among all low frequency events. The most frequent types of smoothing techniques 
are Witten-Bell, Good-Turing, and Kneser-Ney. 

Briefly, Witten-Bell, [Witten and Bell, 1991], introduces the concept of using 
information regarding the counts of n-grams seen just once for estimating the counts of n-
grams that do not appear in the training; this is a relevant contribution since several 
smoothing methods rely on using the same concept. In this method, see Eq. 2.5, the existing 
counts are modified by a factor that depends on the number of n-gram tokens, C(hi), and the 
different n-gram types or contexts, T(hi), seen in the training text for the given n-1-gram 
context. The idea is that words that tend to occur in a smaller number of contexts will 
contribute with a lower probability mass than words that appear in more contexts. On the 
other hand, the probability of unseen events is calculated distributing the discounted 
probability mass considering the number of n-gram tokens, C(hi), the different n-gram types, 
T(hi), and the number of n-gram tokens that do not occur at all in the training text, Z(hi). 
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In Good-Turing, [Good, 1953], the smoothed counts, c* in Eq. 2.6, are estimated using 
the concept of frequency of frequency (i.e. the sum of different n-grams, with the same order, 
that occur c times). Here, the smoothed count is estimated using the original count, c, plus 
one multiplied by the division between the number of n-grams that occurred c+1 times, Nc+1, 
by the number of n-grams that occur c times, Nc. Therefore, the smoothed counts for n-grams 
with zero counts are estimated by dividing the number of n-grams that occurred once by the 
number of n-grams that never occurred. [Katz, 1987] was the first one on applying this 
equation to the smoothing of n-gram based grammars, introducing at the same time the 
concept of applying the smoothing only to n-grams whose frequency of frequency is lower 
than a given threshold, generally from one to seven, since for more frequent n-grams the 
probability estimation can be considered as reliable. 

c

c

N
Ncc 1)1(* ++=  

Eq. 2.6 

Finally, in Kneser-Ney smoothing, [Kneser and Ney, 1995], the probabilities for all 
non-zero n-grams are discounted with a constant amount δ (see Eq. 2.7). For all zero n-grams, 
the probability is calculated taking into account the number of different contexts in which a 
word occurs. A modified version of this technique is also proposed in [Chen and Goodman, 
1998] where different values for the discounting parameter are used instead of a single 
constant parameter. [Goodman, 2001] presents detailed information for each technique 
besides an extensive comparison between these and other proposed techniques. 
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Eq. 2.7 

An interesting characteristic shared by all these smoothing methods is that they are 
frequently combined using two well-known techniques: back-off and deleted interpolation. 
Both also contribute to solve the problem of zero frequency n-grams. In this case, when a 
particular n-gram does not exist it is possible to estimate its probability by using lower order 
n-grams (which tend to be better estimate than the very sparse high-order models). 
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Eq. 2.8 

A back-off n-gram model is a nonlinear method proposed by [Katz, 1987]. According 
to Eq. 2.8, in the Back-off technique, the probability of an existing n-gram is calculated using 
the Maximum Likelihood Estimation (MLE, computed directly by dividing counts) or 
through a recursive utilisation of lower level conditional distributions if it does not exists. In 
this way, when a given n-gram is not available (i.e. its count is zero or below a given 
threshold in the training text) its probability is calculated using the occurrence count of a 
lower order model (n-1 gram) instead. In this equation, α(wi-n+1 .. wi-1) is a normalization 
factor, called back-off weight, that is calculated offline and represents how much probability 
mass has to be distributed from the high order model into the n-1 gram model. In addition, 
the equation shows that the MLE estimates are discounted with a certain amount, d, that is 
distributed among the unseen n-grams whose probability is calculated using the back-off. 

The other technique is the deleted interpolation or Jelinek-Mercer smoothing [Jelinek 
and Mercer, 1980]. Here, the probability for a given n-gram is obtained using a linear 
interpolation of high-order models with lower-order distributions (see Eq. 2.9). Where the λ 
values are calculated using held-out data and the final model in the recursion correspond to a 
uniform model. In this case, the probability of the n-gram relies always on the probabilities 
given by the high order and low order models, even if there is zero evidence for the high-
order model. In [Goodman, 2001] the conclusion is that this kind of models performs better 
on small training sets. For this reason, in this thesis we used this smoothing algorithm in the 
experiments for speech-to-sign language translation (section 6.2.3, page 174). 
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Finally, in addition to the techniques described above, in the literature we can find other 
strategies that also try to reduce the effect of low frequency n-grams. Among them, we can 
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mention variable length n-grams [Kneser, 1996], or skip-gram [Ney et al, 1994]. In variable 
length n-grams the number of words in the context is not fixed but depends on the context 
itself. The algorithm implements a pruning strategy where n-grams that have a small impact 
on the model are discarded. Then, using the remaining set of n-grams the smoothing 
parameters are recalculated. The main idea here is to provide a better distribution of 
discounted mass among the remaining n-grams. Skip-gram models are based on the intuition 
that when using high-order n-grams the probability of having seen the exact context is low, 
however the chance of having seen a similar context (i.e. most of the words occurring) can be 
high. In this method, several combinations of skipping words can be done whose probabilities 
are linearly interpolated with the full n-gram probability. Finally, a completely different 
approach for fighting the data sparseness is to calculate n-gram probabilities in a continuous 
space using neural networks. In order to do it, [Schwenk, 2007] proposes a linear 
interpolation between a traditional n-gram model with the probability given by a neural 
network trained with highly efficient algorithms. 

2.2.1.2 Long span and syntactic information 
One of the simplest ways to include some sort of semantic information in a language 

model is the so-called class-based language models. In this kind of models, statistically 
related words or phrases are clustered together in classes in order to train a new n-gram 
model with the indexes of the classes. The big advantage of these models is its robustness 
against infrequent events and its generalization capability about words used in contexts that 
have not appeared explicitly in the training data. The reason is that several words, some more 
frequent than others, can belong to the same class and each one contributes to the estimation 
of the final probability (see Eq. 2.10). Besides, they allow the system to dynamically modify 
the vocabulary without retraining or recompiling the entire language model. 

In general, the classes can be created by hand using linguistic information [Jelinek, 
1990](i.e. Part-Of-Speech models) or automatically inferred. The former is the preferred for 
narrow discourse domains or when the size of the training data is not big. The latter is 
preferred for unconstrained tasks and when the size of the training corpus allows the creation 
of reliable models. Several automatic and iterative algorithms have been proposed. The most 
frequent ones are the agglomerative hierarchical clustering (bottom-up) proposed in [Brown 
et al, 1992] or the divisive algorithm (top-down) proposed in [Kneser and Ney, 1993]. In both 
algorithms, the clustering process is measured using the information gain distance and the 
process is stopped when the desired number of clusters is reached or the information gain is 
below a given threshold.  

)))..C(wC(w | )P(C(w ))C(w |P(w  )..w w|(wP 1-i1n-iiii1-i1n-iiclass ++ =  
Eq. 2.10 

Eq. 2.10 shows one of the several alternative formulas used to calculate the word n-
gram probability using class-based LMs. In this case, the conditional probability of a word wi 
given the history wi-n+1 ... wi+1 is calculated as the product of two factors: the probability of 
the given word (wi) belonging to class C(wi) and the probability of the class given the 
preceding classes.  

In spite of its robustness, the main disadvantage is the loss in the ability to distinguish 
between different histories, although a quick solution is to increase the order of the model at 
the expense of increasing the number of infrequent events. In practice, this kind of models are 
usually interpolated with a word n-gram model. Another important characteristic that affects 
the performance of the model is the quality of the classes. When there is not enough training 
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data, good results can be obtained using hand-made classes (i.e. linguistically motivated); 
however, when the size of the corpus is increased, the automatically inferred classes perform 
better because they are more dependent to the domain. 

As mentioned above, the set of classes can be created by hand using POS tags (i.e. 
verbs, nouns, adjectives, etc). Since the number of tags is reduced, in comparison with the 
number of words in a traditional n-gram model, it is possible to train a high order n-gram 
model where the words in the original text are replaced by its POS tags according to its 
grammatical function given a recent history. However, the main disadvantage is that it is very 
time consuming and expensive to manually parse a full corpus. A possible solution is to use 
an automatic tagger, though it may introduce mistakes in the labelling process mainly due to 
the reduced context used to predict the tag (it is common to use just the last two words in the 
history), and from the fact that the tagger could have been trained with text from a different 
domain. In spite of these problems, [Heeman, 1999] presents experiments where the POS 
model produces better results when compared to an automatic class-based model or a back-
off model, because the probabilities are better estimated. 

Finally, a more complex approach, called structured language modelling, is presented 
in [Chelba and Jelinek, 2000]. In this approach, the hierarchical nature of the language is 
taken into account through syntactic information at the sentence level. In this model, a 
grammar parser is used in order to obtain the syntactic structure of the sentence. The reported 
results show improvements on perplexity and WER (Word Error Rate) when the model is 
interpolated with a word-based n-gram model. The big advantage of this kind of models is 
that the generated sentences are more grammatically consistent. However, since the quality of 
the results highly depends on the quality of the parser, this approach is restricted to well 
known languages (i.e. languages with enough data to train the parser and with a properly 
defined grammar).  

2.2.1.3 Dynamic and topic dependent models 
These models try to take advantage of the dynamic nature of the human language and 

its highly heterogeneity, with varying topics, genres, and styles. In general, these kind of 
dynamic models are linearly interpolated with a more robust static n-gram model in order to 
obtain improvements. Additionally, the interpolation parameter could be modified according 
to the most relevant topic for a given sentence or dialogue state. 

The simplest technique is Cache Models [Kuhn, 1988]. In this technique, a dynamic 
language model is created with the N most recent words in the history. Then it is interpolated 
with a static language model trained with the entire corpus. The premise is that a word that 
has appeared before has more probability to occur later on. [Jelinek et al, 1991] report 
reductions on WER using this method. Additional improvements are reported in [Clarkson 
and Robinson, 1997], where the contribution of each word to the cache probability decays 
exponentially over time. In this way, words that are more recent contribute more to the cache 
probability. A similar method, called trigger pairs, is presented in [Lau et al, 1993]. In this 
model, the presence of a particular word in the history is tied to the appearance of another 
one; therefore, the probability for that triggered word can be increased. However, results 
presented in [Rosenfeld, 1996] show that in most of the cases, the inducted trigger pairs are 
self-triggers that result only in a generalization of the cache model. 

Finally, another kind of dynamic model is described in [Iyer and Ostendorf, 1999]. 
Here, the training texts are partitioned automatically in clusters representing the different 
topics in which the texts can be classified. Then, different LMs are created one for each 
cluster and combined later on using different interpolation weights and formulas. For creating 



Speed Up Strategies for the Creation of Multimodal and Multilingual Dialogue Systems 

32 

the clusters, they propose a similarity distance where the tf–idf weight (term frequency–
inverse document frequency) is used. The tf-idf evaluates the importance of a word to a 
document given a collection of documents. The importance is proportional to the number of 
times a word appears in a given document taken into account the total number of times it 
appears in the whole corpus or collection of documents. The tf-idf is calculated as the product 
of the tf and idf terms. Since in this thesis we also applied a similar concept for creating the 
ranking of n-grams for the LID system (see section 6.1.2.4, page 159), below we will provide 
more details regarding the tf-idf formulation. 

The tf term is calculated using Eq. 2.11. In the equation, nij is the number of 
occurrences of term i in document j, and the denominator is the total number of terms in 
document j. In this equation, the normalization is useful to reduce the effect of very frequent 
terms without considering the actual importance of those terms in the whole document; this is 
especially relevant in longer documents. 
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Eq. 2.11 

The idf term, see Eq. 2.12, provides a measure of the general importance of a term 
across all documents. It is calculated applying the logarithm of the quotient of dividing the 
total number of documents in a corpus by the number of documents containing a specific 
term. 
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Eq. 2.12 

Another possibility for creating the clusters is based on using the concept of bag-of-
words, in which a text or document is represented as a disordered collection of words, i.e. the 
order of the words or any grammar information is discarded. This model has been widely 
used in several different tasks such as document classification and information retrieval. In 
relation to language modelling, the most relevant algorithms that use this paradigm are: latent 
semantic analysis clustering (LSA)[Bellegarda, 2000a][Deerwester et al, 1990], probabilistic 
LSA (pLSA)[Hofmann, 1999], and Latent Dirichlet Allocation (LDA)[Blei et al, 2003]. In 
LSA, for instance, hidden semantic relations between words can be obtained using a term-
document matrix (i.e. the occurrence of different and relevant terms along different 
documents). LSA applies a singular value decomposition to find a low-rank approximation of 
the term-document matrix. The goal of reducing the rank is to decrease synonymy, polysemy, 
sparsity and noise, and to discover new dependencies among different terms and documents. 
In [Bellegarda, 2000b], LSA is used for generating dynamic n-grams that are interpolated 
with a conventional word-based n-gram model in order to improve a speech recognition 
system. pLSA is the probabilistic version of LSA that provides a more intuitive model 
together with slight improvements since it can be used directly on the speech recognition 
system as it provides normalized probabilities. Finally, LDA is similar to pLSA except in that 
the topic distribution is assumed to have a Dirichlet prior, instead of a uniform distribution. 
This way, LDA is more robust than pLSA, and does not present problems of over-fitting and 
it is able to generalize when used with unseen documents. It has been successfully applied, 
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although with discrete reductions on perplexities and WER, to different kinds of tasks for 
language modelling such as dynamic interpolation with traditional n-grams [Tam and 
Schultz, 2005], for unsupervised adaptation as marginal constraints [Tam and Schultz, 2006], 
and for clustering of topic sentences to train different language models [Heidel et al, 2007]. 
In this thesis, we have not applied any of these techniques leaving this task for future 
developments and research. 

2.2.1.4 Adaptation and interpolation 
As mentioned in section 2.2.1 (page 25), one of the main problems when training n-

gram based LMs is to have enough training data to obtain reliable models, especially when 
the order of the model is high. This fact is relevant since the model will fail due to the poor 
estimation of unknown events and because there will be too many low frequent n-grams that 
will obtain a high probability mass to distribute between them. This way, the probability of 
the good n-grams, i.e. the most frequent and reliable ones, will be discounted and its 
discriminative power and estimation will be diminished. In [Bellegarda, 2004] a complete 
survey of adaptation techniques to overcome these problems is described. Below we describe 
some of the most relevant methodologies.  

In general, the idea is to build two LMs, one trained from the in-domain text and 
another one from out-of-domain data or a background corpus (i.e. bigger than the in-domain 
but probably less specific), and then to apply an adaptation formula that tries to modify 
dynamically the well estimated background model using the information from the in-domain 
model. This way, the probabilities of the new model will be more robust and better estimated. 
One of the most common adaptation techniques are the linear or the log-linear interpolation 
[Broman and Kurimo, 2005] that operate at the probabilities given by each model at sentence 
level. Another solution, when the size of the adaptation/in-domain data is small, is to use the 
estimations of the unigrams to adapt the probabilities given by the general model as a 
marginal constraint. Examples of this technique are unigram rescaling [Gildea and Hofmann, 
1999], fast-marginal adaptation [Kneser et al, 1997] or fill-up models [Besling and Meier, 
1995]. A more complex, but promising technique for combining several sources of language 
models is the Maximum Entropy framework [Rosenfeld, 1996]. This kind of framework has 
been successfully applied for combining trigram, class-based, cache and trigger pairs models 
with good results but requiring a lot of time to train.  

[Galescu et al, 1998] report another strategy that uses texts from other domains by 
using phrase templates. The idea is to find sentences with similar structure in both domains to 
make the corresponding word replacements and take advantage of the knowledge present in 
the original domain (i.e. new contexts, new vocabulary, more training data, etc.). In this 
thesis, we did not use this strategy for improving the language models for the machine 
translation system since the Spanish sign language has a different grammatical structure than 
the written Spanish language, so it is difficult to use or to find any templates from a similar 
domain. 

Another kind of adaptation, widely reported in the literature, is the so called Maximum 
A-Posteriori (MAP)[Federico, 1996]. In this technique, the adaptation is performed at the 
counts level; the original n-gram counts of the in-domain model are modified by the n-gram 
counts of a background corpus. The adaptation is made using Eq. 2.13. 
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Here, CI and CO are the frequency counts for the in domain and out-of-domain corpora 
for history hq and n-gram hqwq respectively; α and β are weight factors, estimated empirically 
on a development set to reduce the bias of the estimators and to provide more or less 
importance to each corpus. [Bacchiani et al, 2006] report improvements on WER using a 
combination of supervised and unsupervised adaptation of n-gram language models to a new 
domain and with a small corpus using MAP. Their results show that using MAP it is possible 
to obtain an absolute improvement of 7.7% (from a baseline WER of 28%) when using the 
supervised adaptation, or 3.9% absolute improvement when using the unsupervised 
adaptation. In addition, it is also possible to obtain new improvements using iterative 
adaptations. In [Wang and Stolcke, 2007], supervised MAP and marginal adaptation [Kneser 
et al, 1997] are successfully combined with unsupervised language models for transcription 
of broadcast conversations. In this case, the proposed method is applied to adapt a 5-gram 
language model providing reductions on character error rate (CER) up to 20.7% over the 
baseline system, i.e. a static model, with a 22.4% CER, and over the traditional linear 
interpolation that obtained a 21.5% reduction. Given the good results obtained with this 
technique, we decided to use it to adapt the original language model used by the machine 
translation system described in section 6.2 (page 170). 

2.2.1.5 Gathering of new training data 
Finally, as we have seen, most adaptation techniques, including MAP, require the 

existence of a big background corpus to provide the general distribution of the n-grams in 
other domains. However, considering that it is possible that such corpus is not available or is 
not big enough to provide reliable estimations, a proposed solution is to artificially generate it 
by using generic templates and applying then filtering algorithms [Bellegarda, 2004]. 
Another interesting solution, proposed in [Sarikaya  et al, 2005] and [Zhu and Rosenfeld, 
2001], is to dynamically collect new sentences from other domains or corpora using 
information retrieval (IR) techniques, i.e. collecting texts from online resources or from other 
existing databases. Then, the new sentences are incorporated, using a supervised or 
unsupervised procedure, into the available texts of the original domain to be adapted. 

On the other hand, the adaptation using online resources and IR techniques has been 
previously used in different applications with successful and promising results. For instance, 
it has been used to reduce the number of out-of-vocabulary words (OOV) [Bigi et al, 2004], 
for rescoring a n-best list in a speech recognition system through the selective adaptation of 
discriminative high-order n-grams occurring in the initial n-best list [Zhu and Rosenfeld, 
2001], and to obtain frequencies for unseen n-grams [Keller and Lapata, 2003]. In this kind of 
systems, two important topics of research are the creation of good queries [Zhao et al, 2004], 
in order to reduce the number of times the system queries the Web, and the posterior filtering 
of the retrieved texts since the inclusion of non-relevant text could affect negatively the 
adaptation and therefore the recognition results [Yu et al, 2005]. 

The basic procedure is to create a list of specific n-grams (i.e. content-words, very 
frequent words, or poorly estimated n-grams) that the system searches on the internet. Then, 
from a limited number of Web pages returned by the search engine a Web crawler extracts all 
the sentences in the retrieved URLs. In the next step, the system first cleans the retrieved 
texts and extracts relevant sentences from them (e.g. those containing the terms used in the 
query), which are then used to create or complement the background corpus. Although, this 
method is relatively easy to implement and provides good results, the process of retrieving all 
the text sentences introduces a considerable latency and too many unnecessary sentences and 
words. In [Keller and Lapata, 2003] and [Zhu and Rosenfeld, 2001], these problems are 
reduced using another approach: instead of retrieving full sentences from a Web page they 
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retrieve the number of different Web pages where all the terms of the query (i.e. n-grams) 
appear, i.e. frequency counts. The reported results confirm that the estimations using Web 
frequency counts correlates well with estimations made using the crawling method. Even 
more, the Web frequency method has proved to provide comparable or better results for 
adaptation purposes on different tasks, even with different techniques (e.g. linear 
interpolation or entropy models).  

In this thesis, we have followed a similar approach, using the Web frequency counts 
instead of retrieving full Web pages. However, we have implemented a new algorithm that 
introduces some differences in relation to the ones reported in the literature: a) in the 
mechanism for creating the list of n-grams to query the Web, b) in the process of converting 
the Web frequency counts from the source language to the target language in a Machine 
Translation system, and c) in the adaptation framework used (i.e. MAP) to modify the 
background counts with the converted Web frequency counts. 

2.2.2 Context-Free-Grammars (CFG´s) 

A context free grammar is a mathematical model for modelling the structure of a 
natural language using a lexicon of terminal (words) and non-terminal (high level tags 
expressing generalizations) symbols, and a set of production or transition rules that defines 
how the symbols of the lexicon can be grouped and ordered together. In this formalism, 
sentences are generated starting from a non-terminal symbol and applying several times the 
conversion rules until all the non-terminal symbols are finally converted into a sequence of 
terminal symbols (words).  

The main advantage of these grammars is that they are easy to create and maintain, 
present a low perplexity, and generate grammatically correct sentences. The main 
disadvantage is that they may restrict the final user to use, when addressing the system, only 
the defined set of sentences of the training data. Any other sentence uttered by the user would 
be misrecognized or not allowed; besides, these grammars are only useful when the 
vocabulary size is reduced [Pereira and Riley, 1997]. Therefore, in order to obtain good 
results with this kind of grammars a compromise between the size of the grammar and the 
speed and accuracy of the system has to be taken. For instance, a big grammar may introduce 
too many recognition errors, then degrading the system accuracy; on the other hand, a small 
grammar will produce too many out-of-grammar recognitions, producing too restrictive or 
non-natural interactions with the final users. On the other hand, in a conventional CFG all the 
transitions have equal probability, however it is possible to include probabilistic information 
to the transition rules in order to define some alternatives (the sequence of rule expansions) as 
more probable than others. This way, it is possible to adapt the grammar to new domains or 
to a particular dialogue state [Mohri, 2000].  

Despite its drawbacks, CFGs are the most extended type of grammars for spoken 
dialogue systems with system or mixed initiative capabilities. Besides, most of the current 
development platforms allow the creation and debugging of this kind of grammars, 
supporting several specification languages such as JSGF (Java Speech Grammar Format), 
GSL (Nuance Grammar Specification Language), and SRGS (Speech Recognition Grammar 
Specification), and including tools to convert grammar files from one format to others.  

In relation with our development platform, during the GEMINI project an assistant was 
created that allows the creation and edition of this kind of grammars for compatibility with 
the VoiceXML specification (see section 3.4.6.2, page 72). This assistant supports JSGF and 
XML-based formats. In addition, new assistants, developed in this thesis, allow the 
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possibility of debugging JSGF grammar files and the automatic creation of stochastic 
grammars from a JSGF file (see section 4.7.1.3, page 120). Finally, our runtime platform also 
supports speech grammar files in SRGS and JSGF format (see section 3.5.3, page 77). 

 

2.3 Language Identification (LID) 

In order to allow the runtime platform to automatically detect the language to be used 
by the system to communicate with the user, we have worked in improving a LID system. 
Specifically, we have worked on a PPRLM-based system where we have introduced a new 
kind of long-span language model described in detail in section 6.1 (page 150). In this 
section, we want to present an overview of the most recent and widely used techniques for 
LID, as well as the reasons to select the PPRLM technique. Afterwards, we will provide a 
detailed description of this technique including also information about its strengths and 
weaknesses. 

Several techniques have been suggested in the last years for LID. Probably the most 
extended technique is the Parallel Phone Recognition followed by Language Modelling 
(PPRLM) [Zissman, 1996][Zissman and Berkling, 2001]. In PPRLM, the language is 
classified based on statistical characteristics extracted from the sequence of recognized 
allophones. The idea is to use N phone parallel recognisers followed by M language models, 
one for each language to be identified, trained with the phoneme sequence obtained for each 
recognizer during the training step. During the classification step, the unknown utterance is 
transcribed using each of the N recognisers. Then a score is calculated for each of the N 
transcription using the M language models. Finally, a backend classifier selects as target 
language the one with the higher score. 

Although PPRLM provides a high LID performance, it may require a heavy 
computational demand that limits its use in real-time or low cost applications. An alternative 
approach, and may be the most simple and popular technique, is the Gaussian Mixture Model 
(GMM) [Zissman, 1996]. In this technique, a model of multiple Gaussians is trained for each 
language using the cepstral and delta MFCC coefficients obtained from all the audio files 
available for each language. During the recognition, the system calculates the cepstral and 
delta coefficients for the unknown utterance, selecting as best hypothesis language the one 
that maximises the log-likelihood between the new vector and each trained model. This 
technique is interesting because the identification is performed very quickly, which is useful 
for real-time systems, and because it does not require orthographic or phonetically labelled 
corpus. However, for these reasons, it could not get the same accuracy rate obtained with 
more complex techniques such as PPRLM. 

[Torres-Carrasquillo et al, 2002a] present a variation to the GMM technique called 
GMM-Tokenizer. In this case, the classifier output (i.e. the indexes of the GMM models) is 
used to train a “language model”. This technique uses both acoustic information and 
sequence information, so it seems to be suitable and has the same advantages as the GMM 
alone: labelled data is unneeded and it is faster than the phone-based approaches. However, 
this technique is not as good as PPRLM, but can outperform it if both techniques are 
combined. Therefore, it offers complementary information to the task, but increasing the 
CPU time due to PPRLM. 

[Torres-Carrasquillo et al, 2002b] describes a variation on the GMM technique where 
instead of using MFCC coefficients they use a technique proposed by [Bieledfeld, 1994] 
called shifted delta cepstrum (SDC). In this technique, the final vector used as input to the 
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GMM classifier at time t is given by a concatenation of k blocks of size N, with a time 
advance and delay d, and a p time shift between consecutive blocks. Eq. 2.14 shows the 
formula used to calculate the value for the ith block at time t in function of the values for p 
and d. [Torres-Carrasquillo et al, 2002b] describe experiments where using these coefficients 
a GMM based LID system provides similar results than a PPRLM based system with the 
advantage of not requiring any orthographically or phonetically transcribed speech data and 
with a greatly reduced computational cost required for real-time systems. [Yin et al, 2006] 
also propose using SDC as a mean to introduce prosodic information such as intensity and 
pitch with very good results. In our current system, we have not incorporated these 
coefficients yet but we propose it as future work. 

)()()( diPtcdiPtctc −+−++=∆  

Eq. 2.14 

[Navratil, 2001] presents an interesting variation to PPRLM contributing with different 
ways to combine the information of the allophone sequence with language dependent 
acoustic models. In this system, the language model score is provided through a linear 
interpolation between an n-gram based LM and a tree-based LM in order to capture long-span 
information. On the other hand, the acoustic component consists of a set of language-
dependent Gaussian Mixture Models (GMM) trained for each allophone using information 
about energy, cepstral and delta coefficients, and duration (i.e., prosodic information). 
Finally, the backend classifier is an ANN that integrates all the information provided by the 
two components. In order to reduce the computational load produced by using parallel 
recognizers in PPRLM, they propose to use a single recognizer with a set of multilingual 
phonemes including all the possible units from the languages to be recognized. 
Unfortunately, this approach requires labelled transcriptions in order to train language 
dependent n-gram LMs that are integrated into the recognizer in order to produce the N 
different phoneme sequences as in PPRLM. The reported results show that the acoustic 
information provides relevant information that improves the results considerably. In our 
system we have also arrived to similar conclusions after including acoustic information at 
sentence and phoneme level. Although we do not use tree-based LMs we agree that capturing 
long-span information is also useful for improving system results. 

[Gauvain et al, 2004] describe an extension to the PPRLM framework by using phone 
lattices, both for training and testing, instead of using only the most likely phone sequence. 
One of the interesting contributions of using this approach is that the phone lattices offer 
more accurate n-gram frequencies estimates in order to train the n-gram based LMs. Finally, 
an artificial neural network (ANN) is used as backend classifier instead of using the average 
score estimated for each phone recognizer, obtaining the largest improvements when the 
audio segment is large (i.e. more than 30s). In our case, since most of our audio files are short 
we decided not to use the ANN but a Gaussian Classifier. 

[López-Moreno et al, 2008] propose a new machine learning fusion scheme, called 
Anchor-model, to create the final feature vector used for the backend classifier. In this 
approach, the system exploits the relative behaviour of all the different sub-systems (e.g, 
phonotactics models) to a given speech utterance. Then, the relative behaviour of each 
language in comparison with the competing ones is modelled by using a SVM model, one for 
each language to be recognized. The idea is interesting since the system uses the information 
of the relative behaviour of the scores produced by each sub-system for a given input 
language instead of using a single vector. This way, the system learns how the scores given 
by the sub-system that models a given language tend to be higher than the scores produced by 
the non-target subsystems. Then, at recognition, the system uses similarity functions between 
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the new composite vector of all anchor models and the trained anchor model space. The 
proposed technique outperforms other fusion schemes based on different kernels applied to a 
SVM model. In our current system, we have not used this kind of fusion, but we propose a 
simplified model using instead the differential scores between competing languages as input 
vector to the Gaussian classifier. 

[Ramasubramaniam et al, 2003] propose a slight variation of PPRLM called Parallel 
Phone Recognition (PPR). The main difference between PPRLM and PPR is that the 
sequence of allophones generated by each phone recognizer is used as input to only the 
corresponding language-dependent LM instead of making them to go through a bank of M 
different n-gram language models. This way, it is possible to evaluate the contribution of the 
acoustic and phonotactic information separately, or it is also possible to integrate the 
phonotactic and acoustic models into one-step allowing that the phone recognizer can use the 
language model for constraining the Viterbi decoding rather than applying the constraints 
after the phone recognition is complete. As a consequence of this approach, the phone 
recognizer produces the most likely phone sequence that is also optimal regarding the 
combination of the acoustic and phonotactic information. In this paper, they also propose the 
bias removal procedure to improve the classification results. In addition, a mono Gaussian 
classifier (GC) and a K-Nearest Neighbour Classifier (KNNC) are also compared. According 
to their results, the bias removal performs better than the GC, and the GC better than the 
KNNC. However, probably they could obtain better results with the GC using a mixture of 
Gaussians instead of using just one Gaussian.  

[Sai-Jayram et al, 2003] propose a modification of PPR, called Parallel Sub-Word 
Recognition (PSWR), where instead of using phone-based HMMs for the recognizer they use 
sub-word units created by automatic segmentation, segment clustering and segment HMM 
models. This idea is interesting since labelled data is not required. Briefly, the technique 
consists of splitting each utterance into segments with a minimum duration, and then 
applying an agglomerative clustering of those segments to train HMM models from the final 
clusters. They compare the results provided by the acoustic, language models, and mixed 
scores but do not provide results integrating all this information. According to their results, 
the proposed framework performs similar to PPR with the advantage of requiring not any 
labelled data. 

[Nagarajan and Murthy, 2004] present a similar technique to PSWR but in this case 
using an HMM of syllables-like units. The training process does not require transcriptions 
and the syllabic units are automatically defined using an unsupervised incremental clustering. 
The results are good but the improvement is low. However, it is interesting that a better 
improvement can be obtained when the more discriminative (language specific) units are 
used. A similar behaviour we have observed in our experiments. 

[Gleason and Zissman, 2001] present comparative results between using an ANN and a 
single Gaussian classifier as the backend. In this case, the ANN performs slightly better. 
However, they do not provide results using a multi-Gaussian classifier as the one we use in 
our system. 

A recently technique proposed in [Ma et al, 2005] is based in a new concept called Bag-
Of-Sounds models (BOS) of phone-like units (e.g. acoustic segments). The BOS concept is 
inspired in the corresponding Bag-Of-Word (BOW) model used in information retrieval (see 
section 2.2.1.3, page 31). Their proposal is to convert the utterances into a count vector 
matrix, similar to the document-word matrix used in BOW, where “documents” correspond 
to the different languages to recognize, and “words” correspond to the set of all possible 
unigrams and bigrams generated using a universal inventory of phone models. Then, they 
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apply a normalized entropy quantity to the count vector matrix in order to model the 
discriminative power of each phone considering the entire set of training documents. Finally, 
a Support Vector Machine (SVM) is used as backend classifier. In relation with our system, 
we have experimented with different entropy quantities for creating a ranking of 
discriminative n-grams; in our case, we tried the tf-idf term and proposed several other 
alternatives. 

Finally, [Li et al, 2006] present a new line of research where several sources of 
information are combined. In this case, they propose the combination of a PPRLM-based 
system and a Bag-Of-Sounds model to obtain corresponding scores for all target languages 
and then concatenating them to form an utterance-level score vector. Then this composite 
score vector is fed into an ANN and a simple linear discriminant function (LDF) in order to 
generate two confidence scores for each language which are then fused and sent to the 
backend classifier to make the final selection. An important conclusion from this study is that 
the confidence scores from both classifiers (ANN and LDF) and the information provided by 
the PPRLM and BOS system exhibit large diversity that is ideal for score fusion. In our work, 
we have also focused on this kind of characteristics using information from the PPRLM 
system and from an n-gram frequency ranking that provides utterance-level information 
similar to the BOS system. 

2.3.1 Description of the PPRLM Technique: Advantages and 
Disadvantages 

As mentioned above, PPRLM is the most popular approach to language identification. 
The main objective of PPRLM is to model the frequency of occurrence of different allophone 
sequences in each language. Following the diagram in Figure 2.5, this technique can be 
divided in two stages. First, several parallel phone recognizer take the speech utterance and 
outputs a sequence of allophones corresponding to the phone sets used for each one. Then, 
the sequence of allophones is used as input to a bank of n-gram language models (LM) in 
order to capture phonotactics information. In the second stage, the language model scores the 
probability that the sequence of allophones corresponds to a given language.  

 
Figure 2.5. Diagram of a PPRLM LID system (Source: [Zissman, 1996]) 

During test, the unknown utterance, U, is hypothetically identified as language L 
following Eq. 2.15. Here, L is the set of all possible and equiprobable languages to identify, S 
is the phone sequence, and Φ is the set of allophone acoustic models usually estimated using 
HMM phone models. The prior probability of S, P(S|L), is estimated using a phone n-gram 
LM. Several approximations can be applied to this equation in order to simplify the 
calculations, for instance to consider that the phone models are language independent by not 
using any phonotactic constraints for phone decoding. 
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Eq. 2.15 

The main advantages of PPRLM are: a) As it uses many recognizers, it is possible to 
cover most of the phonetic realizations of every language. b) PPRLM makes possible to have 
phone recognizers modelled for languages different to the languages that have to be 
identified, which is especially useful in situations when the training data is not enough to 
obtain reliable language dependant models. Obviously, if there is a match between the input 
language and the language of the models the performance will be better, because it will 
model explicitly the phonetic variations of each language.  

In spite of the good results obtained using PPRLM, it presents some weaknesses that in 
the literature have been solved in different ways. 

1. The processing time is multiplied by the number of recognizers. This fact limits the 
use of PPRLM for real time systems that require recognizing a high number of 
languages. In this case, the recent incorporation of faster and multiple parallel 
processors in new computer machines help to alleviate this problem. Another 
solution, is the optimization of the algorithms using dedicated software libraries and 
hardware that can reduce the elapsed time required during training or testing. In our 
case, we have just take advantage of the new capabilities given by current computers. 

2. The presence of bias in the log-likelihood scores generated by each combination of 
the N recognizers and M language models. This problem is mainly due to the 
differences between the allophone dictionaries and training data used by each 
recognizer [Zissman, 1996]. [Ramasubramaniam et al, 2003] describes two solutions 
for this problem. The first solution is called bias removal; it consists on a 
normalization procedure using as LM score the calculated score minus the average 
score in the training data. Then, the language is identified using a Maximum 
Likelihood Classifier. The second solution is to use another kind of classifier, such as 
Gaussian, K nearest-neighbour, or Support Vector Machine (SVM) classifiers. The 
advantage of using these classifiers is that the final decision about the recognized 
language is not affected by the bias, because the classification is not based on using an 
absolute discriminant function. In this thesis, we decided to use a Gaussian Classifier 
given the good results obtained in [Cordoba et al, 2006a] and [Cordoba et al, 2006b]. 
These classifiers also benefit from the normalization of scores (e.g., the T-norm 
normalization). In our system, we use what we call “differential scores”, which is a 
similar normalization. 

3. The LMs models present the same kind of problems that occur in recognition tasks, 
mainly data sparcity and the limitation of the n-grams to model long-span 
information. In this case, it is difficult to solve the first problem because it would 
require new training data (i.e., obtaining new recordings or using an external corpora 
with the same dictionary of phonemes used in our platform) consisting of a sequence 
of recognized phonemes. As mentioned before, data sparcity limits the performance 
of the most important smoothing algorithms, although it is frequent to counteract it 
using the deleted interpolation algorithm or other adaptation techniques (see section 
2.2.1.1, page 28). In deleted interpolation, the conditional probability of a word given 
its context is calculated as the linear interpolation between the individual probabilities 
of different order n-gram models. Regarding solutions for the problem of including 
long span (dynamic) information to the language models, [Navratil and Zühlke, 1997] 
present slight improvements on the LID rate when using the skip-gram technique 
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proposed by [Ney et al, 1994]. [Padró and Padró, 2004] present LID experiments on 
written text for six languages using three different kinds of LM: Markov models, 
trigram frequency vectors and n-gram text categorization [Cavnar and Trenkle, 1994]. 

In this thesis, we have mainly focused on providing new solutions to the third kind of 
problems. In our case, extending the work proposed by [Cavnar and Trenkle, 1994]. Our 
main interest in this technique was that it combines local information (n-grams) and long-
span information (collected counts from the whole utterance). In general terms, during 
training the technique proposes the creation of a ranked template with the N (typically 400) 
most frequents n-grams (up to n-grams of order five) of the character sequences in the train 
corpus for each language. During the evaluation, a dynamic ranked template is created for the 
phoneme sequence of the recognized utterance. Then a distance measure is applied between 
the dynamic template and each language dependent template previously trained. The selected 
language is the one that presents the higher correlation between templates. This technique is 
very simple but provides good results for language recognition of written texts (up to 93%, 
depending of the length of the sentence to recognize and the size of the template), it is robust 
against text errors, and it does not require applying any kind of smoothing technique. 

 

2.4 Machine Translation 
Machine Translation (MT) is the name for the automatic process of translating text or 

speech from one language to another. One of the first MT systems was presented in 1954, but 
it was not until the 1970s when many governments started to be interested in MT thanks to 
systems like the Canadian Meteo, for translating weather forecasts, and SYSTRAN 25 used by 
the European Commission. In the 1980s the first versions of PC-based MT systems appeared. 
Then, in the 1990s appeared the first online MT services such as BabelFish 26, sponsored by 
Altavista. Finally, during the 2000s, MT has grown considerably thanks to the creation of 
new efficient hybrid algorithms and the availability of training data that allows better 
translations. In this section, we will show the background and the most important research 
approaches in this field in the last years. 

2.4.1 Current Approaches for Machine Translation 

Current architectures for MT can be categorized into three main approaches: direct, 
transfer and Interlingua. In direct translation, the text is translated word-by-word using a 
bilingual dictionary and then reordered using simple rules. In the transfer approach, the 
source text is first parsed and then syntactic and lexical rules are applied to transform the 
parsed structure into a target parse structure that is used to generate the final target sentence. 
Finally, in the Interlingua approach, the source sentence is deeply analyzed and converted 
into an abstract language independent meaning representation (i.e. Interlingua) that is used to 
generate the target sentence. For a detailed description of each approach, refer to [Jurafsky 
and Martin, 2008]. These three approaches are represented graphically through the Vauquois 
pyramid (see Figure 2.6). In this figure, the vertical axis represents the effort required for 
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26 http://babelfish.altavista.com/  
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analysis and generation, while horizontal axis represents the amount of transfer knowledge 
when moving up in the triangle. 

 

 
Figure 2.6. The Vauquois triangle (Source: [Jurafsky and Martin, 2008]) 

 

These three approaches constitute the classical classification for machine translation. 
All current systems are -in one way or another- hybrid combinations of them. On the other 
hand, it is also possible to classify the MT systems considering the information components 
applied to increase the accuracy of the translation. The most important sources of information 
are Knowledge-Based, Example-Based, and Statistical.  

In the Knowledge-Based approach, the MT system incorporates an extensive pragmatic 
and semantic knowledge of the domain in the form of rules defined previously by an expert 
or using supervised training. Depending on the desired level of quality of the translation, the 
system requires a progressive in-depth understanding of the text (morphology, syntactic and 
semantic information), and a more complex domain model (ontology of concepts). In general, 
this approach provides high quality translations and is robust against recognition errors in a 
speech-to-speech translation system but it is restricted to small domains since the creation of 
the rules is very expensive and time consuming. Examples of research systems that 
incorporates this information are KANT 27 at Carnegie Mellon University and the described 
in [San-Segundo et al, 2008]. 

In the Example-Based Machine Translation (EBMT), proposed by [Sato and Nagao, 
1990], the idea is to translate a source sentence by imitating a similar translation example 
previously trained from a parallel corpus and stored in a database that is looked up at runtime. 
In this kind of system, the main problems to solve are how to combine the different candidate 
phrases in order to obtain a coherent translation, to disambiguate when it is necessary to 
imitate more than one translation example, and how to solve problems with non-matching 
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segments of the sentence. A recent example of this kind of systems is described in [Morrissey 
and Way, 2005]. 

Finally, in Statistical Machine Translation (SMT) systems the translations are generated 
using statistical models where its parameters are estimated from the analysis of parallel 
corpus. Initially classified as a different paradigm for machine translation, in the last years the 
differences between the SMT and the EBMT approaches have been reduced thanks to the 
development of phrase-based and syntax-based models in preference to the original word-
based translation. Nevertheless, some differences remain [Hutchins, 2005]. Since in the thesis 
we have worked on a statistical-based machine translation system, in the next section we will 
provide more background information about this approach and the main research work in this 
area.  

 

2.4.1.1 Statistical machine translation 
In any automatic language translation, the goal is to translate a text, given in some 

source language, into a target language. Given a source string, J
J fff 11 = , it must be 

translated into a target string, J
I eee 11 = . Among all possible target strings, the system has 

to choose the string with the highest probability given by Bayes decision rule, Eq. 2.16: 
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Eq. 2.16 

In this equation, )Pr( 1
Ie  is the probability given by the target language model, whereas 

)|Pr( 11
IJ ef  is the probability given by the string translation model. The argmax operation 

denotes the search problem, i.e. the generation of the most probable sequence of words in the 
target language. 

The overall architecture and process for translating a sentence is summarized in Figure 
2.7. The first step is to pre-process the input sentence in order to make the translation task 
simpler. Different kind of transformations can be done, ranging from the categorization of the 
words to parsing the source string, in order to obtain better and more reliable alignments that 
contribute to the generation of better translations. A similar process can be done to the final 
candidate sentence in the target language in order to re-order or improve the translation. The 
more complex process is the Global search where the system combines the probabilities 
produced by the translation model, )|Pr( 11

IJ ef , and the target language model, )Pr( 1
Ie , in 

order to select the best candidate sentence. An interesting characteristic of the Bayes decision 
rule is that the language and the translation models provide independent information so that 
they can be trained individually. 
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Figure 2.7. Translation process based on Bayes decision rule 

Currently, most of the statistical machine translation systems are based on the Bayes 
decision rule, where the parameters for both the language and translation models are learnt 
from the analysis of bilingual corpus. In general terms, the main difference between the 
different proposed systems is the algorithm used to calculate the score produced by the 
translation model, i.e. )|Pr( 11

IJ ef . The most important approaches are statistical finite state 
transducers [Casacuberta and Vidal, 2006][Bangalore and Riccardi, 2000], example-based 
models [Sumita, 2001], word alignment models [Brown et al, 1993][Vogel et al, 1996], and 
phrase-based alignments [Koehn et al, 2003]. These approaches are explained in the 
following paragraphs, explaining with more detail the latter two in section 2.4.2 (page 45) 
since they are the most relevant for this thesis. 

In the statistical finite state transducers, the translation is performed using a finite state 
transducer where, given an input sentence, the system searches for the most likely output 
sentence through all possible output strings paths generated by the finite state transition 
network and the joint probability of sentence pairs.  

In the example-based models, the system creates a dictionary with large bilingual 
chunks that are learnt from the parallel corpus. During the translation, the system selects the 
most similar source-side chunk and picks up the target-side chunk from the bilingual 
dictionary, applying afterwards reordering and refined rules. 

In the word-based alignment models, the sentences of the parallel corpus are first 
aligned and then the mappings between individual words in the source language and the 
target language are learnt by the system by using interactive statistical methods. Afterwards, 
based on these alignments, the system creates a translation model that is then used to generate 
the most probable output sentence.  

Finally, in the phrase-base alignment, the word-based alignment is conducted one-step 
forward by considering not individual words but word sequences, i.e. blocks or phrases, of 
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different lengths. Interestingly, these blocks do not correspond necessarily to linguistic 
phrases but to “phrases” learnt using statistical methods and that consistently appear to be 
corresponding translations along the corpus. 

2.4.2 Word-based and Phrase-based Translation 

According to Figure 2.7, the translation model can be decomposed into two models: the 
the lexicon model and the alignment model. The first one models the probability of 
translating two aligned words, i.e. )|( ij efp . The second one defines the correspondence, i.e. 
alignments, between the words in the source sentence and the words in the target sentence. In 
the basic model, some restrictions are imposed such as each source word has to be aligned to 
exactly one target word, and allowing that source words that are not aligned to any word in 
the target sentence can be modelled by assuming the existence of a null word or empty cell 
on the target side. Then, more complex models are allowed by introducing the concept of 
fertility, i.e., the possibility of aligning one target word to many source words, and a 
distortion penalty that penalizes implausible alignments. Eq. 2.17 shows the formula used by 
a basic first-order translation model based on word alignment. In this formula, e is the target 
sentence, f the source sentence, I and J are the lengths of the target and source sentences 
respectively, aj is the position in e that fj is aligned with, p(J|I) is the length model, p(aj|aj-1,I,J) 
is the alignment model, and p(fj|eaj) is the lexicon model. Observe that the formula sums over 
all possible alignments considering the restrictions mentioned above. The formula also shows 
the the alignment and lexicon models. 
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Eq. 2.17 

Currently, most word-based alignment models are based on the work presented in 
[Brown et al, 1993] namely the IBM 1-5 models, and the HMM models proposed by [Vogel 
et al, 1996]. Below we describe them briefly. For more information about these models and 
machine translation refer to [Manning and Schütze, 1999] chapter 13, [Jurafsky and Martin, 
2008] chapter 25, [Chou and Juang, 2003] chapter 11, and the educational tutorial presented 
by [Knight, 1999]. During the training process, since each model presents many free 
parameters that have to be optimized, the algorithms only provide local minimums. In order 
to reduce these problems, the training procedure is initialized with a simple model that does 
not present local optima. Then, the parameters of the simple model are used to initialize the 
training process of more complex models.  

In IBM-1 model, it is assumed that all the alignments are equally likely, i.e. it presents 
a uniform alignment probability. The big advantage of this model is that it converges to a 
global maximum therefore in most of the cases it is used as seed for the following models. 
IBM-2 makes a more realistic assumption using a zero-order model, i.e. the system only 
considers a dependence on the absolute position of the source word. In IBM-3, the algorithm 
uses a zero-order inverted model, i.e. a mapping from the target positions i to the source 
positions j, introducing new parameters such as the fertility model, the distortion model, and 
the spurious model. The fertility model gives the probability of aligning many source words 
to one target word, the distortion model gives the probability of aligning two word positions 
in the source and target sentences conditioned on the sizes of both sentences, and the spurious 
model gives the probability of assigning a source word to the empty word. IBM-4 is similar 
to IBM-3 but uses a first-order model where the algorithm introduces dependencies on the 
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previous alignment, the identity of the source word, and the previous target word. The idea of 
these dependencies is to reduce some problems introduced by the fertility model and the 
process of specifying the final positions of the target words. In order to reduce the 
dependencies on the identity of specific words that can result in an unreliable model due to 
scarce training data, it is possible to use corresponding word classes or part-of-speech as 
suggested by [Och, 1999][Kneser and Ney, 1993] and [Brown et al, 1993]. IBM-5 can be 
considered as an improved version of IBM-4 where the probabilities are strictly normalized, 
which means that the algorithm does not put probability mass on alignments or events that 
can never occur. This way, the alignments are better estimated but at the cost of a more 
complex and delaying algorithm. Finally, the HMM model can be considered as an improved 
version of the IBM-2 model since it uses a first order model, i.e., considering dependencies 
on the position of the previous alignment, which capture localities in the translations, i.e. 
neighbouring source words are often aligned with neighbouring target words. In the baseline 
HMM, the locality is captured by using absolute positions. In order to reduce the number of 
alignment parameters, [Vogel et al, 1996] and [Dagan et al, 1993] propose a homogeneous 
HMM where the alignment probabilities depend only on the jump width (aj – aj-1). Finally, 
[Och and Ney, 2000b] propose the context dependent HMM where an additional dependence 
on the identity of the source word of the previous alignment is introduced. 

One of the main shortcomings of IBM-1, IBM-2, and HMM models is that they only 
allow to model correspondences between single words instead of longer span 
correspondences, i.e., modelling structural or syntactic aspects of the language. Although 
IBM-3, 4, and 5 models reduce this problem by introducing the concept of fertility, it is not 
enough to model more complex relationships. In order to reduce this problem, a new kind of 
translation model was proposed in [Och et al, 1999], [Yamada and Knight, 2001] and [Koehn 
et al, 2003] called phrase-based translation. In this kind of models, the system learns the 
phrase alignments by using a word alignment model trained using the IBM models and 
applying different heuristics to extract the final phrases. For instance, [Yamada and Knight, 
2001] propose to extract only phrases that have a linguistic motivation, i.e., phrases that are 
constituents in well-formed syntactic parse trees. On the other hand, [Koehn et al, 2003] 
report better results when using long span phrases without imposing syntactic restrictions or 
using a more complex IBM model to start with.  

The process for creating the phrase alignments is called symmetrising. The idea of this 
process, described in detail in [Och et al, 1999] and [Jurafsky and Martin, 2008], is to train 
two separate word alignments, one for the source-to-target language, and another for target-
to-source language. These word alignments can be created using the IBM models or more 
complex models to obtain better results [Och and Ney, 2000a]. Then different combinations 
of both alignments are applied in order to produce the final alignments. For instance, it is 
possible to intersect both alignments in order to create an initial high-precision phrase 
alignment and then to apply the union in combination with other heuristics to add new points 
to the initial intersected phrase alignment. In order to improve the generalization of the 
alignments, the phrases are learnt by using bilingual word classes rather than using word 
identities. In addition to the translation probability, the algorithm also considers a distortion 
probability that penalizes large reordering in the final positions of the phrases in the target 
sentence considering the positions in the source sentence. In [Och and Ney, 2004] full details 
about the training and search process are described. 

Current research on machine translation is oriented to the incorporation of new 
complementary information using log-linear models [Och and Ney, 2002] in the search 
process (see Eq. 2.18). This way, it is possible to combine the traditional models proposed by 
the Bayes rule, i.e. translation and language model, with different sources of information such 
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as POS-based models, word-classes, lemma-based LMs, likelihood of the parse tree and 
dictionary matching on the source sentence, etc. In the equation, hm represents the different 
models to combine, and λm the scaling factors that are optimized on a development set using 
numerical optimization algorithms. 
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Eq. 2.18 

Another area of research is the use of factored translation models [Koehn et al, 2006], 
where instead of using only the surface form of words, the forms can be augmented with 
different factors such as lemmas, POS tags, morphologies, word classes, supertags [Birch et 
al, 2007], etc. The advantage of this model is that it can overcome some of the problems 
associated with phrase-based alignments, since they are able to capture long-span 
information, to respect linguistic phrase boundaries, and they allow the incorporation of more 
generalizations that are implicit when using syntactic knowledge.  

Finally, another area of interest are the so called discriminative word alignments 
models [Moore et al, 2006] that can obtain equal or surpass the alignment accuracy obtained 
by the IBM models. In this case, the alignments are created by using human-annotated word 
alignments on a small set of the training data and adding arbitrary features that are linearly 
interpolated in order to create the final alignments. Several features are proposed in the 
literature, for instance: the relative distance between source and target words, a binary feature 
to indicate if both words are identical, number of unaligned words in a sentence, probability 
of translating one word into one, two, three, etc. words (i.e. fertility), etc. 

2.4.3 Current Metrics for the Automatic Evaluation of Machine 
Translation Quality 

Although evaluating the quality of a translation is a subjective and very difficult task, 
several automatic metrics have been proposed in order to avoid the necessity of performing 
this task by human evaluators. The task is quite difficult since natural language is ambiguous 
and complex. For instance, two sentences can contain different words but they can be 
equivalent, while another two can differ in only a word but have an entirely different 
meaning. In [Vilar et al, 2006] we show a descriptive list of the most relevant problems we 
can find when automatically translating two sentences between different languages. In 
contrast to machines, human beings are able to evaluate a translation according to two main 
factors: adequacy and fluency. The first one evaluates if the translation preserves the same 
meaning as the original sentence. The second one measures if the translation is grammatically 
correct. On the other hand, automatic measures are only able to evaluate the closeness 
between the translated sentence and a reference translation (or multiple translations if 
possible). In this case, the candidate sentence is ranked as better if it is closer to a human 
translation (references). 

[Banerjee and Lavie, 2005] present a list of basic criteria for any useful and effective 
MT metric: high correlation with human judgment, sensitivity to differences between 
different systems, consistency among similar texts, reliability (different systems that score 
similarly should be expected to perform similarly) and generality (it has to work with 
independence of domain and scenario). In general, according to [Jurafsky and Martin, 2008], 
automatic MT metrics are not good for evaluating radically different architectures (e.g. an 
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Interlingua vs. a statistical-based machine translation systems), even when evaluating human-
aided translation. However, they can be very useful when evaluating improvements made to 
the same MT system or with similar architectures. 

This section describes the main metrics used for performing the automatic evaluation of 
machine translation systems, including those that were used in this thesis.  

 

2.4.3.1 Word error rate (WER) 
Similar to the one used in speech recognition, this metric works at word level and it is 

based on the calculation of the number of words that differ between a machine-translated 
sentence and a reference translation. 

N
IDSWER ++

=
  

Eq. 2.19 

Where S is the number of substitutions, D is the number of deletions, I is the number of 
insertions, and N is the number of words in the reference. If there are multiple translation 
references, only the lowest rate is reported. 

2.4.3.2 Position independent word error rate (PER) 
Proposed by [Tillmann et al, 1997], this metric is similar to the WER but does not take 

into account the ordering of words in the matching operation. It considers the translations and 
the reference as bag-of-words and computes the differences between them, normalised by the 
reference length. Besides, it is guaranteed that the PER rate is less than or equal to the WER. 
The metric operates counting only the number of times that identical words occur in the 
translated and the reference sentence. Words that do not match are counted as substitutions, 
and depending on the translated sentence is longer or shorter than the reference translation, 
the rest of the words are considered as insertions or deletions. 

2.4.3.3 Bilingual evaluation understudy (BLEU) 
Proposed by [Papineni et al, 2002],  BLEU is one of the most popular metrics for 

evaluating machine translation systems since it provides a high correlation with human 
judgements of quality. The metric tries to guarantee adequacy, assigning a higher score to 
sentences that use the same words as in the references, and it looks for fluency using longer 
n-gram matches. BLEU is formulated as the geometric mean of a modified form of n-gram 
precision, pn, using weighted n-grams up to order N, multiplied by a decaying length penalty 
to impose that the best candidate matches the reference translations in length too. 

Eq. 2.20 shows the formula for calculating the score. In this equation, N is the order of 
the n-grams calculated (typically N = 4), BP is the Brevity Penalty factor that penalizes 
translations that are shorter than their reference sentences. Lref is the number of words in the 
reference translation that is closest in length to the translated sentence, and Lsys is the number 
of words in the translated sentence. The precision pn is calculated for every n-gram order and 
weighted by the factor wn (typically a uniform weight is applied, i.e. wn = 1/N). Count is the 
number of n-grams found both in the candidate reference C and in the translated sentence. 
Countsys is the number of n-grams found only in the translated sentence.   
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2.4.3.4 NIST 
Proposed in [Doddington, 2002], it is based on the BLEU metric but introducing slight 

modifications. First, BLEU uses the geometric mean of the n-gram precision, but NIST uses 
the arithmetic mean to reduce the impact of low co-occurrences for high order n-grams. 
Second, BLEU calculates n-gram precision using equal weights to each n-gram; on the 
contrary, NIST takes into account how informative a particular n-gram is (i.e. the rarer the n-
gram is the larger weight it will obtain).  
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Eq. 2.21 

Eq. 2.21 shows the formula to calculate the NIST score. In the equation, N is the order 
of the n-grams calculated (typically N = 5). The exponential factor is the brevity penalty, 
where β is such that the brevity penalty factor is equal to 0.5 when the number of words in the 
translated sentence is 2/3rds of the average number of words in the reference translation. This 
way, small variations in the translation length do not affect too much to the overall score. Lsys 
is the number of words in the translated sentence; L ref is the average number of words in a 
reference translation, averaged over all reference translations. Count(.) is the number of 
occurrences for n-grams (w1...wn) and (w1...wn-1) in all reference translations. 

2.4.3.5 Metric for evaluation of translation with explicit ordering (METEOR) 
Proposed by [Banerjee and Lavie, 2005], it is one of the latest proposed metrics for 

evaluating machine translation systems that shows a high correlation with human evaluators. 
The metric is based on using the harmonic mean of unigram precision and recall. An 
interesting characteristic of this metric compared to the previous ones is that it does not only 
use the matching of the different n-grams in the reference and in the evaluated sentence but 
also several other features such as exact word, stemming, and synonym matching. The 
sentence is scored based on a combination of different features: unigram precision, unigram 
recall, and a direct measure of how the words are out-of-order in comparison to the reference 
sentence.  

The algorithm creates initially an alignment of unigrams between the reference and the 
translated sentence. The alignment is gradually created through successive stages not 
allowing one word to map to more than other single word in the reference string. Each stage 



Speed Up Strategies for the Creation of Multimodal and Multilingual Dialogue Systems 

50 

maps unigrams that have not been mapped previously and selects as the best alignment the 
one with the fewer number of crosses (i.e. number of intersections of two mappings). By 
default the first stage tries to make an exact match, the second stage uses a stemmer module, 
and the third one is based on using a WordNet synonym module. 

After creating the final alignment, it is scored using Eq. 2.22. In this equation, the 
precision and recall measures are combined using the harmonic mean, weighting more the 
recall than the precision. Precision (P) is defined as the number of unigrams in the translated 
sentence that also appear in the reference translation (m) divided by the total number of 
unigrams in the translated sentence (wt). Recall (R) is defined as the number of unigrams in 
the translated sentence that also appear in the reference translation (m) divided by the total 
number of unigrams in the reference sentence (wr). Now, in order to take into account longer 
matches, METEOR computes a penalty (p) weight. The penalty is calculated as the number 
of chunks (i.e. a set of adjacent unigrams that appear in the hypothesis and reference 
sentences. Few chunks means that both sentences are almost equals) divided by the number 
of unigrams (um) that have been mapped. Using the penalty the effect of the Fmean can be 
reduced by up to 50% if there are no bigram or longer matches. 
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Although reported results using this metric present a high correlation with human 
evaluators, in this thesis we could not use it since it requires a stemmer and synonym module 
that are not currently available for the Sign Language. 

2.4.4 Speech to Sign Language Translation 

Nowadays, thanks to the significant improvements in automatic speech recognition, 3D 
animation, and statistical machine translation (SMT), it has been possible to face new 
challenges such as speech-to-speech and speech-to-sign language translation. In this section, 
we will describe different research projects and approaches, databases, tools, and standards 
that have contributed in the development of this kind of systems. 

In relation with speech-to-speech translation, several research projects such as 
Verbmobil 28, Eutrans 29, Nespole 30, TC-Star 31, MASTOR 32, and GALE 33 have been 
undertaken in recent years, contributing significantly to the creation of new algorithms and 
applications for different tasks, domains, and vocabulary size. In general, the reported quality 
of the translation is good. For instance, in Verbmobil the goal was the creation of a mobile 

                                                 

 
28 http://verbmobil.dfki.de/overview-us.html  
29 http://cordis.europa.eu/esprit/src/30268.htm  
30 http://nespole.itc.it/  
31 http://www.tc-star.org/  
32 http://domino.watson.ibm.com/comm/research.nsf/pages/r.uit.innovation.html  
33 http://www.darpa.mil/IPTO/programs/gale/gale_concept.asp  
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speech-to-speech translation system for bidirectional German/English and German/Japanese, 
allowing spontaneous speech and speaker independent recognition in a restricted domain (i.e. 
making hotel reservations, scheduling appointments, and travel planning) with a vocabulary 
size of about 10000 words. Reported results show around 80% correct translations and 90% 
of dialogue task completion. In TC-Star, the goal was the creation of a speech-to-speech 
translation system for unrestricted domains such as broadcast news and the European 
parliament speeches allowing bidirectional translation for English, Spanish, and Mandarin 
languages. In this case, the best result was around 70% of correct words when word positions 
are ignored, i.e. around 38% of WER. Besides, in most of the current research projects the 
translation is done using different types of statistical approaches such as phrase-based 
translation [Koehn et al, 2003], example-based methods [Sommers, 1999], finite-state 
transducers [Casacuberta and Vidal, 2006], and other data driven techniques. These have 
been favoured by new efficient training and generation algorithms [Och and Ney, 
2003][Koehn et al, 2003], automatic error measures [Papineni et al, 2002], higher 
computational power and bigger parallel corpora [Koehn, 2005]. 

In relation with speech-to-sign language translation, it is based on the same technology 
as the speech-to-speech translation with the difference that the output is provided by an 
avatar. In the last years, this kind of systems has grown quickly since this technology is 
especially useful to help deaf people to communicate with non-deaf people, and vice versa, as 
human interpreters are expensive and are not always available. In addition, many deaf people 
have problems when reading lips, and even written texts, as they are used to the sign 
language grammar [Zhao et al, 2000]. Unfortunately, sign language presents a great 
variability depending on the country, even between different regions or populations across a 
country, which make difficult the research in this field. However, several studies have 
appeared in order to establish some sort of standardization and common background. For 
instance, in USA we can mention [Stokoe, 1960][Christopoulos and Bonvillian, 1985][Pyers, 
2006], in Europe [Engberg-Pedersen, 2003][Atherton, 1999] and [Meurant, 2004], Africa 
[Nyst, 2004] and Asia [Abdel-Fattah, 2005][Masataka, et al, 2006]. In Spain, there have been 
several proposals for normalizing the Spanish Sign Language (LSE: Lengua de Signos 
Española), but none of them has been accepted by the Deaf community. From their point of 
view, these proposals tend to constrain the sign language, limiting its flexibility. The most 
significant studies have been [Rodríguez, 1991][Monserrat and Gallardo, 2004][Herrero-
Blanco and Salazar-García, 2005], [Reyes, 2005], and [Parkhurst and Parkhurst, 2007]. 
[Rodríguez, 1991] carried out a detailed analysis of LSE showing its main characteristics and 
the differences between the sign language used by Deaf people and the standard proposals.  

It is well known that when developing systems for translating speech transcriptions into 
the sign language, it is necessary to have a big parallel corpus that guarantees efficient 
training of the parameters for the language and translation models. Unfortunately, most of the 
currently available Sign Language (SL) corpora are too small or too general for training 
purposes. In the literature, we can find references to the following corpus and research on 
machine translation experiments. 

The European Cultural Heritage Online organization 34 (ECHO) presents a multilingual 
corpus in Swedish, British, and The Netherlands sign languages (ECHO corpus). It consists 
of five children fables and several poems, a small lexicon and interviews with the sign 
language performers. The corpus consists of different video material including one medium 

                                                 

 
34 http://www.let.kun.nl/sign-lang/echo/  
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shot of the body and one for the face, as well as two to four signers, male and female, per 
language. It also includes transcriptions with general, manual, and non-manual information. 
In addition, an annotation tool called ELAN 35 is also freely available in order to create, edit, 
view, and search annotations of the video and audio data included in the corpora. 

Another interesting corpus (ASL corpus) is made up of a set of videos, partly available 
online, in American Sign Language created by The American Sign Language Linguistic 
Research group at Boston University 36. The database consists of short stories consisting of 
around 200 elicited sentences to illustrate different grammar structures, with fixed 
vocabulary, where the signs occur in many different context and word orders. Besides, it 
contains 20-25 minute dialogues between two native signers, and contains annotated data and 
multiple synchronized video information providing different views of handshapes used in 
ASL. 

In [Bungeroth et al, 2006] and [Stein et al, 2006] a corpus, of around 2500 sentences, 
called Phoenix for German and German Sign Language (DGS) in a restricted domain related 
to weather reports was presented. It comes with a rich annotation of video data, a bilingual 
text-based sentence corpus, and a monolingual German corpus. These works also describe a 
statistical machine translation system that includes additional pre- and post-processing steps, 
using grammar parsers, to improve the translation.  

[Morrissey and Way, 2005] present an example-based Sign Language translation 
system from English to the Sign Language of the Netherlands. The corpus for this work 
consists of 561 sentences with an average sentence length of eight words. An advantage of 
this corpus is that the annotation of the videos is time-aligned allowing the automatic 
extraction of different linguistic information for improving the translation. 

[Stein et al, 2007] describe an innovative sign to English translation system, using 
image recognition processing and statistical machine translation, with promising WER results 
(around 20%). However, the corpus used in this work consisted of only 680 sentences; 
therefore, it is difficult to obtain better results with such a small training database. 

[Chiu et al, 2007] describe a corpus of about 2000 sentences for the language pair 
Chinese and Taiwanese sign language, which is used to perform experiments on machine 
translation. They show that their optimization method surpasses IBM model 2. 

In relation with research and available corpus in Spanish, the most important corpus is 
provided by the Biblioteca Virtual Miguel de Cervantes that is available at their website 37; it 
consists of several videos with poetry, literature for kids, and small pieces of classical 
Spanish books. Unfortunately, this corpus does not provide any transcriptions, just video 
content (that is common in most SL corpora), and it is very different from our current task 
domain. Moreover, there is not a standard representation, or grammar, for the Lengua de 
Signos Español (LSE), which makes the problem of data scarcity even worse. In [San-
Segundo et al, 2006] and [San-Segundo et al, 2008], up to the best of our knowledge, we 
describe the first automatic translation system for Spanish speech to gesture in LSE. Besides, 
a corpus of about 500 sentences is also described. This corpus and the speech to gesture 
architecture are the reference used in this thesis for the experiments described in section 6.2 
(page 170). In [San-Segundo et al, 2007] three different MT approaches are compared: rule-

                                                 

 
35 http://www.lat-mpi.eu/tools/elan/ 
36 http://www.bu.edu/asllrp/  
37 http://www.cervantesvirtual.com/seccion/signos/  
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based, statistical phrase-based and stochastic finite state transducers. In this thesis, we have 
followed the statistical phrase-based approach, as we will show in section 6.2 (page 170). 

Finally, in order to allow the translation from text or speech input into the sign 
language it is necessary to use some kind of avatar or animated agent that provides the visual 
representation required by deaf users. Currently, there has been an increasing interest on 
developing and evaluating this kind of virtual agents in spoken dialogue systems for a great 
variety of services and domains. For instance, [Cassell et al, 2002] describe an animated 
agent for an information kiosk, and [Wahlster (Ed.), 2006] describe Smartakus, an artificial 
life–like character with lip synchronization included in the SmartKom project to provide 
visual information to the user. [Cole et al, 2003] and [Ma et al, 2002] describe several tools 
and animated agents included in the CSLU Toolkit, which allows the creation of multimodal 
dialogue services for a wide range of applications and domains. The toolkit includes the CU 
Animate toolkit that allows the creation of arbitrary animated sequences and the 
synchronization of the lips of the agent with speech sounds. [Balci et al, 2007] present an 
open source platform, called XFace 38, which allows the creation of custom 3D talking heads 
using the MPEG-4 Face Animation standard. In addition, [Granström et al, 2002] from the 
KTH group describe in detail several multimodal dialogue systems where the animated 
agents help to increase the capabilities of the service and allow the different final users to 
have access to the service.  

Unfortunately, most of the previous avatars are not useful for playing signs for deaf 
people since they do not fulfil all the requirements imposed for this task. For instance, it is 
important to have a fine motor control over all the body, not just the face or head, including 
also arms and fingers, as well as the surrounding area since it avoids occlusions when using 
only a frontal view and because many signs require the use of spatial information. Moreover, 
facial expressions are also important since they transmit emotion, disambiguate between 
different words, and provide new signs. Currently, there are several available commercial and 
academic avatars that can be used for creating digital content, reading eBooks, or providing 
information to deaf people. Below, a brief list of the most important ones is presented. 

SigningAvatar 39: Created and commercialized by VCom3D, the designer has the 
possibility of using several different avatars that can be used to create custom digital content. 
The platform includes several tools for exporting a signed sentence into a video sequence in 
different standard formats, for creating and editing new signs, and for the automatic 
synchronization of lips and speech sounds. Besides, the toolkit includes a built-in library of 
American Sign Language that can be used for speeding up the development process. 

VSigns 40: It is a 3D human-like avatar that generates VRML (Virtual Reality Modeling 
Language) sequences using MPEG-4 Body Animation specification. The process of signing 
involves the conversion of the text input into SignWriting notation (see section 2.4.4.1), 
which is converted into an XML representation using the SWML 41 (SignWriting Markup 
Language) format. Then, the signs are converted into a sequence of Body Animation 
Parameters following the MPEG-4 specification. Finally, these parameters are used to 
animate the VRML-based avatar. 

                                                 

 
38 http://xface.itc.it/  
39 http://www.vcom3d.com/  
40 http://vsigns.iti.gr:8080/VSigns  
41 http://swml.ucpel.tche.br/  
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WebSign: Reported by [Jemni and Elghoul, 2007], it is a Web-based tool that features a 
3D avatar that is used to translate written text in Web pages into a sign language animation. 
The representation is created using a dictionary of words and signs. The dictionary is created 
incrementally thanks to the collaboration of users of the site. Since signs are locally 
dependent, the site allows the creation of “community” dependent vocabularies or global 
vocabularies. In addition, they report the creation of a new descriptive specification language 
for the signs called SML that provides a XML-based description of the movements for the 
avatar, regardless if the avatar is used for signing or for other purposes. 

Finally, we have to mention the European project eSIGN 42 (Essential Sign Language 
Information on Government Networks) that was one of the most important research efforts in 
the development of tools for the automatic generation of sign language contents. In this 
project, the main result was a 3D avatar, called VGuido, with enough flexibility to represent 
signs from the sign language, and a visual environment for creating sign animations in a rapid 
and easy way. The tools developed in this project were mainly oriented to translating Web 
content into the sign language. The avatar is currently being used in local government 
websites in Germany, the Netherlands, and the United Kingdom, and included in a recent 
automatic translation system sponsored by IBM called SiSi 43 (Say it Sign it), which is 
intended to be used in different areas such as education and entertainment. In our case, we 
decided to use this avatar since it is highly flexible, it can be used as an ActiveX plug-in in 
order to be easily integrated in the runtime platform, and because it uses the HamNoSys 
notation (see next section) that presents advantages over other notations 

 

2.4.4.1 Sign language transcription formats 
As stated above, nowadays there are very few sign language corpora, existing only a 

few public corpora available that contain little or no annotation at all. To make things worse, 
there is not a standardised written form for the sign language. However, this annotation is 
very important since it is required to train the translation system and to create the dictionary 
used by the real-time system to translate the sequence of glosses into an enriched language 
that the avatar can interpret and convert into an animated sequence of movements to be 
played. Currently, in the literature we can find several proposals of languages such as 
SignWriting, HamNoSys [Prillwitz et al, 1989], SML [Jemni and Elghoul, 2007], and VHML 
(Virtual Human Markup Language) 44. Among them, the most important ones are 
SignWriting and HamNoSys. 

SignWriting 45 is a bi-dimensional representation of graphical symbols that represent 
hand, handshapes, facial expressions, body movements, location, and contact. The notation, 
as illustrated in Figure 2.8, is easy to read and write, and it can be linearly encoded in 
computers assigning numeric codes to each symbol. However, the SignWriting specification 
does not contain all the linguistic details required by an avatar in order to generate properly 
the signs. For that reason, we did not consider it to be used in our system.  

 

                                                 

 
42 http://www.sign-lang.uni-hamburg.de/eSIGN/  
43 http://www-03.ibm.com/press/us/en/pressrelease/22316.wss  
44 http://www.vhml.org/  
45 http://www.signwriting.org  
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Figure 2.8. Example of SignWriting notation for the Spanish sign: Book (Source: [Parkhurst 

and Parkhurst, 2007]) 

 

HamNoSys, Hamburg Sign Language Notation System, developed as a research tool 
and a phonetic transcription system, was made publicly available in 1989. It consists of about 
200 symbols covering the parameters of handshape, hand configuration, location, and 
movement. Although the symbols are easy to recognize, they have to be precise. Therefore 
they can be very long, difficult to decipher, and not easily usable for users to read or take 
notes. An advantage of this notation is that it is applicable to any sign language. For this 
reason, it has been used in several research institutions around the world and in our system. 
Besides, the specification is currently on development; and the new proposal is expected to 
include new symbols for information such as mouth movements and other facial expressions 
that will be used to generate new signs and to provide a higher degree of emotion to the signs. 
In any case, most avatars, including the one used in this thesis, that support this notation use 
some sort of non-standard symbols to codify this information. For all these reasons, we 
decided to use this notation. Figure 2.9 shows an example of one of the tools, the eSign editor 
included in the toolkit that allows the creation and execution of new signs and glosses using 
an embedded version of the avatar. 

 
Figure 2.9. Example of HamNoSys notation and its representation using the avatar. 

 

 

 

 



Speed Up Strategies for the Creation of Multimodal and Multilingual Dialogue Systems 

56 

 



 

57 

33  PPLLAATTFFOORRMM  AARRCCHHIITTEECCTTUURREE  

An important contribution of the GEMINI project was the design of an innovative 
platform that allows the specification of multimodal and multilingual services in an integrated 
environment. The architecture, called also Application Generation Platform (AGP), the 
modules that conform it and the information flow between them is shown in Figure 3.1. All 
the modules are independent of each other; nevertheless, they were integrated into a common 
graphical interface (GUI) to guide the designer in the design step by step and, at the same 
time, let him go back and forth. In the figure, the different colours describe the degree of 
implication of the author of the thesis in the creation or modification of each assistant in the 
platform. This way, the yellow boxes correspond to the assistants developed during the 
GEMINI project by other partners but that were modified afterwards by the author of the 
thesis with the accelerations presented in this thesis. The pink boxes correspond to the 
assistants that were completely designed and developed by the author of the thesis. The blue 
boxes correspond to assistants created by other partners of the project but that include 
minimum improvements and corrections introduced by the author of the thesis for 
compatibility with the work done, mainly in the runtime system or other assistants. Finally, 
white boxes correspond to assistants that were not modified at all. 

 

Figure 3.1. Platform architecture 
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The platform is divided into three main layers. The reason for this division is to 
separate clearly the aspects that are service specific (general characteristics of the application, 
database structure, database access), those corresponding to the high-level dialogue flow of 
the application (modality and language independent), and the specific details imposed by 
each modality and language. In this way, the designer is able to create several versions of the 
same service (for different modalities and languages) in a single step at the intermediate 
level. 

In more detail, the assistants of the first layer are used to specify the overall aspects of 
the service (e.g., modalities and languages to be implemented, general default values for each 
modality, libraries, etc.); then, the database structure, not its contents, is described (classes, 
attributes, relations, etc.); and finally, the database access functions, needed for the real-time 
system, are defined (not their implementation). 

In the second layer, the general flow of the application is modelled, including all the 
actions that form it (transitions and calls between dialogues, input/output information, calls to 
subdialogues, procedures, etc.). It is important to mention that in this layer no 
modality/language specific details are defined, such as prompts/grammars, recognition errors, 
design of the Web page, etc., as all these will be defined in the next layer. To be able to be 
modality and language independent, in this layer all the input/output data provided by/to the 
user are managed as language independent concepts. 

Finally, the third layer contains the assistants that complete the general flow specifying 
for each dialogue the details that are modality and language dependent. Here, the prompts and 
grammars for each language, the appearance and contents of the Web pages, the error 
treatment for speech recognition mistakes or Internet access, the presentation of information 
on screen or using speech, etc., is defined. Furthermore, in this layer the final scripts of the 
service are generated, unifying all the information from the previous assistants. 

As we describe in the next section, all the assistants communicate between themselves 
using a common XML syntax called GDialogXML. More details of the architecture can be 
found in [D’Haro et al, 2006][Hamerich et al, 2004a][Hamerich et al, 2004b]. From sections 
3.2 to 3.5, each layer and assistant of the platform are described. To clarify the design process 
and the interaction with the assistants, we will show some steps of an example dialogue 
where a bank transfer between accounts is carried out, asking the user for the number of the 
source account, the destination account, and the amount of money to be transferred. 

3.1 GDialogXML: Internal Descriptive Language for the 
Generated Models 

In order to ease communication inside the platform, during the Gemini Project we 
participated in the development of a new object oriented abstract language based on XML 
tags named Gemini Dialogue XML or GDialogXML. The main feature of this specification is 
its flexibility, allowing the modelling of all application data, database access functions, 
definition of all variables and actions needed in each dialogue state, system prompts, 
grammars, user models, Web graphical interface, etc. Then, this information is used to carry 
out the conversion to the languages used for the final presentation of the service according to 
the modality (VoiceXML and/or xHTML). Besides, the syntax allows the addition of new 
modalities, and the update to new versions of the script languages generated by the platform 
with little effort. 

As [Schubert et al, 2005][Hamerich et al, 2003][Wang et al, 2003] describe in more 
detail, the GDialogXML syntax provides the means needed to model the following aspects: 



Chapter 3: Platform Architecture  

59 

general concepts, data modelling, and dialogue modelling in a way both dependent and 
independent of modality and language. As general concepts, we can mention variable and 
constant definition, variable assignments, file paths, arithmetic, Boolean or string operations, 
control structures for loops and jumps, variable types (lists, objects, references to objects, 
atomic data), etc. For data modelling, we can specify the classes with attributes, which can 
have simple data types such as string, integer, Boolean or complex types as embedded or 
referenced objects or lists, supporting inheritance from base classes, etc. Regarding dialogue 
modelling, all dialogue models consist of dialogue modules that call each other. 

During all the development of the GEMINI project, the author of this thesis constantly 
contributed with different proposals and minor changes to the GDialogXML syntax. To 
summarize, the main contributions were 1.) The definition of the template for creating mixed-
initiative and over-answering dialogues (see section 4.5.4, page 106). 2.) The specification of 
a procedure to unset a dialogue variable and repeating the same dialogue or call to the 
database (see section 4.6.1, page 110), which was finally implemented through the creation of 
the DoFilling tag. 3.) Finally, in the definition of an internal procedure for allowing calls to 
non-returning dialogues from inside returning dialogues. For this case, our solution was to 
use a hidden dialogue transparent to the designer, which jumps to the dialogue specified by a 
global string variable that is previously set in the returning dialogue. 

Throughout this thesis, and in order to clarify the input/output representation used in 
the assistants, we will include some fragments of the generated code in some assistants, 
giving suitable explanations of them. 

 

3.2 FrameWork Layer 

This layer has three assistants that allow the overall specification of the service, the 
description of the database structure and the database access functions. 

3.2.1 Application Description Assistant (ADA) 

Developed by other partners of the GEMINI project, in this assistant several overall 
aspects of the application, such as the number of modalities and languages, the location of 
some services such as the database access, database connection settings (total number of 
connection errors, timeouts), database path, etc., are specified; for the speech modality, the 
timeout values for some events such as no input, default confidence levels for speech 
recognition, maximum number of repetitions/errors before transferring to the operator, etc.; 
for the Web modality, possible errors (e.g., page not found, non-authorized, timeouts, etc.). 
More information regarding the error handling capabilities of the AGP can be found in 
[Wang et al, 2003]. Besides, the default overall strategy for dialogues is defined: system-
driven or mixed-initiative. 

Finally, the designer specifies the libraries, which will be used to speed up the design 
process. Several types of libraries can be selected containing the definition of: data models, 
database access functions, list of prompts and grammars for each language, and dialogues 
from the general model of the application (see Section 4.2, page 88). The platform provides 
some generic libraries, such as prompts and grammars for confirmations, generic data 
models, etc., but its main potential is the possibility of saving most of the work done in the 
platform as libraries, including complete dialogues, so that after the creation of a few 
applications, the designer will have a complete set of libraries that can be reused in future 
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applications. The platform allows the loading of libraries and provides the functionality to 
edit their code to adapt them to a new application. 

3.2.2 Data Model Assistant (DMA) 

This assistant, developed by the partners of the GEMINI project, defines the data 
structure (or data model) of the service specifying the classes, including inheritance, 
attributes and types that make up the database. It uses as input the location of libraries and 
files specified in the ADA. It is possible to define a class with attributes inherited from other 
classes. The attributes can be of several types: (a) atomic (e.g., strings, Boolean, float, 
integer, date, time, etc.), (b) full embedded objects or pointers to existing classes, or (c) lists 
of atomic attributes or complex objects.  

A graphical view of a class and its attributes can be seen in Figure 3.2 where, for the 
bank transfer example, the Transaction class has been defined, which is made up of two 
object type attributes from the class Account: the first one, DebitAccount, to specify the 
source account and the second one, CreditAccount, to specify the destination account. On the 
other hand, the class Account has several atomic type attributes (balance and account number 
in the example) and other complex ones (account holder and last transactions list). We can 
also see the code generated for the Transaction class, together with a reference to its base 
class (Transaction inherits everything from the base class), called TransactionDescription 
(number 1) and the attributes that will be inherited (number 2). In number 3, the 
DebitAccount attribute is an object reference (ObjRefr) to the class Account, and the same 
applies to the CreditAccount attribute. 

 
Figure 3.2. Graphical details of a class and its attributes, and code fragment generated for the 

Transaction class. 

Finally, one advantage of defining the data model this way is that the dialogue designer 
does not need to have the information contained in the database. This could be important if 
the real database cannot be accessed for security reasons (e.g. a bank database with 
confidential information about the clients). Besides, the designer can reuse the dialogue 
model between similar services and modify the contents of the database with no effect in the 
dialogue structure. However, regarding the acceleration strategies applied to this assistant 
(see section 4.2, page 88) both cases were considered: with or without access to the database 
content and depending on the information defined in the ADA the system changes its 
behaviour accordingly. 
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3.2.3 Data Connector Modelling Assistant (DCMA) 

This assistant allows the definition of the structure of the database access functions that 
are called from the runtime system. These functions are specified as interface definitions 
including their input and output parameters (see Figure 3.3). This allows the use of database 
functions by dialogue designers, without needing to know much about database programming 
at all. It uses the libraries specified in the ADA and the data model defined in the DMA. This 
assistant was created by the partners of the project GEMINI but improved in this thesis. 

As the runtime platform itself must be independent from backend systems and 
databases used in an application scenario, the specific implementation (in any suitable 
programming language: SQL, ORACLE, Informix, etc.) of the access functions was left to 
database or backend experts, meaning that they will provide the functionality for the database 
functions, which have been defined by the dialogue experts. As the resulting model is 
independent from any implementation detail, it is not affected by changes in the system 
backend as long as the interface remains stable. However, in order to start with new 
acceleration strategies for this assistant, it currently supports the specification of Microsoft 
Access databases, accessing to the contents of such databases and proposing automatic SQL 
queries for the specified functions (see section 4.3, page 91). 

 

  
Figure 3.3. Form used to define the prototype of a database access function 
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3.3 Retrieval Layer 

In this layer, the service flow is defined at a high level, i.e., in a language and modality 
independent way, so all it is done using concepts. The first assistant allows the definition of 
the states and transitions of the dialogue flow, together with the slots to be requested to the 
user at each state. The next assistant allows the specification of all the actions to be done at 
each state (e.g. actions to retrieve/show information to the user, to query the DB), as well as 
actions that control the transitions between states, conditional actions or looping procedures, 
etc. 

3.3.1 State Flow Modelling Assistant (SFMA) 

This assistant is very important because it drastically accelerates the design process, 
especially in the next assistant. As input, it uses the general strategy for the service, the data 
model, and the database access functions.  

In this assistant, the designer has to specify the states that make up the dialogue flow 
(i.e. only the flow structure is defined, not the conditions that determine the transitions 
between states, internal actions, nor other more detailed aspects because these are defined in 
the next assistant in a rule-based manner). In addition, the designer specifies the data (slots) 
that have to be filled by the user in each state and the transitions between the current state and 
the following one(s). Besides, it is possible to specify which slots are optional (for over-
answering) and which ones can be asked for by using mixed-initiative. 

 
Figure 3.4. GDialogXML code generated by the SFMA. 



Chapter 3: Platform Architecture  

63 

Figure 3.4 shows the code generated by the SFMA for the example dialogue; it includes 
information regarding the slots (field xInputFieldVars), dialogue transitions (field xCalls), 
and generic information of the application, such as the name of the initial dialogue 
(WelcomeDialog). The figure also shows the definition of the state where the bank transfer 
data are collected (TransactionDialog). In this example, only the account names 
(DebitAccountIdentifier and CreditAccountIdentifier) in that state have been selected, and the 
collection of the amount to be transferred has been left for the next state, called 
GetTransactionAmount. Besides, both slots are collected using mixed-initiative (the tag 
‘‘xIsMixedInititative’’ is set to true). 

 

3.3.2 Retrieval Modelling Assistant (RMA) 

Designed and developed completely by the author of the thesis, this assistant is the 
most complex and versatile module in the entire platform, and the one with the highest 
number of accelerations. Given the large amount of actions that can be carried out in each 
state, a large programming effort was necessary here, looking for its automation and 
flexibility. Starting with the main window, it allows several editing and visualization 
capabilities such as a tree-structured flow diagram where each leaf and branch represents the 
states and transitions defined in the previous assistant. A colour-coding convention shows 
whether a dialogue has been edited or not, the dialogue type, etc. In addition, it is possible to 
access information regarding actions and variables already defined for each leaf (dialogue) in 
the flow. All the automatically generated dialogues, libraries, and database access functions 
already defined can also be used and edited. Other available capabilities are the 
creation/deletion of dialogues, variables and constants, and the visualization of information 
from previous assistants, the creation of if-then-else structures, selection structures (switch-
case), loops inside the dialogue (for, while), assignments between simple and complex 
(objects) variables, and an assistant for mathematical operations and another one for strings. 

The platform provides four basic dialogues types that cover the usual possibilities in 
programming: based on a loop, based on a sequence of actions (or sub-dialogues), a switch 
construct based on information input by the user (i.e. menu-based dialogue), or a switch 
construct based on the value of a variable. Besides, empty dialogues, with no action inside, 
can be created (used to specify the call to a dialogue that will be defined completely 
afterwards) so that a top-down design of dialogues can be made; in this case, the dialogue 
type is selected whenever the designer tries to edit the empty dialogue. Another possibility is 
dialogue cloning, useful when the dialogue to be defined is very similar to an existing one. 

The tool also provides the possibility of manually creating dialogues to obtain 
information from the user (called DGet), and dialogues to provide information to the user 
(called DSay). 

Figure 3.5 shows the output generated by this assistant. The first section shows the 
global variables of the application, which store the slots defined for the application that may 
need to be accessed in all dialogues (for over-answering, as we will see in Section 4.5.4). The 
actions executed in the two dialogues that form the bank transfer (included in the xReaction 
tag) are also shown: SFM_TransactionDialog (number 1) and SFM_GetTransactionAmount 
(number 4). In the first one, there is a call to a sub-dialogue (marked as number 2) that fills in 
the source and destination accounts data using mixed-initiative; then, there is a call (marked 
as number 3) to the second dialogue. In the second dialogue there is a call to a sub-dialogue 
that collects the amount to be transferred (number 5), a call to the database access function 
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(number 6), using as input parameters the three items already collected, which returns a 
Boolean variable called TransactionPerformed, and a call to the next two dialogues specified 
in the SFMA (numbers 7 and 8). 

 

 
Figure 3.5. Code generated by the RMA for the bank transfer example. 

 

3.4 Dialogues Layer 

In this layer, the dialogue is completed with all modality and language dependent 
aspects. It has four main assistants that are dedicated to the following tasks: 

• To define the user levels and their settings (UMA, see Section 3.4.1),  

• To complete the modality dependent aspects of dialogue design (MERA-Speech, 
see Section 3.4.2), 

• To complete the language dependent aspects and the input and output concepts 
for each modality (MEA, see Section 3.4.3) and finally, 
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• To unify all the information and generate the execution scripts according to the 
modality (see Section 3.4.5). 

Finally, section 3.4.6 briefly outlines some additional assistants incorporated to the 
platform for specific tasks related, mainly, with the speech modality. 

 

3.4.1 User Modelling Assistant (UMA) 

This assistant, created by the partners of the GEMINI project, allows the specification 
of different user levels and settings for each dialogue in the application in order to provide a 
more personalized attention to the final user. It uses as input the default confidence and error 
values defined in the ADA, and all DGet dialogues defined in the RMA. 

To start with, all the values are specified first for the defined user levels, but later they 
can be customized for each specific dialogue state, so that all settings can be user-level 
dependent and dialogue state dependent. This way, the designer may impose, for example, a 
stricter confirmation for some critical data such as the amount in a banking transaction. 

The designer can specify different settings as the possibility of barge-in for a particular 
user level, the maximum number of retries if there is an error (considering several error 
types), the maximum timeouts for several events, etc. Besides, the confidence levels that 
should be used in recognition for each user level are specified as they determine the 
confirmation type that should be used (see Section 4.6.2, page 113): no confirmation 
(confidence between the specified value and 1.0), implicit (confidence between the specified 
value and the value for ‘no confirmation’), explicit (between the specified value and the value 
for ‘implicit’) and repeat (between 0 and the value for ‘explicit’). 

The decision as to the current user level is made by a runtime component that is called 
after each interaction in the script generated by the platform and that sets the common 
internal variable that is used in the final script. This way, the platform is independent of the 
user modelling technology that is used. 

 

3.4.2 Modality Extension Retrieval Assistant for Speech (MERA-
Speech) 

This assistant adds special subdialogues that complement the dialogues already defined 
for the application in the RMA. This way, the designer can include complex dialogues to deal 
with modality specific problems. This assistant was completely created and developed by the 
author of the thesis during the GEMINI project, and it is the second assistant with the higher 
number of accelerations in the platform. 

In this thesis, the research has been focused on providing semiautomatic solutions for 
two basic problems that are specific to the speech modality: the presentation of object lists in 
several steps (applied to DSay dialogues concerning a list) and confirmation handling, i.e. 
how to handle recognition errors in dialogues that obtain information from the user (applied 
to DGet dialogues). The input is the database model specified in the DMA and the dialogues 
defined in the RMA (especially those marked as DGet and DSay for lists). The details 
concerning the accelerations for this assistant are outlined in section 4.6.  
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3.4.3 Modality and Language Extension Assistant (MEA) 

Developed by the partners of the GEMINI project, in this assistant the language 
dependent aspects of an application (input and output prompts/concepts) are specified for 
each modality. For the speech modality, the extensions consist of links to grammar and 
prompt concepts, while for the Web modality the extensions consist of links to input and 
output concepts. In both cases, the extensions are language independent. In addition, 
language dependent information, specifically wording for both speech prompts and Web 
output concepts, is also set here. All this information is saved in different files for each 
language and modality, whose content and organization is explained at the end of this section. 
As input, it uses all dialogues defined in the RMA and MERA-Speech, together with the 
specification of the user levels from the UMA. The assistant detects the input/output 
dialogues (DGets and DSays) defined in previous assistants and asks the designer to define 
prompts and recognition grammars for them. In addition, the assistant lets the designer define 
the help prompts for high-level dialogues that are not classified as input/output. 

For the speech modality, several prompts for each input dialogue have to be defined: 
the default one, for the different user levels and for all possible recognition errors. In all 
dialogues, the input/output parameters and the global variables can be used as part of the 
prompt. To speed up the process of typing all these prompts, the assistant offers two 
possibilities: reuse prompts already available for the current application or reuse prompts 
generated in previous applications and saved as libraries. Prompts are set using three 
alternatives: text-to-speech (TTS) prompts, pre-recorded audio files, or generated by a 
Natural Language Generation (NLG) module in the runtime system. 

In case of TTS prompts, the SSML 46 markup language can be optionally used. The tags 
considered for the runtime system were as follows: 

1. ‘‘emphasis’’ (to emphasize specific fragments), with the following values for the 
‘‘level’’ attribute: ‘‘strong’’, ‘‘moderate’’, ‘‘none’’, and ‘‘reduced’’, 

2. ‘‘break’’ (a break of a specific duration in ms), with the ‘‘time’’ attribute, 

3. ‘‘prosody’’, with ‘‘pitch’’, ‘‘rate’’ and ‘‘volume’’ attributes. To specify them, in the 
platform we have used a relative value as a positive or negative percentage, e.g., 
‘‘+10%’’. 

Once the prompts for the main language have been specified, the designer has to 
specify them for the additional languages. This process is accelerated by using the main 
language prompt as a template to edit the string parts of a prompt (see section 4.7.1.1, page 
116). These prompts can be specified either at once for one language and for all dialogues, or 
for each dialogue for all additional languages. Figure 3.6 shows an example of the creation of 
a TTS prompt for the dialogue DGet_ConfirmTransaction and for the default user (number 
1). The assistant allows the designer to select the arguments of the dialogue to be inserted 
into the prompt (number 2), as well as to use SSML tags (number 3). The final prompt is 
displayed to the designer in 4. It is also possible to include a link to an audio file in order to 
allow hybrid prompts (number 5). Besides, the assistant allows the designer to use audio 
prompts instead TTS (number 6) or to use a natural language generator module called during 
the real time system (number 7). 

                                                 

 
46 http://www.w3.org/TR/speech-synthesis/  

http://www.w3.org/TR/speech-synthesis/�


Chapter 3: Platform Architecture  

67 

 
Figure 3.6. Example of the definition of a TTS prompt using SSML tags. 

 

For the Web modality, the procedure is somewhat different because of different 
concepts for user interaction. On the one hand, each output concept corresponds to some 
xHTML markup code, optionally parameterized. On the other hand, each input concept 
corresponds to a Web form control like a text input field, a text area, a select or a choice box, 
etc. In addition, a set of attributes can be defined for each component: text elements for a 
label, a hint, an alert, or an error message can be set and the rendering behaviour of the 
control can also be defined. 

As output, the assistant generates four different files for each modality. The first file 
contains information regarding every dialogue in the application and references to the 
input/output concepts used in each one. Figure 3.7 shows the code for this file for the speech 
modality and for the dialogue that collects the amount to be transferred in the bank example. 
The figure highlights the use of the tag Realisation because it tells the linker that this code is 
an extension of a dialogue already defined in the RMA. Besides, the tag xPresentation holds 
the information related to the system prompt concepts (marked as number 1); the tag xFilling 
gives the information related to the behaviour of the recognizer, i.e., the prompts used to 
inform the user of an unrecognized utterance (number 3) and no input detected (number 4), 
together with the grammar to be used in the recognition (number 2). 

As mentioned previously, multilinguality is achieved using concepts, so all definitions 
here for prompts and grammars refer to concepts (PC suffix for prompts and GC for 
grammars). These references are solved in auxiliary files that are described below. Finally, 
we should mention that for the Web modality the same tags are used (xFilling and 
xPresentation) but, instead of prompts and grammars, input (using the tag InputControlCall) 
and output (tag OutputControlCall) concept references are used.  
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Figure 3.7. GDialogXML code generated by the MEA for the speech modality. 

 

The second file, for the speech modality case, is called ‘grammar concept file’, and it 
contains the association between ‘grammar concept’ (GC) and the filename of the 
grammar(s) that will be used in the real-time system, so it is language independent. As we 
have different grammars for each language, to achieve multilinguality the grammars in all 
languages have the same name but are in separate directories; the directory name is the 
language code, so the real-time application just concatenates the language code with the 
filename to retrieve the correct grammar. The assistant allows the specification of different 
grammar formats such as JSFG, SRGS and grXML. Besides, during this step, a different 
grammar for the speech recognizer can be also specified. In this way, the assistant allows the 
specification of stochastic grammars (i.e. n-gram based language models) that can be used by 
the ASR, and the specification of rule-based grammars for the Natural Language 
Understanding module (NLU). The main motivation behind this behaviour was that at present 
stochastic grammars are not fully supported in JSGF or SRGS grammars. For that reason, our 
NLU and ASR runtime modules were properly configured to accept both source of 
information. 

The third file is the ‘prompt concept file’ and it contains, for each input/output 
dialogue, the association between ‘prompt concept’ (PC) and the name of the text concept or 
the audio file that has to be used for it (not the prompts for each language). The fourth file, 
called ‘text concept file’, holds the actual prompts (the real texts in SSML format as we 
mentioned above) that correspond to the text concepts defined in the ‘prompt concept file’. 
Therefore, this file is language dependent and it is repeated for every language and, again, it 
is saved with the same name in separate directories. This separation might seem complicated, 
but it is the only way to ensure multilinguality and the flexibility to handle audio files, 
prompts, etc., in the same application. 

For the Web modality, similar files are generated, but now, instead of the ‘grammar 
concept file’ and ‘prompt concept file’, the files are called ‘input concept file’ and ‘output 
concept file’, again language independent, which describe the appearance of each input or 
output item (radio button, submit button, secret text, labels, combo boxes, lists, etc.). They 
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also include a reference to the text concepts that they use, which are also specified in a ‘text 
concept file’ just like the speech modality. 

3.4.4 Dialogue Model Linker (DML) 

This module was developed by the partners of the GEMINI project and it is the 
responsible of generating one file for each selected modality where all the information from 
previous assistants is automatically linked together: dialogues, actions, input/output concepts, 
prompts and grammars, etc. 

The final dialogue model is a combination of the files produced by the RMA, the 
MERA-Speech and the MEA. All these models are linked together by filling different 
sections of GDialogXML dialogue units; see [Hamerich et al, 2003] for further information. 

3.4.5 Script Generators 

In this section, the modules that convert the dialogues coded in GDialogXML syntax 
into the execution scripts needed for each modality (VoiceXML and xHTML) are described. 
These modules were developed by the partners of the GEMINI project, but some 
modifications were introduced by the author of the thesis in the VoiceXML generator in order 
to adapt it to the runtime system described in section 3.5.3. To carry out the process, they 
solve the problems and limitations of each standard and manage those issues regarding the 
handling of multilinguality, database access, the preparation of prompts or Web text, and the 
handling of concepts in the language-independent specification of the dialogue.  

One important issue is how the system handles in real-time a prompt that includes 
information returned by a database query. To solve this, the script generators include one 
global variable that codes the language of the service with an identifier in ISO639-1 format 
(language code) followed by an identifier ISO3166 (country code). This variable is set by the 
language identification module at the beginning of the session and it is always passed as an 
argument to all database access functions specified in the DCMA, where it is concatenated 
with the field name that is going to be retrieved. Obviously, the database (there is a single 
database for all languages) should contain the same information for each language used in the 
service using fields with the same base name but different codes as suffix, e.g., 
info_text_en_UK for the field with the information in English, info_text_es_ES with the 
information in Spanish, etc. Once the query is made, the right variables are filled in and the 
information is provided to the user in the correct language. 

3.4.5.1 VoiceXML generator and connection with the runtime platform  
Using the file created by the linker (DML) in the previous step for the speech modality, 

this module generates a file in VoiceXML format for each language used in the service. 

The script generator for VoiceXML has to overcome the limitations imposed by this 
language in its version 2.0. The main limitation is probably that VoiceXML does not allow 
returning calls (subroutines), which are needed to solve the problem of presenting lists of 
objects (see Section 4.6.1, page 110), as ordinary statements (returning calls are only allowed 
at certain positions). Therefore, all complex statements and value expressions have to be 
“flattened” into simpler operations and into calls to intermediate dialogues that allow jumps 
to other states in the dialogue flow. 
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Besides, VoiceXML does not allow input fields to be global variables; however, we 
used global variables for over-answering so that they can be filled in previous states and do 
not lose their contents when jumping to other states. Therefore, a synchronizing strategy had 
to be implemented to map global variables to local input fields and vice versa. To handle 
over-answering it is also necessary that, if a slot is optional or it is already filled, the 
recognition process may be omitted. In VoiceXML all the slots in a form must be filled, so 
we introduced additional intermediate variables and conditional blocks to find out whether 
the slots associated to over-answering are filled or not. Another issue is how to clear the 
contents of a slot in a form and jump back to previous dialogues or states, which is another 
behaviour needed for list handling, as the VoiceXML manager would automatically repeat 
the filling process for that slot and that is not the desired behaviour. To solve this, the 
VoiceXML generator creates intermediate variables so that, when the slot has been cleared 
intentionally, the filling process is not repeated. 

When compared to other programming languages, VoiceXML lacks common 
constructs for program logic, like loops (e.g. while and for). In general, the proposed solution 
is to use an ECMA script, but this is useless when operations across fields or dialogues are 
needed. In our case, we implemented a complex structure of blocks and calls that provides 
these functionalities although it make difficult to debug the final script. 

GDialogXML supports the idea of connecting services during runtime, e.g., services 
providing access to databases, services generating prompts on the fly, and so on. The 
VoiceXML generator implements these calls as HTTP requests via a CGI script. This CGI 
script works as a data bridge and contacts the actual services. It is needed because it has to 
produce VoiceXML code, since this is the only way to integrate dynamic data (result values) 
into the dialogue flow. By using the bridge, the services are freed from the burden of 
producing VoiceXML themselves. Although this solution works fine when transmitting data 
to a database (i.e. updates procedures), several problems arise when the results from the 
database have to be returned into the dialogue flow; besides, the script could be insufficient in 
some applications, delaying and making difficult the design. In our case, we solved this 
problem providing a general-purpose built-in script that dynamically generates the 
VoiceXML code by using assignments of string constants to variables. 

In order to generate prompts on the fly, the platform uses language-dependent JSGF 
grammars, in which the correspondence between prompt and concept is specified, and the 
recognizer would return in real-time the concept specified in the grammar instead of the 
prompt. To increase performance, the VoiceXML generator uses a reference resolution 
strategy for result values of the runtime services. This means that if the result of a service 
request is a reference to a complex data object (e.g., a person), only the reference (consisting 
of the identifying attributes) is transmitted. At the time when details of the object are needed, 
the complete data structure of attribute values is transmitted. This is particularly important, 
when the result of a service request is a large list of references to complex data objects, which 
happens a lot when navigating through large information databases. 

Another issue we found was that in order to simplify the reuse of the same VoiceXML 
script for different languages (localisation), it would be useful to establish the external 
representation of prompts by introducing prompt concepts that, in the real time system, can 
be translated according to a global variable and looking up into the language dependent 
prompt files. In the current platform, we create a different file for each language. On the other 
hand, in VoiceXML there is no specification regarding how to identify the different active 
recognizers. This could be interesting to accelerate the service, since several different 
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recognizers can operate in parallel (i.e. one for continuous speech, other for isolated speech, 
etc.). In the current platform, we solved this problem using the <property> tag. 

Finally, the VoiceXML generator automatically creates global variables in the final 
script, where the dynamic runtime values returned by the corresponding modules, are kept to 
handle several aspects of the runtime system: the user level, the speaker identifier, the 
confidence value from the last recognition, the current language, etc. The user level variable, 
for example, is needed for switching prompts depending on the user level, which is set by 
calling the User-Level-Detector runtime service. 

In [Hamerich et al, 2003] and [Cordoba et al, 2004b] other limitations of VoiceXML 
are described, together with some recommendations to improve the standard. It is important 
to mention that they were submitted to the W3C for their consideration in future releases of 
VoiceXML standard. 

3.4.5.2 Web script generator 
Using the file created by the linker (DML) in the previous step for the Web modality, 

this module generates a file in xHTML format for each language used in the service.  

Unlike the voice modality, for Web the distinction between the flow control, the data 
and the presentation (e.g., buttons, images, frames) is not too clear. Nowadays, there are 
many integrated development environments for the presentation part (Web editors), whereas 
for the control and data access they have to be specified using script languages (e.g., perl, 
php, python) or usual programming languages (e.g., Java, .Net). In other cases, the overall 
flow control is supported by frameworks (Jakarta Struts...), but in general there is no 
widespread language, so the task of integrating all of them is difficult. Therefore, the 
objective of this assistant is not to compete with widespread Web editors but to provide a 
complementary support to try to facilitate the separation between the modelling of the flow 
control, the data and the presentation. To this end, the assistant automatically transforms the 
GDialogXML models related to input and output concepts into xHTML files with embedded 
xForms elements. This way, the generated files can be used as templates for Web designers 
who can add additional design elements (xHTML tags, images, styles, etc.), while the 
dialogue flow is preserved separately. A runtime interpreter for GDialogXML may execute 
the dialogue model ‘‘as is’’ in the Web server environment to control the dialogue flow and 
take care of the database transactions.  

Thanks to this separation, the final script is platform independent and easily adaptable 
to multiple display devices (browsers, PDA, public terminals, etc.). Although there are some 
limitations with xForms as not all browsers support them, the use of plug-ins or rendering 
programs in the server provides that support. Besides, the use of xHTML tags could favour 
the integration of the two modalities, in a future development, so that they can work at the 
same time using the standard X + V. 

Although this module is an important part of the design platform, because it provides 
one of the modality capabilities, in this thesis it will not be described in detail since the author 
did not contribute to this module. 

3.4.6 Auxiliary Assistants 

In addition to the assistants described above, there are some other assistants that 
complement the platform and for the voice modality. All these assistants were developed by 
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the partners of the GEMINI project but some accelerations and minor modifications were 
introduced by the author of the thesis. 

3.4.6.1 Vocabulary builder 
The first one is the vocabulary builder (VB) which prepares the vocabularies that will 

be used by the recognizer. Thus, this component gets input from the language model 
resources and produces the lexicon. The lexicon contains the phonetic transcription of each 
word and in most cases the phonetic alternatives. There are equivalent dictionaries for each of 
the different languages allowed in the platform. 

3.4.6.2 Language modelling toolkit 
A second assistant is the Language Modelling Toolkit (LMT) that allows the designer 

to specify the grammar files that will be used in the runtime system to assign a meaning 
representation from the different user answers to the system questions. The assistant allows 
the creation and edition of grammars in JSGF format both for recognition and for prompt 
generation using the Natural Language Generation (NLG) module. More details can be found 
in section 4.7.1.2 and in [Georgila et al, 2004]. 

3.4.6.3 Diagen 
The third assistant is called Diagen. The assistant allows the manual creation and fine 

tuning edition of the different GDialogXML models and libraries generated by the assistants 
of the AGP. Originally created during the development of the GEMINI project, it was later 
extended and improved by [Hamerich, 2008] to allow the creation of new speech dialogues, 
and to adapt it to new user environments and updates of the GDialogXML specification. In 
addition, the author of this thesis also contributed to the development and extension of this 
assistant in order to allow the creation and edition of some of the models generated by the 
platform. In detail, the assistant was extended thanks to the possibility of creating models for 
the DMA, DCMA, SFMA, and MERA-Speech assistants, as well as some minor changes to 
the process of generating models for the RMA assistant.  

Several accelerations were included in this assistant in order to simplify model edition 
or to allow the creation of models from scratch. The main acceleration is the possibility of 
creating any section of the GDialogXML specification with minimum effort. Instead of 
typing all the tags nodes and children, the assistant uses a set of pop-up windows that are 
sequentially displayed according to the information that the designer needs to specify. 

Figure 3.8 shows an example of the process for creating, from scratch, a dialogue for 
the retrieval model assistant. According to this figure, in (number 1) the designer specifies 
that the new dialogue will require the definition of at least one global variable and dialogue. 
After accepting, a new pop-up window is displayed (number 2) allowing the designer to 
specify the information for the global variable to add. In order to add new variables, the 
designer only needs to check the corresponding checkbox (i.e. Enter another variable) and a 
similar pop-up window will be displayed after accepting the current one. The next step 
(number 3) is the definition of the dialogue state. In this case, the designer first defines some 
attributes of the new dialogue such as name, returning flag (i.e. a Boolean property that 
indicate if after a transition to another dialogue state the system will require to 
unconditionally return to the calling dialogue), etc. Besides, the new pop-up window allows 
the specification of different properties for a dialogue such as variables, calls, help messages, 
reactions, etc. In this case, the designer checks two elements to be defined.  
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Figure 3.8. Process for creating a dialogue in GDialogXML using the Diagen assistant  

 

In the example, the designer selects the specification of the help concept, defined using 
the pop-up window marked as number 4, and the reaction procedure, marked with number 5. 
A brief glance of number 5 gives a glimpse of the complexity of the actions that it is possible 
to define using this pop-up window. For instance, it is possible to define conditional actions, 
loops, calls to other dialogues, variable assignments by reference or value, repetitive 
processes, etc. After clicking on any of the buttons of this pop-up window, the system 
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automatically pastes the text of a default template that the designer carefully needs to 
complete. 

Considering that this is the only acceleration provided by the platform at this very critic 
point of the design, most negative commentaries during the objective evaluation were 
focused on this step, together with the total time required to complete the dialogue. Finally, 
after accepting, the system returns to the main window of the assistant (number 6). In this 
case, the GDialogXML code generated from all the information collected and defined using 
the previous windows is pasted into the workspace. 

Although the main purpose of this assistant is to allow the fine-tuning of the models 
generated with the AGP and its assistants, it was used during the objective evaluation of the 
platform. The main reason was that this assistant includes some auto-complete templates and 
advanced editing functionalities that were adequate to provide comparison results between 
using this assistant or the accelerated assistants included in the platform when creating the 
dialogue service. For more details regarding the evaluation, please refer to section 5.2. 

 

3.5 Runtime System 
Although all the voice scripts generated by the AGP can be executed and tested using 

any VoiceXML interpreter that includes a basic speech recognizer or synthesizer, in our case, 
with the objective of having more control over the final system, we decided to implement the 
runtime system using proprietary modules and open source code. In this section, we will 
describe in detail the main components of the runtime platform. 

3.5.1 Speech Recognizer and Synthesizer 

Regarding the speech recognition system, our group has developed a recognizer based 
on continuous HMM with multiple Gaussians per state [Cordoba et al, 2001] trained using 
the SpeechDat database in Spanish with more than 4000 speakers. Moreover, it is possible to 
adapt the acoustic models using MLLR (Maximum Likelihood Linear Regression) or MAP 
(Maximum A- Posteriori) techniques through the functionalities provided by Hidden Markov 
Model Toolkit (HTK) 47. In this way, it is possible to use new records to improve the models 
or to adjust them to a particular speaker or the acoustic environment of the final service 
[Cordoba et al, 2006a]. 

Boris is the Text-To-Speech synthesizer developed in our group [Pardo et al, 1995]. It 
is a concatenative diphone synthesizer where the fundamental frequency and duration of the 
units are calculated automatically using several features from the input text and an Artificial 
Neural Network [Cordoba et al, 2002][Montero et al, 2003]. In addition, the synthesizer is 
able to process a subset [Cordoba et al, 2004b] of the SSML standard that allows the designer 
to modify some characteristics of the voice. 

                                                 

 
47 http://htk.eng.cam.ac.uk/   
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3.5.2 Animated Agent Used by the Sign Language Translation System 

As it was mentioned in chapter 1, one of the main goals of the platform presented in 
this thesis is to provide the final service in multiple modalities and for different types of final 
users with a minimum effort for the designer. For that reason, we worked in the creation of an 
automatic procedure for helping designers to quickly translate the prompts of the spoken 
dialogue system into a representation in the sign language that it is played afterwards by a 3D 
avatar in order to let deaf people use the service.  

The process of converting the speech or textual representation into the final visual 
representation can be divided into two parts as presented in Figure 3.9. The first part is the 
automatic translation of the prompts into the corresponding visual messages in the sign 
language. The second part is the process of creating and storing the signs using the 
appropriate format required by the avatar that plays the signs. In this section, we will focus on 
the second part, leaving the first part, i.e. the full description of the machine translation 
system and the work done to improve the translations, for sections 2.4 and 6.2. 

According to [Timmermans, 2005], nowadays there are an estimated of one million 
deaf people just in the 26 European states. For many of them, sign languages are their first 
language for communication. In spite of what many people thinks, currently there is no a 
single or universal sign language. All of them differ from each other in a similar way as 
spoken languages, having its own grammar, syntax, lexicon, rules, etc. 

 

 
Figure 3.9. Offline and Online process for creating and using sign language prompts 

 

At the very beginning of this project, we thought that a simple interface displaying the 
text of the prompt or the recognized sentence by the ASR was enough to allow deaf people to 
use the service. However, as we were going further we realized that most deaf people have a 
low ability to understand written text because they are used to communicate using the sign 
language grammar that, as stated above, is different from the grammar used by hearing 
people, or because many of them did not have access to academic studies. For these reasons, 
it is very important for them to have access to information in their mother language. In order 
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to provide this kind of visual information, we integrated, in the runtime system, a 3D avatar 
called VGuido 48. This avatar was the result of the European project eSIGN (Essential Sign 
Language Information on Government Networks). It constitutes one of the most important 
efforts in developing tools for the automatic generation of Sign Language contents. Although 
the tools developed in eSIGN were oriented to translate Web content into Sign Language, and 
as a result it is being used right now on local Government websites in Germany, the 
Netherlands and United Kingdom, the 3D avatar allows a quick generation and playing of 
any content in the corresponding Sign Language. 

 

 
Figure 3.10. Example of process to design and play a sign with VGuido. 

 

For the design stage, the toolkit has a graphical editor that allows the creation of any 
kind of sign through dynamic configurations of different elements of the avatar body (i.e. 
head, left and right hands, eyes, trunk, etc.). The process is depicted in Figure 3.10. The first 
step is to define the gloss (i.e. the written word representing semantic information of the 
sign), in the example it is the capital word: LAWYER. The second step is to define the gloss 
using the HamNoSys glyphs representation. HamNoSys glyphs describe the hand-shape, 
hand configuration, location, and movement that the avatar has to play. The editor allows the 
creation of all the possible symbols covered by the HamNoSys standard using the pop-up 
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window in step 3. Although not covered by HamNoSys notation, other information such 
mouth, eyes, shoulders, speed, size of the movement, etc. can also be included to define the 
gloss through other pop-up windows. In the figure, we have included the J01, HL, RL and 
WR symbols (step 1) to represent a specific movement of lips, face and head for instance. 
The next step, number 4, is to create a XML representation of the avatar movements for the 
corresponding gloss. The XML is written using a proprietary language called SiGML 
(Signing Gesture Markup Language) that are used later by the runtime system to concatenate 
the sentence to play to the user (i.e. the signing system constructs human-like motion from 
these scripted descriptions of signing motions). These signing motions belong to “Gestural-
SiGML”, a subset of the full SiGML notation, which is based on the HamNoSys notation for 
Sign Language transcription [Prillwitz et al, 1989]. Finally, in step 5, the designer can play 
the sign with the avatar to verify the motion of the sign.  

At runtime, the system uses the translated sentence, consisting of a sequence of glosses, 
and picks up the corresponding predefined file for each gloss containing the sequence (script) 
of the animation coded written in SiGML. Then, using the script, the avatar builds and plays 
a human-like movement that represents the sign. The animation consists of a sequence of 
temporal frames that define a static position for the avatar at each moment. 

An important advantage of this agent is that it is possible to store these scripts files (one 
for every gloss in the vocabulary) in order to sequentially concatenate them to form a 
sentence. In this way, in order to play a Sign Language sequence from a defined prompt in 
the system two conditions have to be fulfilled: a) the script for the sign must exist; b) the 
prompt has to be translated from its written representation into a sequence of signs following 
the grammar structure of the Sign Language.  

The first condition cannot be easily made automatic since signs change from country to 
country (even from city to city in the same country) and because the creation of every sign is 
a time consuming task. However, after some time, it is possible to have a big number of signs 
stored that simplify future developments.  

Regarding the second condition, since, in general, dialogue designers do not necessarily 
know Sign Language, it is hard for them to translate a defined prompt into a sign sequence, or 
it could be too expensive to hire an expert to do this work. Then, an automatic solution can be 
proposed. In this thesis, we propose an automatic solution based on machine translation 
techniques (see section 2.4, page 41). In our platform, we have used free available software 
for training the translation models and for translating sentences between both languages. In 
our case, we used Giza++ [Och and Ney, 2003] and Pharaoh [Koehn, 2004] toolkits. These 
open source programs provide all the required tools to train and run a phrase-based 
translation system [Koehn et al, 2003]. A full description of the developed system in our 
group can be found in [San-Segundo et al, 2006] and [San-Segundo et al, 2008]. In section 
6.2, we will show how the quality of the translations can be improved using an adapted 
language model with online counts. 

3.5.3 Distributed Platform and VoiceXML Interpreter (OpenVXI) 

Finally, another important component in order to run the VoiceXML script generated 
by the AGP is the interpreter or browser that executes the script and performs the connections 
with the other modules (recognizer, synthesizer, database access, telephonic interface, etc.). 
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Currently, several commercial and free applications can be downloaded from internet and 
used as VoiceXML browser. For instance, we can mention VXI VoiceXML browser 49 for 
Asterisk PBX, VoiceXML Gateway Software 50, Hewlett-Packard OpenCall Media 
platform 51, JVoiceXML 52, PublicVoiceXML 53, among others. The selected interpreter for 
this thesis was the open source library OpenVXI 54 [Eberman et al, 2002] supported by 
Vocalocity Inc. It consists of a collection of configurable components that the developers can 
use, modify,  or completely substitute with their own code where appropriate, supporting 
also proprietary grammar formats, URI types, and VoiceXML objects. The platform includes 
basic telephony functionalities, an XML parser to process VoiceXML and JavaScript files, 
processing of user input, a complete implementation of the Form Interpretation Algorithm 
(FIA) following the specification 2.0, basic debugging functionalities, simulated speech 
recognition, and generation of prompts and text-to-speech. Since the source files are 
available, there were not restrictions to adapt, mainly, the TTS and ASR interfaces to our 
proprietary modules and platform. In [Cordoba et al, 2004a], [Cordoba et al, 2004b] and 
[Hamerich et al, 2003], the process to adapt the browser to the characteristics of our runtime 
platform are described in detail. 

Another task that was undertook during the realisation of this thesis was the integration 
of the runtime system into the distributed platform presented in Figure 3.11. This platform 
was the result of the DIHANA project 55 [Hurtado et al, 2005]. The platform is made up of 
seven modules that execute the different processes in a dialogue system. The architecture also 
defines the different messages the modules can use to share information among them. 

Each module, when initialized, opens a specific port that allows the communication of 
that module with the Hub and, in through it, with the other modules. The architecture allows 
the communication between each module with all the others using sockets through the Hub 
(represented by solid arrows in Figure 3.11). However, the common communication flow is 
represented by dashed arrows. 

The first module in the platform is the Dialogue Manager (DM). It is the most 
important component in the dialogue system. It controls the dialogue flow according to the 
answers and messages to be retrieved/presented from/to the final user, and with the 
interaction with external knowledge sources (i.e. database, language identification module, 
user models, etc.). Another important task performed by the DM is to provide solutions for 
miscommunications during the dialogue, such as inaccurate meaning representation of the 
user’s input and the output of the language-understanding component, or discrepancies 
between the information the final user wants and the available in the database. In this case, 
the DM has to manage different clarification and verification strategies according to the 
problem. In the current runtime system, the DM corresponds to the OpenVXI interpreter. Its 
function is to load the dialogue flow as a scripted sequence of states, with its transitions and 
procedures, coded in VoiceXML.  
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51 http://www.hp.com/  
52 http://jvoicexml.sourceforge.net/  
53 http://publicvoicexml.sourceforge.net/  
54 http://sourceforge.net/projects/openvxi/  
55 http://www.dihana.upv.es  
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Figure 3.11. Distributed architecture for the runtime system 

 

The interpreter also provides methods for remote access to the service database using a 
HTTP request to a Web and servlet servers (Apache and Tomcat server respectively in the 
current implementation). The procedure is exemplified in Figure 3.12. When the DM finds a 
subdialog tag with a url address in the VoiceXML file (number 1), it calls the Apache server 
converting the parameters in the namelist attribute into a http request (number 2) to the CGI 
script file, i.e. dc_script.cgi in the example, which in turn prepares the call (number 3) to a 
Java servlet executed by the Tomcat server. The servlet performs the database access using 
the corresponding SQL instruction (number 4) and retrieves the information back to the 
Apache server (number 5). Finally, the cgi file in the Apache server transforms the 
information (number 6) into a dynamic VoiceXML file (number 7) that the DM uses to get 
the DB results and to present them to the final user. 

The next component in the distributed architecture is the Natural Language Generator 
(NLG). This module is responsible of generating a natural language message that conveys the 
information retrieved from the database or the different messages when the system needs to 
provide a confirmation or clarification message to the user. [McTear, 2004] describes three 
main approaches for language generation: canned text, template filling and planning. 
VoiceXML supports the first two. In the current platform, the canned text can be supported 
when a database field contains the textual description of the information to be provided to the 
user. For the second approach, the VoiceXML file has to specify different prompts, with 
slightly variations, according to different situations, e.g. when the system cannot recognize a 
spoken utterance the first, second or third time, or it can specify different message according 
to the user level or number of retrieved items (see section 3.4.2 and 3.4.3, page 65), etc. Since 
the language generation is ‘embedded’ into the VoiceXML file, this module does not need to 
be present in the real-time system. 
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Figure 3.12. Procedure to retrieve information from the database using the runtime system 

After the natural language generator module constructs the message to be presented to 
the user, the TTS module converts it into a spoken form. The simplest case is to play a 
previously recorded message, with the possibility of filling slots with the information 
retrieved from the database. However, in most cases the TTS plays the message provided by 
the language generator. The process involves analyzing the text message to convert it into a 
linguistic representation (i.e. phonemes) that can be used by the speech generator to produce 
the synthetic speech. 

The next module is the audio server; it has two main functions: a) to play to the user the 
synthetic speech (i.e. audio samples) received from the TTS, b) to collect the audio input 
from the microphone/telephone that the final user uses to communicate with the system. The 
module can send directly the audio samples to the speech recognizer module or it can first 
process the samples in order to send audio features (i.e. MFCC, delta and delta-delta features) 
instead.  

The next module in the platform is the Automatic Speech Recognizer (ASR). After 
processing the audio features, it produces an N-best list with the most probable sentences for 
the given utterance. During this process, the recognizer loads the speech grammar that 
restricts the sentences that the system can recognize. The language models, supported by our 
platform, are stochastic n-gram models. Finally, the system also assigns a confidence score 
for each word in the recognized sentence.  

Then, the Natural Language Understanding module (NLU) loads the corresponding 
semantic interpretation grammars 56 in order to analyse the recognized sentence and to assign 
its meaning, i.e. interpretation, which is used later by the dialogue manager. In general terms, 
the interpretation can be considered as a simple assignment between relevant sections of the 
uttered sentence and the slots that the application defines. For instance, a sentence like: “I 
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want to flight from New York to London” can be “interpreted” as departure_city:NY and 
arrival_city:London. Following the standard VoiceXML specification, our real time platform 
allows two kinds of speech grammars: SRGS 57(Speech Recognition Grammar Specification) 
and JSGF 58 (Java Speech Grammar Format) files. The main advantages of using these finite 
state grammars were two. First, since these grammars specify, through a finite number of 
rules, the whole set of grammatically correct sentences that the final user can speak to the 
system, it was easy to use them to filter the n-best list of sentences recognized by the ASR 
using statistical grammars that do not necessarily provide grammatical sentences but provide 
robustness to the system. Second, the specification of both kinds of grammars defines special 
tags that allow the semantic interpretation of the sentence at the same time. This way, it was 
not necessary to include new parsers or modify the VoiceXML browser in order to use a new 
grammar specification. The runtime platform allows both kinds of grammars to be referenced 
in the VoiceXML file using inline or external links, and described in two formats, as 
Augmented Backus-Naur Form 59 or in XML Form. In our runtime platform, the first format 
was used for specifying the JSGF files, and the second one for SRGS files.  

 

 
Figure 3.13. Example of a SRGS grammar file used by the NLU module in the run-time 

system 

 

Figure 3.13 shows an example of the SRGS file used in our banking application. In this 
example, there are three rules, one public (MoneyQuantity) and two privates (Number and 
Currency). The public rule contains the sentence the user can speak, including references to 
the private rules for completing the sentence. The one-of element identifies the set of 
alternative elements for the private rules. In this case, the recognized sentence must contain at 
least one of these items. Finally, the item element includes a special label tag, [CDATA] that 
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defines the semantic interpretation for each item. In the example, the semantic interpretation 
for the Number rule allows the conversion of the string one hundred into its numeric 
representation (100). This number is then assigned to the slot number as semantic 
interpretation. 

Another important issue performed in this module is related to the confidence given to 
the recognized sentence and to the confidence assigned to each word in the sentence (this 
confidence can be different to the one provided by the speech recognizer). Several 
methodologies have been proposed for assigning these confidences [Jiang, 2005][Ferreiros et 
al, 2005][San-Segundo et al, 2001b]. In our case, the module does not modify the confidence 
at word level given by the speech recognizer, but it assigns as sentence confidence the mean 
of the confidences values assigned to each slot, not words, in the recognized sentence (see 
Eq. 3.1).  

∑=
N

i
iconfslot

N
ConfSentence _1_  

Eq. 3.1 

The idea of not including all the words in the equation is to avoid contributions from 
spurious or non-relevant words. Finally, this confidence is assigned, at run-time, to a global 
variable called fConfidence that is used in the flow defined in the Modality Extension 
Retrieval Assistant for Speech (MERA-Speech, see sections 3.4.2 and 4.6.2, pages 65 and 
113) for the confirmation handling (i.e. for handling nomatch, explicit, implicit and none 
confirmation). 

3.5.4 Portability and Use of Standards 

Amongst the main objectives of our platform are portability, meaning independence of 
the operating system and the runtime platform, scalability, widespread use of standards and 
feasibility to use existing or new technologies. This section describes our main efforts to 
successfully fulfil these objectives.  

In first place, all the graphic components of the platform have been programmed and 
generated using Qt 60, which is a multi-platform (Linux, Windows, Mac, X11) integrated 
development environment, compatible with C++, with which the designer can write code that 
can be executed in different operating systems and development environments, e.g. for Visual 
Studio, Visual .Net, Borland, just by recompiling. Thanks to Qt, it is possible to have a 
platform version available for Windows and another one for Linux. Moreover, Qt provides 
several methods and tools to quickly translate all texts in the graphical interface to adapt them 
to another language. 

We have also used the UTF-8 format (8-bit Unicode Transformation Format), which is 
a variable-length character coding for the Unicode standard in multiple languages, to help us 
in our target of multilinguality. Besides, it is the default coding in XML and it is used by all 
internet protocols. This format is especially crucial in the definition of prompts and grammars 
for all languages in the service. 

                                                 

 
60 http://www.qtsoftware.com/ 
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3.6 Scope and Limitations 

As we mentioned in the introduction (Chapter 1), the main objective of the platform is 
to allow the construction of dialogue applications for multiple modalities and languages at the 
same time. The generated applications can be used to access services based on database 
queries/modification (e.g., banking, train reservations, share prices in real time, etc.) through 
a telephone or a Web browser. Considering the limitations imposed by the standards used in 
the scripts generated by the platform, it is limited in the current version to the execution of 
each modality on its own. 

In any case, we consider that the platform is well prepared for true multimodality. The 
only missing things right now are new code elements for synchronization in our XML syntax 
and a new code generator (e.g., for X + V). For the speech modality, the platform generates a 
script using the VoiceXML 2.0 standard that allows a certain degree of mixed-initiative 
dialogues. Regarding the Web modality, the platform generates pages made up with Web 
forms (including radio buttons, textboxes, combo boxes, etc.), and coded using the xHTML 
language, so they are accessible from a conventional Web browser. 

Besides, the platform allows the coding of multimedia contents (e.g., videos, 
recordings, images, etc.) as part of user output. Finally, because the output is coded in 
xHTML, an expert designer might use it as a base to add other more complex audiovisual 
resources, such as animations, interactive maps, etc., using specialized Web design tools.  

In [Allen et al, 1999] four levels of mixing initiative are identified: unsolicited 
reporting, sub-dialogue initiation, fixed subtask initiative, and negotiated mixed-initiative. 
Unsolicited reporting allows an agent to inform others about critical information needed out 
of turn. Sub-dialogue initiation allows the system to initiate a sub-dialogue in certain 
situations, e.g., to ask for a clarification. In a fixed subtask initiative, the system keeps the 
initiative for a task, and it executes the task interacting with the user when necessary. In the 
negotiated mixed-initiative level, there is no fixed assignment of responsibilities or initiative, 
so agents can negotiate who takes the initiative and proceeds with the interaction based on it. 

On the other hand, [McTear, 2002] states that finite-state models are always fixed 
system-initiative, while frame-based systems may permit some degree of mixed-initiative, but 
that they may also be fixed user-initiative. Finally, [Allen et al, 2001] survey five levels of 
systems in increasing complexity of software architecture: finite-state, frame-based, sets of 
contexts, plan based, and agent based models. Considering this perspective, our platform 
covers the first two levels of task complexity in Allen’s classification, and supports, as a 
frame-based system, the lower levels of mixed-initiative interaction: unsolicited reporting and 
a few cases of sub-dialogue initiation for the management of lists of objects (see Section 
4.6.1, page 110). 
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44  SSPPEEEEDD  UUPP  SSTTRRAATTEEGGIIEESS  AAPPPPLLIIEEDD  IINN  TTHHEE  

DDIIAALLOOGGUUEE  DDEESSIIGGNN  

In this section, all the strategies to accelerate the dialogue design are explained in 
detail. The goal of all these accelerations is to reduce the design time by simplifying the 
definition of the different dialogues, actions, and elements required to design and run the 
service. Moreover, the proposed accelerations guarantee that the generated models are well 
formed and optimized, as well as contribute to minimize the possibility of the designer 
making mistakes in the design. 

The important contribution of the thesis is that most of the accelerations presented in 
this section are innovative and non-existing, up to the best of our knowledge, in any 
commercial and research platform. In case that a similar acceleration is available in any of the 
current platforms, we have tried to go one-step further by incorporating new automation 
mechanisms.  

In summary, the accelerations can be classified into three classes: Heuristic based, Rule 
and Context based, and Wizards for simplifying the design process. The first one corresponds 
to accelerations that use the database contents and the data model structure. The second one 
corresponds to the application of configurable domain knowledge rules that we have 
incorporated into the assistants taking into account our experience in designing dialogue 
systems. On the other hand, context based accelerations correspond to strategies that use the 
available information saved in previous assistants to generate different kind of proposals that 
take into account the goal of each assistant and its level of access to the information. Finally, 
the third one corresponds to other accelerations mainly based on the incorporation of 
different wizard windows that help designers to automate/eliminate repetitive or common 
procedures when designing dialogue applications. In relation with the accelerations based on 
using the data model and database contents, it is important to mention that they can be 
classified as content-independent and content dependent. In the former case, the system has 
no access to the contents of the database; this situation is common in situations where the 
developers have restrictions to access the database due to security reasons since the database 
could contain confidential information regarding the clients (e.g. pin codes, credit card 
numbers, etc.). In this case, the platform adapts the functionality of the assistants in order to 
only exploit the data model structure, at the expense of reducing the number of accelerations 
available to the designer. In the latter case, the platform has full access to the database 
contents (i.e. tables and fields) allowing the system to propose new accelerations such as full 
custom classes and attributes or new dialogue proposals, in addition to the already available 
accelerations provided by using the data model structure. 

Defining a ranking of importance of the proposed accelerations is not an easy task as 
each one contributes to the definition of the service. However, considering the level of 
innovation in comparison to other platforms and the effort we did for allowing them in the 
platform, we can be sure that the accelerations included in the RMA (section 4.5) are the 
most important ones since this is the assistant where the higher number of information has to 
be defined in the entire platform. This way the possibility of automatically proposing the 
actions for each assistant and the possibility of creating dialogues combining mixed-initiative 
and over-answering capabilities are really important. On the other hand, all the accelerations 



Speed Up Strategies for the Creation of Multimodal and Multilingual Dialogue Systems 

86 

included in the MERA-Speech assistant are the second most important accelerations for two 
reasons. First, because we could not find any similar kind of assistants in other platforms for 
solving the problem of presenting lists of results and confirmation handling, leaving the 
solution to the designer without offering any kind of predefined proposal or leaving the 
solution to the ASR engine used in the real-time system. In second place, because the 
complexity of defining all the flow for the presentation of results and confirmations 
considering different conditions (e.g., number of items retrieved, levels of confidence and 
number and type of the slots to be confirmed) required the creation of innovative templates 
described in detail in Appendix C. 

The chapter is organized as follows: section 4.1 describes the heuristic information 
extracted from the database contents in order to accelerate the design in different assistants of 
the platform. Section 4.2 describes the accelerations to create the object-oriented 
representation of the data model structure used by the platform. In section 4.3, the 
accelerations for creating the prototypes of the functions used by the runtime system to access 
the backend database are described. Sections 4.4 and 4.5 describe the accelerations 
implemented in the assistants for creating and complementing the state flow model of the 
dialogue service. Section 4.6 explains the accelerations implemented in the assistant that 
defines the dialogue flow for the presentation of lists of objects retrieved by a database access 
and the confirmation handling for the speech modality. In section 4.7, the accelerations for 
creating speech prompts and grammars are explained. Finally, section 4.8 outlines the 
conclusions of this chapter. 

4.1 Heuristics 
In order to accelerate the design of the service in different assistants, we have first 

implemented a new module that automatically extracts heuristic information from the 
database contents when it is available. These heuristics are obtained using an open SQL 
query that retrieves all the information from every table in the database. The system 
automatically collects information regarding the name and the number of the different tables 
and fields, and the number of records for every table. In addition, for each field the following 
features are also collected: 

a) The average length in characters 

b) The average number of words 

c) The vocabulary size (number of words that are different) 

d) The proportion of values that are different 

e) The field type 

f) The number of empty values 

These features, grouped or individually, are mainly used to accelerate the design or to 
improve the presentation of information in many assistants of the platform, as we will show 
in the following sections. For instance: (a), (b), (c) and (d) have been used to detect candidate 
slots to be requested using mixed-initiative dialogues (see section 4.4.3, page 99), (e) 
accelerates the creation of the data model structure (section 4.2.1, page 89) and to create and 
debug SQL statements (section 4.3.2, page 93), (f) is used to sort by relevance the attributes 
displayed by the wizard when creating the database structure (section 4.2.1, page 89) and 
when proposing dialogues to retrieve information from the user in the RMA (section 4.5, 
page 101). 
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An important issue we observed when retrieving the field type was that sometimes the 
metadata information provided by the SQL function was incorrect due to: a) the driver for 
accessing the database was only able to return a limited number of field types, hence some 
types like Boolean or dates were mapped as integer or string types respectively, b) the 
designer of the database defined a field using a generic type such as string or float when they 
actually corresponded, for instance, to dates or integers, and c) we found problems for 
mapping special types such as hyperlinks, or currencies, etc. into the types supported by the 
platform. 

In order to correctly identify the field type, which results in a considerable reduction of 
the number of times that the designer will need to change the proposed type for a given 
attribute when creating the classes (see Figure 4.1), we implemented a post-processing step to 
confirm or reassign the types returned by the metadata information from the database using a 
special SQL query. The post-processing is made using regular expressions (RE) to detect the 
following types: integer, float, date, string, Boolean, empty fields, or mixed (e.g., URLs, 
emails, binary info, etc.). During this step, the system analyzes all the non-empty values for a 
given field and selects as field type the one that appears more than 90% of the times. The 
exceptions to this criterion are: a) a numeric field is considered integer if all its records are 
classified as such; if not, it is classified as a float, b) the empty type is assigned to fields 
containing more than 95% of the time empty values. 

With the purpose of analyzing the performance of the regular expressions, an objective 
evaluation was carried out. In this evaluation, twenty-one databases, most of them available 
online, were retrieved and visually inspected field by field. In total, there were 109 tables (an 
average of 5 tables per database), 767 fields and 610,506 records.  

 

 Real Type  
Integer Float Date String Blank Mixed Bool Total 

R
E

 T
yp

e 

Integer 205 
94.0% 

2 
0.9% 

0 7 
3.3% 

1 
0.5% 

0 0 215 

Float 0 60 
96.8% 

0 1 
1.6% 

1 
1.6% 

0 0 62 

Date 0 0 43 
100% 

0 0 0 0 43 

String 0 0 0 336 
99.1% 

2 
0.6% 

1 
0.3% 

0 339 

Blank 1 
2.8% 

0 0 1 
2.8% 

34 
94.4% 

0 0 36 

Mixed 2 
6.7% 

4 
13.3% 

0 8 
26.7% 

0 16 
53.3% 

0 30 

Bool 5 
11.9% 

0 0 0 0 0 37 
88.1% 

42 

Total 213 66 43 353 38 17 37 89.6% 

Table 4.1. Confusion matrix for automatic field types detection comparing the human 
classification (real type) and the proposed type by the system (RE type) 
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Table 4.1 shows the performance of the different regular expressions (RE) when 
compared with the classification made by a human evaluator. According to this table, the 
average recognition is 89.6%, obtaining the best rates for dates, strings, and numeric 
quantities, which are the most common types in most databases. Analyzing in detail the 
misrecognitions, 0.9% of floats were incorrectly detected as integers due to values such as 
2.0, 30.0, etc. which were automatically returned by the database driver without the decimal 
part. Another source of errors was detecting some numeric quantities due to special symbols 
such as dashes, percentages, or the euro symbol, which were incorrectly interpreted as a 
string type (3.3% and 1.6%). The major problems occurred for the Mixed type. Here, the 
system was not able to distinguish between this type and the String type since they are, in 
practice, the same. However, we wanted to separate them classifying as Mixed things as: 
URLs, emails, long strings, etc., since for a speech recognizer they may be handled using 
different strategies (e.g. spelling, general grammars, etc.).  

On the other hand, Table 4.2 shows the confusion matrix for comparing the type 
retrieved by the driver and the real classification made by a human evaluator. Observe that 
for some columns (e.g. blank, mixed and Boolean) the system cannot distinguish from its 
actual type since the driver does not return them correctly (for instance, Booleans are 
returned as integers, -1, 0, or 1) or because they do not exist as such but were defined for this 
thesis only (blank and mixed). However, checking again Table 4.1 we can see that the regular 
expressions were robust enough to provide a good performance for these special types. 

 

 Real Type  
Integer Float Date String Blank Mixed Boolean Total 

D
ri

ve
r 

T
yp

e 

Integer 125 0 0 7 0 0 30 162 
Float 37 40 0 0 0 0 0 77 
Date 0 0 43 0 0 0 0 43 

String 51 26 0 345 38 11 7 478 
Blank 0 0 0 0 0 0 0 0 
Mixed 0 0 0 1 0 6 0 7 

Boolean 0 0 0 0 0 0 0 0 
Total 213 66 43 353 38 17 37 767 

Table 4.2. Confusion matrix comparing the human classification (real type) and the driver 
classification (driver type) 

4.2 Strategies Applied to the Data Model Assistant (DMA) 

As described in section 3.2.2 (page 60), in this assistant the data model structure of the 
service is created by the definition of object oriented classes. The objective of these classes is 
to provide information about which fields in the database are relevant for the service and how 
these fields can be grouped together. Therefore, we can think that the attributes in a class 
correspond to the possible fields to be requested or presented to the user in one or more 
dialogue states. Each class can be characterized by a list of attributes and optionally a list of 
base classes (inheriting their attributes). The attributes may be: a) of atomic types (e.g., 
string, Boolean, float, date, etc.), b) complex objects, they refer to an existing class (e.g. 
ObjRefr or ObjEmbed), or c) lists of either atomic type items or complex objects. Since this 



Chapter 4: Speed up strategies applied in the dialogue design  

89 

is one of the first assistants in the platform, a significant effort was done in order to accelerate 
the creation of the database structure and to include relevant information that can be used for 
other assistants in the platform.  

The main acceleration included in this assistant is the incorporation of a new wizard 
window that uses the heuristic information described in the previous section to propose full 
custom classes and attributes that the designer can use when creating the structure. In 
addition, if the system has not access to the database, the assistant also provides the following 
accelerations: a) re-utilization of libraries with models previously created, which can be 
copied totally or partially, b) automatic creation of a class when it is referenced as an attribute 
inside another one, and c) definition of classes inheriting the attributes of a base class. These 
accelerations were incorporated during the GEMINI project by other partners of the project. 

4.2.1 Semi-automatic Classes Proposals 

In order to allow the designer to create custom classes selecting the tables and fields 
from the database or from already existing classes in the model, we have included a new 
wizard (see Figure 4.1) that using the heuristic (e), the field type (section 4.1, page 86), 
automatically sets the field types in the wizard. For example, in Figure 4.1, the field type for 
“minimum debit” in the database is string, but the wizard changes it to integer because all its 
values are actually this type. In any case, this can be modified by the designer. Besides, in 
order to first show the most important or relevant fields for each table in the database we 
have included a simple mechanism to sort the fields in the assistant by relevance using the 
heuristic (f), the number of empty values in a given field. This way, if the number is high, 
then the system considers that it is unlikely that this field will be used to request information 
to the user, then the attribute is placed at the bottom of the list and displays a warning 
message when the attribute is selected. 

Moreover, the assistant accelerates the design proposing automatic names when a new 
class is being created; in this case, the proposed name is a combination of the selected 
attributes. Besides, the system also proposes an automatic name when it detects that the class 
or any attribute has the same name as a previously defined one; in this case, the proposed 
name is the original name of the class/attribute plus a sequential number. Then, when the 
designer finishes the creation of the class, the assistant automatically saves all the information 
defined in the wizard window in the final GDialogXML file for this assistant. When the 
designer selects an attribute from a field in the database, this information is also saved in the 
output xml file using the GDialogXML tag xDataMAttr. In this way, subsequent assistants 
will use this information to implement better acceleration strategies. 

Finally, in order to reduce the information displayed and to make the wizard more 
intuitive, the first time the designer uses it, if the number of tables in the database is too high 
it is possible to select those that will be actually needed during the design. In addition, it is 
also possible to customize the name of the tables in the database. This feature could be 
especially relevant if the database designer is different from the dialogue designer or if the 
names of the tables and fields are not very intuitive. . In case the designer uses a custom 
name, the assistant will present the information of the table/field using the custom name, 
although internally and when the final XML file is saved, the real name is used. 
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Figure 4.1. Form fill-in window that allows the creation of custom classes (from the database 

and classes from the current model) in the DMA. 

 

4.2.2 Common Accelerations 

Besides, for both approaches (content dependent and content independent), the design 
of the data model is accelerated in the assistant by the following features: 

1. Re-utilization of libraries with models previously created, which can be copied 
totally or partially, or a new class can be created by mixing several original classes. The 
assistant allows the creation and loading of libraries. In this way, it is possible to take 
advantage of previous knowledge or from previous prototypes of the service in order to 
improve it. 

2. Automatic creation of a non-existing class when it is referenced as an attribute inside 
another one. For instance, consider the example shown in Figure 4.2. In this case, suppose 
that the designer is defining the attributes for class Account. When the complex attribute 
AccountHolder is included into the class, the assistant automatically searches the referenced 
object, i.e. the class Person, in the internal list of already defined classes. Since this class has 
not been defined previously, the assistant automatically creates it as an empty class. 
Afterwards, the designer can edit the new class including the attributes that belong to it. This 
way the assistant allows a top-down design. In the example, the same process is done for the 
reference class TransactionDescription. 
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Figure 4.2. Example of the automatic creation of a referenced class 

3. Definition of classes inheriting the attributes of a base class (i.e. parent classes). In 
this case, when defining the new class, the designer only needs to specify all the classes to be 
used as base classes. Then, the assistant automatically inherits all the attributes defined in the 
selected base classes into the new class. This way, the platform uses concepts inherited from 
object-oriented programming. 

 

4.3 Strategies Applied to the Data Connector Model Assistant 
(DCMA) 
According to section 3.2.3 (page 61), this assistant allows the definition of the 

prototypes (i.e. the input and output parameters) of the database access functions that are 
called from the runtime system. The platform only requires the prototypes because they 
provide enough information for the following assistants of the platform and their actual 
implementation is not needed when designing the dialogue flow. However, it is also possible 
to take advantage of this assistant in order to create the actual implementation of such 
functions and to include meta-information to accelerate the dialogue design in subsequent 
assistants.  

The main acceleration strategy, designed by the partners of the GEMINI project, is the 
association of the input/output parameters to attributes and classes from the data model 
structure. This information is especially useful for the Retrieval Model Assistant (RMA) and 
the State Flow Model Assistant (SFMA) in order to create dialogue state proposals and to 
propose database access functions for a given state in the design. In addition, the author of 
this thesis has contributed with a new wizard window that allows the automatic generation 
and debugging of the SQL queries needed to perform the functions in the real-time system. 
This wizard is useful for designers with little knowledge on query languages and can be used 
to check if the prototypes have the correct number of input/output parameters. This 
acceleration is also interesting since most of the current development platforms do not 
include such kind of accelerations, and in those where we found a similar assistant it did not 
automatically propose the SQL query but only allowed to specify and debug it. 

4.3.1 Definition of Relations between the Function Arguments and the 
Data Model 

As mentioned above, the first, and main, acceleration strategy included in this assistant 
is the possibility of defining the relation between the input/output arguments of the database 
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access functions and the attributes and classes from the data model, which were defined in the 
previous assistant. All this information is kept in the output model, which is going to be used 
automatically in future stages of the design process (see section 4.4.2.2 and 4.5.2, pages 98 
and 103).  

In Figure 4.3, the code generated by the assistant for the banking example is shown. In 
this case, we show the GDialogXML code generated by the function 
PerformTransactionFromDebitAccountToCreditAccount using the same process shown in 
Figure 3.3. This function has three argument variables to collect the information regarding 
the accounts and the quantity to transfer, and one returning variable defined as Boolean. In 
the code, the tag xArgumentVars (number 1) contains the information regarding the input 
parameters: the debit account number (DebitAccountNumber), the destination account 
(CreditAccountNumber) and the amount to be transferred (TransactionAmount) and the tag 
xReturnValueVars (number 2) contains the return argument TransactionPerformed (in this 
case, a Boolean variable that indicates if the transfer is successful or not). In the figure, the 
variable TransactionAmount has a dependency, specified through the xDataMAttr tag, with 
the data model attribute Transaction.TransactionAmount. This dependency will be used in 
the posterior assistants (i.e., SFMA and RMA) to create dialogue proposals and the automatic 
proposal of a database access function for a given state in the design. An important 
acceleration included during this process is that the assistant automatically proposes the class 
and attribute which is more likely to be related to the argument, as well as the database table 
and field. The mechanism is to use the name of the argument being edited to search for 
similar classes or attributes in the data model structure. The table and field of the database is 
extracted from the data model since this information has been already defined in the previous 
assistant. 

 
Figure 4.3. GDialogXML code generated by the DCMA for the bank transfer. 
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4.3.2 Automatic Generation of SQL Queries 

The second strategy, proposed and implemented by the author of the thesis, was the 
inclusion of an assistant that generates automatically the SQL query for a given function. The 
main motivation behind this assistant was to reduce the necessity for the designer of knowing 
a new programming language and, at the same time, to simplify the inclusion of the generated 
query in the Java servlet created for accessing the database at runtime. 

 

 
Figure 4.4. Form fill-in window for the automatic creation and testing of SQL queries for 

database access functions. 

Figure 4.4 shows the main window of this assistant. The assistant allows the inclusion 
of several constraints supported by the SQL language such as maths functions (average, max, 
min, ln, exp, etc.), sorting, selection (Top or Distinct), clustering (Group By), Boolean 
operators (And, Or) for combining the query restrictions, among others.  

In order to automatically create the query, the assistant uses the input arguments 
(defined in the function prototype, see number 2 in the figure) as constraints for the WHERE 
clause, and the information of the output arguments as returned fields for the SELECT clause 
(number 1). During this process, the wizard also uses the heuristic (e), the field type, in order 
to correctly create and debug the SQL statement. The assistant allows the inclusion of new 
input or output arguments if the function prototype is not complete or if the designer wants to 
test new argument combinations. The next step is to generate automatically the SQL 
sentence. It is presented in a textbox (number 3) that the designer can use to edit the proposed 
query. 

Since the input/output arguments could be defined using different types (i.e. atomic: 
string, integer, float, etc, or object oriented such as list, embed, and reference) several 
strategies were applied in order to create SQL queries that can use such kind of parameters. 
In general, if the argument is atomic then the query uses the argument directly. However, a 
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special case appears when the returning argument has been defined as a Boolean type since 
there are two possibilities. The first one is that the associated database field is Boolean too; in 
this case, there is no problem since the regular expressions do the association directly. The 
second possibility is that the returning parameter does not have an associated database field; 
in this case, we need that the query returns this type. In order to do it, the assistant builds a 
query that finishes in a Boolean comparison between the number of retrieved records and 
zero records (i.e. count (records) <= 0). The most complex case corresponds to object-
oriented arguments. In this case, if the returning argument is an object the system analyzes 
the object class and provides a list with the atomic elements of that class in order to allow the 
designer to select the corresponding arguments to be used in the SQL query from that class. 
Then, the query is created returning all the selected arguments. Finally, it is the servlet the 
responsible of taking all the retrieved fields and returning the object, or a pointer to the 
object, used by the final script. A similar case appears if the argument is a list. In this case, 
the system looks for the type of the elements in the list and allows the designer to select the 
corresponding table and field if that information was not defined when creating the function 
prototype in the previous step (see section 4.3.1, page 91). 

In addition, the assistant has a debug window (element number 5 in the figure) that 
allows the designer to view the retrieved records when using the proposed query. In order to 
debug the query, the assistant first asks for specific values for the input arguments of the 
function (using a pop-up window, see number 4). The assistant detects automatically the type 
of each argument and pre-process them in order to avoid problems when performing the 
query (i.e. escaping especial characters, confirming that the introduced values correspond to 
the type of the fields, etc.). Finally, the system shows the retrieved results that allow the 
designer to know if the query is correct or not. 

 

4.4 Strategies Applied to the State Flow Model Assistant (SFMA) 
As mentioned in section 3.3.1 (page 62), in this assistant, the designer defines the state 

transition network that represents the dialogue flow at an abstract level, i.e. specifying only 
the high-level states of the dialogue, the slots to be asked to the user, and the transitions 
between states, but not the specific details of each state. The specific details will be defined in 
the following assistant, the RMA, which is drastically accelerated thanks to these high-level 
states of the dialogue specified here. 

Considering the different versions of this assistant released throughout the GEMINI 
project, the author of the thesis has contributed with several improvements and accelerations 
that are described next. In summary, the new accelerations are the automatic generation of 
state proposals, the possibility of specifying the slots through attributes offered automatically 
from the data model, and the unification of the slots to be requested. In addition, the new GUI 
allows the definition of new states using wizard driven steps and a drag-and-drop interface. 

4.4.1 Functionalities Included in the Graphical User Interface 

One of the first conditions imposed to this assistant was that the graphical user interface 
would allow several editing and visualization capabilities such as the possibility of creating 
the flow diagram using a tree-structured description. In this kind of representation, each leaf 
and branch represents a state and a corresponding transition. This kind of visual 
representation is common in most of the commercial and research platforms [McTear, 1998] 
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because it simplifies the visualization of the flow through its different states and transitions, 
although it is limited by the complexity of the task, because as the number of states grows the 
visualization degrades. Several strategies have been proposed to solve this problem (see 
sections 2.1.1 and 2.1.2, pages 8 and 16). For instance, it is possible to reduce the displayed 
information dividing the design into different layers (e.g., dialogue flow and error handling), 
providing more or less information, or encapsulating common actions or a big number of 
actions into a single object. In our platform, depending on the assistant, the GUI allows the 
designer to show detailed or minimum information about the states, as well as some degree of 
encapsulation using libraries. In relation to this assistant, we implemented an automatic 
algorithm that helps the designer to place the objects in the canvas and reduces the 
visualization problems produced when all the transitions between states are displayed. 

In detail, the algorithm is applied each time the designer connects two or more states 
among them. By default, transitions are displayed in the canvas using a solid line connecting 
the states. However, the algorithm is used to automatically evaluate if it is suitable to use a 
line or to use a connector symbol, like the ones used in flow charts, instead. The decision 
mainly relies on two factors: 1) the distance between the connected states in the GUI, and 2) 
the number and size of the objects that are along the path of the connection line. The distance 
is calculated as the hypotenuse between the x and y coordinates of the two states to be 
connected. If the distance is longer than one third of the size of the canvas (i.e. the workspace 
that the designer views without using the horizontal or vertical scrollbars) then a connector is 
used, if not the system evaluates the second factor. In the next case, the system evaluates the 
existence of other state boxes along the path of a straight solid line connecting the selected 
states. In case there are not collisions, the system uses the solid line. If not, the system 
evaluates the size of the intersected object; in case the size is small (when compared to the 
canvas size in a given ratio), the system uses the solid line, if not it uses the connector.  

 

 
Figure 4.5. Appearance of the SFMA main window 

 

As described above, the main objective of this algorithm is to avoid the creation of a 
confusing network of crossing lines or to force the designer to follow long lines beyond the 
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area of visualization of the canvas. After finishing the connection, in case the system had 
selected the solid line if the designer clicks over it the line is repainted using a thicker line in 
order to distinguish it from the other lines. In case the system had selected the connector 
symbol if the designer clicks on it, the system automatically moves the cursor to the location 
of the other state associated with the selected connector. 

In addition, the assistant includes an automatic procedure to rearrange the objects in the 
canvas. In this case, the system takes advantage of the algorithm described above and a built-
in function provided by the programming language and objects (i.e. Qt). In any case, the 
designer can modify the location of any object in the GUI dragging and dropping it to any 
place in the canvas.  

Finally, the system uses an internal xml file where all the objects (i.e. input/output 
connectors, states, lines, etc.) and their attributes (i.e. name, colour, position, size, etc.) are 
saved in order to use this file the next time the designer loads the current design.  

Figure 4.5 shows the main window of this assistant, including an example of the 
visualization of the canvas (workspace), the states, transitions, and connector symbols. For 
instance, observe that the state GetCurrencyName is connected to the state 
AskOtherExchangeRates by the connector number eight (8). Without the connector symbols 
it would require a confusing line connecting them from one extreme of the canvas to the other 
(a similar case applies for the connectors 3 and 10). 

 

 
Figure 4.6. Process for the creation of a 1:N transitions in the SFMA 

 



Chapter 4: Speed up strategies applied in the dialogue design  

97 

The main window allows designers to create new states just dragging and dropping 
them from the floating window with the proposal of states, or using contextual right click 
commands. Besides, the GUI allows the creation of different types of transitions between 
states such as N:1, 1:M or N:M. In all the cases, the procedure is to select first the set of 
initial states and then the target states. After that, the assistant automatically creates and 
shows the connections (see Figure 4.6). As usual in other GUI, the designer can select or 
unselect nodes using the Ctrl key and the mouse pointer. Finally, several other GUI actions 
such as find/create/delete/edit a state, or zoom in/out the workspace are also available. 

 

4.4.2 Automatic State Proposals for Defining the Dialogue Flow 

One of the most important accelerations proposed and implemented in this assistant by 
the author of the thesis was the automatic proposal of dialogue states that include the slots to 
be requested to the user. The advantage of these proposals is that they can be used directly by 
the designer with little or no modification. In order to create these proposals, the assistant 
uses the information from the database structure (from the DMA) and the prototypes of the 
access functions to the database (from the DCMA). The proposed states are available in a 
floating window through the GUI (see Figure 4.5). The next sub-sections provide a detailed 
explanation of the algorithm used to generate these state proposals. 

 

 
Figure 4.7. Pop-up window with states proposals from classes defined in the data model 

structure (DMA) 

 

4.4.2.1 Class dependent states  
“States from DMA” in Figure 4.7. For each class defined in the DMA, the assistant creates a 
class template, identifiable by the prefix “class”, which the designer can drag and drop into 
the workspace. A pop-up window allows the designer to select the attributes to use as slots in 
the new state. The assistant also allows the designer to select multiple templates in order to 
create the new state. In this case, the pop-up window shows all atomic attributes that belong 
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to the selected classes. The name for the new state is automatically generated from the 
selected classes, but the designer can change the name. Finally, the new state is inserted into 
the workspace allowing the designer to define the transitions (i.e. connections) to other states. 
Figure 4.7 shows an example of using the template class_Transaction. In this case, the 
designer selects the attributes TransactionAmount (number 2) and AccountNumber (number 
4) to be used as slots in the new state Transaction (number 1). Observe that the assistant 
expands complex attributes (with inheritance and objects) allowing only the selection of 
atomic attributes because only these attributes can be asked to the user in the real time system 
(number 3 and 4). 

4.4.2.2 States from attributes with database dependency 
This kind of states is created from any attribute defined in the database model (DMA) that 
refer to a database field and conditioned, at the same time, which the attribute has been used 
as an input argument in any database access function defined in the DCMA. The proposed 
states are also included in the “States from DMA” tab and include the prefix “state” (see 
Figure 4.7). The main motivation for proposing these states is that these attributes are likely 
to be asked to the user. The proposed states contain only one slot and its name corresponds to 
the name of the attribute in the data model. However, the designer can select several states 
before making the drag and drop allowing the creation of states with multiple slots. The 
proposed name, as in the previous case, is automatically generated from the selected classes 
but can be edited afterwards. 

 
Figure 4.8. Example of a proposed state from a defined database access function. The 

GDialogXML code corresponds with the definition of the function in the DCMA. 

 

4.4.2.3 From the database access functions 
“States from DCMA” in Figure 4.8. In this case, the system analyzes all the prototypes of the 
database functions defined in the DCMA containing input arguments defined as atomic types. 
Then, the system uses the name of the function as proposal for the name of the state, and the 
input arguments as slots for that state. Again, the assistant allows the designer to select 
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several of these proposals when making the dragging and dropping, in order to create more 
complex states. Figure 4.8 shows examples of proposed states and the GDialogXML code 
generated by the DCMA when defining the database access function. In this case, there is a 
database access function called VerifyAccountByIdentifier, which receives two input 
arguments (i.e. the AuthenticationCode and AccountIdentifier), then the system automatically 
creates a new state proposal called state_VerifyAccountByIdentifier including two slots. 

4.4.2.4 Empty state and already created states  
The first one allows the creation of a new empty state, with no defined slots inside, that the 
designer can define completely afterwards. This way, we allow a top-down design. The 
second one allows the designer to re-use already defined states to create new states. In this 
case, the slots are copied but the name of the state should be different to avoid confusions. 
The assistant does not deny the possibility of using the same name but the optimal solution 
would be to make a new connection to the existing state using the GUI.  

4.4.3 Automatic Unification of Slots for Mixed-Initiative Dialogues 

This acceleration helps the designer to decide when two or more slots are good 
candidates to be requested at the same time (using mixed-initiative forms) or one by one 
(using directed forms) only when mixed-initiative is not advisable. This is a feature we offer 
and distinguish our platform from others, since in other platforms they leave the decision up 
to the designer. Since this functionality relies on using heuristic information it is only 
available when the system has access to the database contents and when the slots in a given 
state have been related to a table and field in the backend database. 

In this case, the assistant uses the average length, the vocabulary size, the proportion of 
different values, and the field type as main heuristics obtained for the candidate fields 
(section 4.1, page 86) and applies a set of customizable rules to decide which slots can be 
unified and which ones cannot. The existing rules have been created taking into account that, 
at present, the only modality that actually needs the definition of mixed-initiative slots, in our 
platform, is the speech modality (i.e., in the Web modality the final user can fill all the slots 
using just one form).  

 
Figure 4.9 Configuration window for creating or editing rules for automatic detection of 

directed or mixed-initiative dialogues 
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According to the predefined rules included in the platform, although it is configurable 
by the designer (using the wizard shown in Figure 4.9), the system does not propose the 
unification using mixed-initiative dialogues when: 

1. There are two slots defined as strings and the sum of the average length of both is 
longer than 30 characters. In this case, the system tries to avoid the recognition of 
very long sentences 

2. One of the slots is defined as a string with an average length greater than 10 
characters, and the other slot is an integer/float number greater than 4 digits. In this 
case, the rule tries to avoid the recognition of long strings, e.g. an address or name, 
plus long numeric quantities, e.g. phone or social security numbers, etc., in the same 
sentence, which again is very likely to fail. 

3. There are two numeric slots with a proportion of different fields for a given attribute 
which is close to one, and the vocabulary size of both fields is high (configurable 
value). Again, there is a high probability of misrecognition. 

Therefore, in all three cases, the system decides that it is better to ask one slot at a time 
using directed dialogues. The configuration window allows, in any case, the edition of the 
predefined rules and the creation of new rules (number 2 in Figure 4.9) and conditions 
(number 3). In addition, it is also possible to create rules for detecting directed dialogues 
using the wizard (number 1).  

If there is a conflict between two or more rules (i.e. one rule proposing MI unification 
and another one proposing direct dialogues), the system will apply the directed strategy since 
this is the default choice in VoiceXML. In any case, in spite of the system proposal, after 
applying the previously mentioned rules, the designer can modify the decision allowing two 
or more slots to be unified, or not, as mixed-initiative. 

 
Figure 4.10. Example and GDialogXML code for two slots automatically unified for mixed-

initiative 
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Figure 4.10 shows an example of automatic unification for a proposed DCMA state 
called VerifyAccountByIdentifier. Observe that the GDialogXML code for the corresponding 
function in the DCMA contains information about the tables and fields used to define the 
input arguments for that function. According to the heuristics information for those fields, the 
AuthenticationCode corresponds to an integer field with an average length of 4 numbers, and 
the AccountIdentifier field corresponds to a string field with an average length of 9 
characters. In this case, the assistant proposes to unify both slots as mixed-initiative, setting 
the flag Is MI to true and the filling type to Mixed-Initiative (the other filling type value is 
“system initiative”). 

4.5 Strategies Applied to the Retrieval Model Assistant (RMA) 
As described in section 3.3.2 (page 63), this assistant is used to specify in detail all the 

information and actions (e.g., variables, loops, conditions, math or string operations, calls to 
subroutines and dialogues to provide/obtain information to/from the user, etc.) to be done in 
each state previously defined in the previous assistant, the SFMA, and optionally in new 
states. Therefore, this assistant provides the most complete functionality for dialogue design 
in the platform. For that reason, we made a strong effort on including several accelerations in 
this assistant. 

In summary, the assistant allows the following accelerations: automatic generation of 
several dialogues that the designer can drag and drop in the different windows that make up 
the assistant, to obtain information from the user (dialogues with prefix DGet) and to provide 
information to the user (dialogues with prefix DSay); the automatic generation of relevant 
action proposals according to the dialogue being edited at each time; the automatic passing of 
arguments when connecting different actions and dialogues; and, finally, the possibility of 
creating complex dialogues using Mixed Initiative and Over-answering capabilities, among 
other accelerations that are described in detail below and published in [D’Haro et al, 2006], 
[D’Haro et al, 2004a], and [D’Haro et al, 2004b]. 

4.5.1 Automatically Proposed Dialogues 

When the RMA is started, it analyses the information from the data model and the 
database access function looking for all attributes defined as atomic types to automatically 
generate dialogues to obtain information from the user (called DGet) and dialogues to 
provide information to the user (called DSay). These dialogues include a GDialogXML 
property that allows the Modality Extension Assistant (see Sections 3.4.2 and 3.4.3, page 65) 
to identify them from other dialogues, and to know when the designer has to specify for the 
DSay dialogues the prompt/output concepts to be presented to the user (for the speech/Web 
modality respectively), and for the DGet dialogues the grammar/input concepts used by the 
recognizer/Web generator and the confirmation strategies.  

In general, the assistant creates different types of DSay/DGet dialogues depending on 
the type of the input parameters and the class or database function used to generate them. For 
instance, dialogues with the mask DGet/DSay_ATTR_attribute-name_IN_CLASS_class-
name (see Figure 4.11) are created from the data model structure and require only a matching 
with one input atomic parameter (i.e., the calling dialogue has to pass as argument to the 
DGet/DSay dialogue one atomic variable). In this case, these dialogues may be useful to 
obtain/provide information to the user before/after calling a database function that 
receives/returns an atomic parameter. On the other hand, dialogues with the mask 
DSay_ATTR_attribute-name_GIVEN_CLASS_class-name require a matching with one input 
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complex parameter (i.e. a reference to an object or the object itself) in this case to a specific 
class in the data model. In this case, the database function returns a complex object. Observe 
that the platform does not offer DGet dialogues in this case, since it is expected that DGet 
dialogues only fulfil atomic parameters, not complex ones (i.e., DGet dialogues ask users for 
strings, integers, floats, etc. data, not complex objects). Finally, the mask DSay_return-
variable_FROM_databaseFunction-name is used to identify DSay dialogues created from the 
atomic returning variables for all the database access functions defined in the DCMA. In this 
case, the designer can use these dialogues for providing atomic data after retrieving the 
information from the database. 

 

 
Figure 4.11. Auxiliary screen of the RMA and popup window for dialogue configuration. 

 

Although all the previous automatic DGet/DSay dialogues are enough for most 
dialogue applications, the algorithm suffers of some limitations. For instance, if the attributes 
in the data model classes are complex or include object inheritance, the assistant is not able to 
generate automatic dialogues for them. Besides, these dialogues cannot be merged to create 
more complex ones. In order to solve these problems, the assistant provides configurable 
DSay dialogues using a template (dialogues with prefix “DSay for” in Figure 4.11,) that 
shows the class and its attributes, expanding the complex attributes (with inheritance and 
objects) and allowing the designer to select any of these attributes to be used when designing 
the prompt in the modality extension assistant (MEA).  

Finally, other DSay dialogue templates are also available, for instance: a) A generic 
DSay template to provide concepts (DSay Concept Template), which are useful for providing 
generic information to the user without querying the database or asking any information to 
the final users. b) Configurable DSay to present variables from a dialogue, in case that the 
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variable has not any dependence with the data model or it has not been returned from a 
database access. c) A generic DSay template to present lists of objects, specifically designed 
for handling lists of results after querying the database (see section 4.6.1, page 110), and d) 
Predefined DSay such as: Welcome, Goodbye, Transfer to operator, etc. In addition, 
dialogues from loaded libraries and database access functions can also be used. 

Figure 4.11 shows all the dialogues mentioned above, with an example of the 
configurable template for the Transaction class called ‘DSay for Transaction’ where several 
attributes have been selected and will be provided to the user in the real-time system. The 
flexibility of this template lets the designer select attributes from the different child classes of 
the Transaction class (e.g., AccountNumber), complex attributes coming from inherited 
classes and contained in another class (e.g., LastName from class AccountHolder included in 
class CreditAccount). When the dialogue definition is over, it is added to the list of dialogues 
tab, so that it can be used later on. 

4.5.2 Automatic Generation of Action Proposals in Each State 

This is one of the most important accelerations included in this assistant. The main 
motivation for this strategy was to include in one popup window, called ‘‘SFM proposals’’  
all the actions that the designer could require, or at least with many chances to be used, to 
complete the definition of all the dialogues previously defined in the SFMA. In general, 
typical actions for a dialogue are, first, to request some information from the user (i.e., the 
slots for that state), then to access the database through a call to a database access function, 
then to provide the results of the database query, and finally to jump to the next dialogue. 
Considering that these actions are the most common ones, we decided to implement different 
mechanisms for including automatically proposals for each case, as explained below. 

To decide which actions are relevant, all the information already defined in previous 
assistants, especially the SFMA, is analyzed using the following strategies for each of the 
four sections in the window from Figure 4.12: 

• Slots asked in the current state, the transitions, and the corresponding slots in 
those destination states. In this case, the strategy is to use directly the information 
from the SFMA. In the figure, the system shows the current slot for the edited 
dialogue (i.e., currencyName) and for the following dialogues (e.g., slotYesOrNo). 
Besides, the system shows the calls to following dialogues with up to two levels in 
depth. 

• State specific DGets: to select them, the system looks for the slots defined in the 
SFMA; if they are related to the Data Model, the system selects the corresponding 
dialogues automatically; if not, a more relaxed criterion is used, which is to look for 
a match in the name or attribute type.  

• Database access functions: to filter the possible functions already defined in the 
DCMA, the system first considers functions with the same number and type of 
input parameters as the defined slots for the current dialogue. The next criterion is 
as follows: if the input parameter includes a reference to the data model there 
should be a match in class and attribute between slot and parameter; if not, they 
should match in type. If no function passes these filters, a more relaxed filter is 
applied (e.g., similarity between names). If even with the relaxed filter there is no 
function to be proposed in this window, it would probably mean that there is no 
database access function suitable for that state and it should have been defined 
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before. The assistant offers the possibility of creating those functions, and then 
reload the information in this window. Finally, the other possibility is that for the 
current dialogue it is not necessary to access the database since that will be done in 
another dialogue. 

• State specific DSays: they are selected in a similar way to DGet dialogues, but we 
also include DSays specific to the values returned by the database functions 
selected in the previous step.  

 
Figure 4.12. Example with automatic dialogues and database access function proposals 

 

Figure 4.12 shows an example of the proposals for the banking application. In this 
example, the designer is editing a dialogue where given a currency name the system provides 
its specific information (buy and sell price, general information, etc.). Using the proposal 
window, all the designer would need to do is to select the corresponding DGet in the window 
(DGet_ATTR_CurrencyName_IN_CLASS_ Currency), then the database access function 
GetCurrencyByName, and finally the DSays that provide the desired attributes from the 
currency. To finish, the designer would drop the call to the next state (e.g., 
AskOtherExchangeRates). 

As we can see, this is one of the most useful accelerations, as most common actions 
that are needed in most of the dialogues can be accessed just dragging and dropping the ones 
proposed in this window. 
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4.5.3 Automated Passing of Arguments between Actions 

This is a critical aspect of dialogue applications design. Several actions and states have 
to be ‘connected’ as they use the information from the preceding dialogues. In general, most 
current design platforms allow the same kind of functionality, offering the user a selectable 
list of all the available variables in the dialogue. In other cases, especially considering the 
connections with database access functions, some platforms only allow the designer to define 
the matching by modifying by hand the script code. In this acceleration, we have tried to go 
one-step beyond by automating the connection through automatic proposals. In this case, the 
assistant detects the input/output variables required in each action and, using a popup 
window, it offers the most suitable already defined variable of a compatible type; if there are 
more than one variable of a compatible type, the assistant sorts them according to the name 
similarity between variable and dialogue. If there is no a compatible variable already defined 
in the system or the name proposed by the assistant is not desired, a new local or global 
variable can be created in the same window. Moreover, if the designer makes a mistake or 
needs to edit the matching made in the previous steps, the assistant provides a window where 
all this matching can be edited. 

 
Figure 4.13. Form fill-in windows that automate the process of passing arguments between 

actions 

Figure 4.13 shows an example of this acceleration for the GetInformationByCategory 
function defined in the data connector model. This function requires two input arguments: 
InfoCategory (e.g. loans, cards, deposits, etc.) and InfoSubCategory (e.g. car loans, house 
loans, visa, invest savings, etc.) and returns the information to be presented to the final user. 
The form fill-in windows allows the designer to associate the input arguments as local 
variables already defined and to assign the result to a new local string variable called 
InfoText. In all the cases, the system automatically proposes the values and options presented 
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in the forms. In this way, the designer only needs to click the accept button and continue with 
the design. 

4.5.4 Mixed-Initiative and Over-Answering 

This acceleration allows the creation of complex dialogues where the system can ask 
for several slots at the same time or the user can answer with optional information. Even 
though these two functionalities might be considered as speech modality dependent or 
unnecessary for the Web modality, therefore they should not be handled at this stage (i.e. the 
RMA is modality and language independent), we preferred to include them here for two main 
reasons: first, because some other modality that can be included in the future might benefit 
from this functionality too, and, second, we could make it possible that in a Web page the 
user does not have to fill in all required fields at the same time. In this case, the Web system 
would detect that a certain slot is missing and, instead of generating an error, it would ask for 
the missing data in a subsequent form, in a similar way as VoiceXML handles mixed-
initiative with several slots.  

As we have mentioned at the beginning of this chapter, this acceleration is one of the 
most important speed up strategies applied to the platform. The main motivation for this 
acceleration was to overcome some of the main limitations we found in current design 
platforms. In first place, this acceleration allows the quick creation of dialogues with mixed-
initiative that are difficult to define in many platforms since they do not offer a similar 
procedure for creating them, leaving the designer, in most cases, only the possibility of 
creating directed dialogue forms (i.e., where only one slot can be asked at each time). Second, 
if we consider the platforms that allow the definition of mixed initiative dialogues, we found, 
as far as we know, that none of these platforms allows the creation of dialogues with over-
answering capabilities or a combination of mixed-initiative with over-answering. This is 
mainly due to limitations of the VoiceXML language that we overcame during the GEMINI 
project. Finally, as an additional improvement, the use of this acceleration allows designers to 
create a better dialogue flow since the assistant automatically proposes the slots that can be 
asked using mixed initiative based on heuristic information (see section 4.4.3, page 99). This 
way, the system tries to avoid requesting complex or too confusable slots to the final users. In 
addition, since the internal code and flow is automatically generated it reduces designer 
mistakes in the design or in the codification of the information. 

To provide this functionality, the system offers a Mixed-initiative Template that the 
designer can drag and drop over the dialogue that is being edited. The template shows 
available slots that can be selected (by default, the ones specified in the SFMA for the current 
dialogue). Moreover, the template gives the possibility of adding optional slots to be used for 
over-answering at the same time. With this information, the system generates the necessary 
programming code (including calls and automatic dialogues) in GDialogXML syntax that 
controls the mixed-initiative handling. It is important to mention that the author of the thesis 
directly contributed during the GEMINI project to the definition of the mixed-initiative and 
over-answering templates using as reference the VoiceXML specification and the 
possibilities of our own XML syntax.  

Figure 4.14 shows an example of a mixed-initiative dialogue created using the 
template. In number 1, the slots to be asked are declared. Number 2 defines the procedure for 
asking several slots at the same time; numbers 3 and 4 handle the situation in which the user 
answers partially or only some of the slots are filled after the recognition, so the system has to 
ask again for unsolved slots.  
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Figure 4.14. Example of the GDialogXML syntax for a mixed-initiative dialogue created in 

the RMA 

 

Figure 4.15 shows, for the bank transfer example, the process followed to create a 
dialogue where two slots, CreditAccountIdentifier and CreditDebitIdentifier, are asked using 
mixed-initiative. The designer just needs to drag and drop the Mixed-initiative Template (the 
selected item marked as number 1) on the main window of the dialogue (identified with 
number two); then, a popup window appears (number three) where  the designer selects the 
desired slots (by default, the ones selected in the SFMA, CreditAccountIdentifier and 
DebitAccountIdentifier) and presses Accept with the possibility to add optional slots (over-
answering) or not. 

To admit over-answering, the procedure is very similar: when the designer drops any 
DGet (action to obtain data from the user) the system automatically offers to select additional 
slots as over-answering from that specific state and from the following states in the flow 
(with a limit of two in the hierarchy). As default, the slots defined as optional in the SFMA 
(see section 3.3.1, page 62) are automatically converted into over-answering slots here. In the 
runtime system, the behaviour is that before any DGet the system checks whether the data to 
be asked has been already obtained in a previous state in the flow (as would be the case with 
over-answering). To help in this checking, in the final script all slots are declared as global 
variables, so they can be accessed from any state. 
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Figure 4.15. Example of the creation of a mixed-initiative dialogue 

Similarly to the mixed-initiative case explained above, the system generates the 
necessary programming code (including calls and automatic dialogues) in GDialogXML 
syntax for handling the over-answering. 

 

 
Figure 4.16. GDialogXML code for a dialogue to ask for a single slot and define another one 

as optional using over-answering 
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Observe in Figure 4.16 that in this case the code includes the name of the compulsory 
slot (number 1 in the figure) and the optional one (number 2). In order to allow the user to 
answer both slots at the same time, the template defines both slots as target variables (in 
number 3) but remarking the optional variable in number 4. Then, in number 5, the template 
defines the condition for repeating the same query until the compulsory slot is filled by the 
user. Number 6 specifies the DGet dialogue to ask the compulsory and optional slots. Finally, 
number 7 specifies the concept (i.e., language independent) used for providing help to the 
user in case of problems or if the user requests it. Then, in the MEA assistant the prompt 
associated to this concept is defined, see section 3.4.3 (page 66). 

 

4.5.5 Other Functionalities 

Besides all the strategies mentioned herein, we have also included in the GUI some 
useful characteristics as hotkeys for accessing the most common functionalities of the 
assistant, different colours for distinguishing each kind of dialogue (i.e. already filled, empty, 
DSay or DGet dialogues, etc.). Besides, in order to reduce the number of dialogues shown in 
the canvas the designer can switch between a basic presentation of the dialogue or a more 
detailed visual/textual flow (i.e., including internal information about variables, dialogues 
that are called from or call to the current one, type, etc.)  

There is also a method to display the contents of complex or nested actions contained in 
a dialogue using tooltips (see Figure 4.17), which help the designer in their interpretation 
avoiding the need to open or edit them. 

Finally, several other GUI actions such as find/create/delete/edit a dialogue, or zoom 
in/out the workspace are also available, as well as other contextual right click commands. 

 
Figure 4.17. Tooltips functionality for a quick description of all internal actions 

4.6 Strategies Applied to the Modality Extension Retrieval 
Assistant for Speech (MERA-Speech) 
As we have mentioned in the introduction of this chapter, the accelerations introduced 

in this assistant can be considered as the second most important strategies applied to the 
platform. In this assistant, we considered solutions for two specific problems for the speech 
modality: the presentation of results to the user after accessing the database, and the 
confirmation of user answers. When we studied the mechanisms offered by current both 
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commercial and research design platforms to deal with these problems, we found that the 
typical solution was to leave the designer to specify the complete dialogue flow or to leave 
the problem to some predefined actions provided by the ASR engine. Obviously, these 
solutions are not satisfactory since they imply the codification by hand of too many situations 
and conditions. Besides, as we will see in section 4.6.2 (page 113), there are some restrictions 
for some confirmations that the designer could not take into account. On the other hand, the 
assistant also accelerates the design by providing automatic proposals for the different data 
that the designer has to provide, automatically generating all the dialogue flow according to 
the designer selections, and using predefined and reusable built-in dialogues. Finally, another 
important contribution of the thesis are the templates that we have defined and used to codify 
all the internal dialogue flow and actions required to solve each of the problems and 
situations considered (see Appendix C). These templates were created from our experience in 
designing dialogue applications, considering the common solutions to the problems we have 
dealt in this assistant, as well as taking into account the limitations that we found for the 
VoiceXML standard. 

As explained in section 3.4.2 (page 65), this assistant allows the designer to adapt 
specific dialogues defined in the RMA to the speech modality. The dialogues considered by 
the assistant are those that show lists of information to the user (e.g., mainly the ones created 
using the DSay template for list of objects and marked with prefix DSay_From_List, see 
section 4.5.1, page 101) and those that obtain information from the user (e.g., the ones 
created from the automatic dialogues in the RMA and marked with prefix DGet, see section 
4.5.1). 

For the DSay dialogues, the assistant allows to specify the dialogue flow for providing 
the information contained in a list of retrieved results after making a database access. The 
flow depends on the size of the list. Four cases have been considered: when there is not any 
retrieved result, when the list has only one item, when the number of items lies on a defined 
range, or when there are too many items, so it is difficult to say all of them using speech.  

On the other hand, for the DGet dialogues, the assistant automatically generates the 
flow for confirmation handling (i.e. what to do when the user does not provide an answer 
after a system query, to allow an implicit confirmation, or when the confidence level is in the 
range of the explicit confirmation, etc.). 

Finally, since the algorithms used to automatically create the flow for the dialogues 
completed in this assistant are too complex to be described in detail in this section, we have 
decided to include an easy to read description in pseudo-code in Appendix C. The appendix 
describes the cases considered in this assistant: a) handling of lists of objects, b) simple 
confirmation and full confirmation for dialogues with one slot, c) confirmation of dialogues 
with mixed-initiative, d) confirmation handling for dialogues with one compulsory slot plus 
slots with over-answering, and e) the most complex case, confirmation handling for dialogues 
with mixed-initiative and over-answering slots. 

4.6.1 Presentation of Object Lists 

Object lists are the result of a database query, so there is usually a lot of information to 
be provided to the user. The assistant considers four different cases as a function of the 
number of items in the list. For each case, a simple form allows the designer to specify the 
actions that have to be carried out. After filling the four forms, the actions and new dialogues 
needed to provide/obtain information to/from the user are automatically generated.  
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In order to accelerate the process of filling in the forms, the assistant provides the most 
reasonable default values for all dialogue and slot names after the analysis of the input files of 
the assistant (in this case, the models generated by all the previous assistants in the platform: 
ADA, DMA, DCMA, SFMA, RMA, and UMA). The assistant also considered a simplified 
case: when the list only depends on one slot input by the user, e.g., when asking for a list of 
banking transactions. In this case, the assistant presents a simplified version of the following 
windows where the designer does not need to specify the slots to be cleared. The four 
different cases and their actions are as follows: 

1. The list is empty: As the query has been too restrictive, some slots need to be unset 
and a new query has to be done with less restrictive values. The first action is to use a 
predefined DSay dialogue to tell the user that there is no available information and 
then to jump back to a previous state selected by the designer, where the user is asked 
again for the slots that the designer decides that have to be unset. The objective is that 
the user answers the next time with a more generic answer to the slot so that the query 
is less restrictive. 

2. The list has one item: This is the simplest case, since there is only one item, the 
designer only needs to define a configurable DSay that can provide complete or 
partial info from the item found. In order to configure the DSay dialogue, a pop-up 
window shows a list with the available attributes for the class of the item.  

 
Figure 4.18. Example of the assistant window for configuring a DSay dialogue for the 

presentation of objects lists (case 3). 
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3. More than one item and less than a maximum allowed: This is the more complex 
situation, as the items have to be provided in groups. Figure 4.18 shows the window 
used to define this case. In the figure, number 1 and 2 define an optional step for 
informing the user, at the beginning of this dialogue, how many items there are in the 
list (using the built-in dialogue DSay_NumberOfItems), and to ask how many the user 
wants to listen to (DGet_MaxNumberOfItems). If the user does not provide a valid 
number (e.g., it is too high) the system uses the default number defined in the ADA 
(see section 3.2.1, page 59). As acceleration, the assistant automatically proposes 
default dialogues that can also be reused in other DSay dialogues for presentation of 
lists of objects. 

The next step (number 3) is to configure the enumeration of the retrieved items. The 
pop up window, number 9, allows the designer to select the attributes to be used to 
configure the prompt that provides general info to the user. In this case, it is expected 
to select few of them and provide more information in a following step. After playing 
the info for each item in the group, the user is asked if he/she wants to continue to the 
next group, repeat the group, begin from scratch, exit, or select a specific item to 
receive more detailed information. In this case, the system uses universal command 
words as proposed by the Universal Speech Interface project [Toth et al, 2002]. 

In case that the user chooses one item, the system provides detailed information 
(number 4) of the object using a new selection of attributes (made through the pop-up 
window in number 9) specified by the designer (similar to the case when the list has 
one item). 

The checkbox, number 5, allows the designer to select an optional jump to another 
dialogue after the presentation. By default, the system proposes the dialogue that calls 
the DSay of Lists or the initial dialogue of the service; the designer can also select a 
DYesOrNo dialogue to know if the user wants another service or not. 

Another situation (step 2 case B in the figure, near number 6) that the assistant faces is 
when the system finishes reading the whole list and the user does not like any item or 
has cancelled before the end of the list. In this case, the system informs the user that 
there are not more items to show (the assistant proposes the dialogue 
DSay_NoMoreItemsToPlay, number 6) and then jumps back to a previous state 
selected by the designer (number 8), where the user is asked again for the slots that 
the designer has decided to unset (number 7), so that the user can answer with a 
different input that provides different database items. This situation is similar to case 
1. 

4. More items than the maximum allowed: As there are too many items, the search 
should be more restrictive. In a first step, the system uses a predefined DSay dialogue 
to inform the user about this situation. For the next steps, the assistant can handle 
three different situations: 

First, the designer can choose that the system plays information for items from one to 
a maximum as in case 3.  

Second, if all slots of the application are already filled, the user has to change some of 
them to make them more restrictive (e.g., the user wants last month’s transactions but 
there are too many). In this case, the designer specifies which slots have to be unset 
(e.g., the slot containing the period of time the user wants to know) and the questions 
will be repeated, in a similar way as in case 1.  
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Finally, the third situation, if there are still some slots to be asked, the system 
continues with the normal dialogue flow until the next database query.  

4.6.2 Confirmation Handling 

One of the main problems in a dialogue system is how to cope with speech recognition 
errors. Unfortunately, the great variability of speech among different speakers, environments, 
channels, noises, etc., prevents modelling all possible variations. Therefore, the system will 
always need to deal with speech recognition errors, requiring the confirmation of speech 
recognition results by asking the user, in order to proceed in the dialogue flow (i.e., especially 
before retrieving/modifying any information from/in the database). The problem is that if the 
system confirms every single slot, the dialogue will be too slow and user satisfaction will 
decrease drastically. A solution of compromise is to use the confidence level provided by the 
speech recognizer. The confidence is a value between 0 and 1 that provides a measure of 
reliability of the speech recognition results: a value close to 0 means that results are not 
reliable, and a value close to 1 means that results are very reliable. Usually, three thresholds, 
τi, can be defined for this confidence value and several strategies can be adopted according to 
these thresholds [San-Segundo et al, 2001b]. The most popular strategy and the one 
implemented in our platform, being CV the confidence value is the following: 

• No confirmation: τ1 < CV ≤ 1.0. The result is accepted with no confirmation 
because the confidence is very high.  

• Implicit confirmation: τ2 < CV ≤ τ1. High confidence in the result. An “implicit 
confirmation” is applied, which means that the system provides the recognition 
result to the user as a fact in the next dialogue turn, speeding up the dialogue, e.g. 
“You want to travel to London. When do you intend to leave?” The user can say 
“no” or “cancel” at that point to go back in the dialogue if London was not the 
intended destination. 

• Explicit confirmation: τ3 < CV ≤ τ2. The confidence is intermediate. The best 
option is to ask the user if the result is correct, e.g. “Do you mean London?” to 
confirm that London is the intended destination. 

• Reject: 0.0 ≤ CV ≤ τ3. The confidence level is extremely low, so the result is 
clearly unreliable. The system rejects it and asks it again. 

In our platform, the default confidence levels for all the dialogues are defined in the 
Application Description Assistant (ADA) at the beginning of the design. However, they can 
be modified according to different user profiles and depending on the dialogue using the User 
Modelling Assistant (UMA). In the MERA-Speech assistant, it is also possible to define 
which of the strategies described above are available or not depending on the complexity and 
subsequent actions given a particular dialogue. In order to do this, we have considered two 
confirmation profiles: Simple and Complete. Simple is recommended for dialogues that need 
a very high confidence, such as Yes/No or passwords questions; in this case, only two levels 
are allowed: no confirmation and repeat the question. However, Complete uses all the 
strategies described above.  

Initially, when the MERA-Speech assistant is initialized, it automatically selects, from 
the file generated by the RMA, all the dialogues that are used as input dialogues (e.g., the 
ones with prefix DGet) that need confirmation and analyzes their flow to propose the most 
suitable confirmation profile (Simple or Complete). However, the designer can change that 
proposal and the assistant checks whether the selected type is feasible. Then, after accepting 
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or modifying the proposals of the assistant, the designer just has to press the accept button in 
order to allow the system to automatically complete the confirmation flow following the 
algorithm described in Appendix C. Finally, the MERA-Speech uses the same common 
internal variable used in the UMA assistant (section 3.4.1, page 65) to store the confidence 
value returned by the last recognition call. Then, the final script tells the system to compare 
this value with the current confidence limits, stored in four fixed name variables, as defined 
in the UMA for each user level and specific dialogue.  

In detail, the algorithm that analyzes the dialogue is as follows: first, the system 
examines the number and type of slots to be retrieved by the DGet dialogue, and if there is 
only one slot, its type is Boolean or string (as used to contain an alphanumeric password) and 
the number of actions in the calling dialogue is not too high, the system selects the simple 
profile; if all these conditions are not fulfilled, then the system selects the Complete profile.  

When the algorithm allows the system to use the Complete profile, the assistant has to 
consider three different cases to determine if implicit confirmation can be allowed or not. If 
the system does not allow the implicit confirmation, explicit confirmation is used regardless 
of the confidence levels defined in the UMA. If the implicit confirmation is allowed, the 
assistant automatically sets a global variable with the name of the DGet dialogue where to 
jump back and unset its slots in case the user rejects the recognition in the following DGet 
dialogue (remind that the rejection, using implicit confirmation, is detected in the following 
DGet). The three conditions that have to be fulfilled in order to accept the implicit 
confirmation are the following ones: 

1. If the next action after calling the DGet dialogue does not correspond to a database 
access. The reason is to allow, in the real time system, the possibility of making the 
confirmation before accessing the database (i.e., in the following DGet dialogue). 

 

 

 

2. When the selected dialogue (DGet_1) calls another dialogue (DGet_2) which in turn 
is not called from other dialogues (e.g. a DGet_3). The reason is that otherwise the 
system will not be able to set the global variable which contain the dialogue to jump 
back (It could be DGet_1 or DGet_3) in case of a rejection. Therefore, without this 
information the system cannot guarantee to jump back to the right DGet dialogue in 
order to repeat the last question and fill the slot again. 
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3. The selected dialogue (DGet_1) calls to different dialogues but they are not called 
from other places (e.g. if DGet_3 is called from DGet_4). In this case, the problem 
appears for the DGet_3 dialogue, because from that dialogue the system cannot 
guarantee to jump back to the right DGet (DGet_1 or DGet_4) as in case 2. 

 

 

Finally, the assistant automatically generates the dialogue flow (consisting of calls to 
internal automatically generated dialogues for each type of confirmation and dialogue state) 
to carry out all the confirmation and subsequent correction. These internal dialogues are 
named in a smart way (using the Universal Speech Interface (USI) project, [Toth et al, 2002]) 
so that the designer can easily identify them when defining the grammars and prompts in the 
next assistant. 

 

4.7 Strategies Applied to Other Assistants 

This section describes, for consistency with this chapter, several accelerations applied 
to other assistants in the platform that were mainly developed during the GEMINI project.  

In general, the following assistants and their accelerations were developed by other 
partners of the project, except when explicitly stated that they were introduced by the author 
of this thesis. 
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4.7.1 Modality and Language Extension Assistant (MEA) 

As mentioned in section 3.4.3 (page 66), this assistant is the responsible of defining all 
the language and modality dependent aspects of the application (e.g., grammars and prompts 
for the speech modality, input/output concepts for the Web modality).  

The main accelerations included in this assistant are: a) The possibility of creating 
language-dependent prompts using pre-loaded libraries and reusing prompts in other 
languages as configurable templates (see section 4.7.1.1). b) the creation of JSGF grammars 
using a wizard window, which also allows the creation of the pronunciation vocabulary used 
by the speech recognizer (see section 4.7.1.2), and c) the possibility of debugging JSGF files 
and creating n-gram based stochastic speech grammars (see section 4.7.1.3). 

 

4.7.1.1 Setting of system prompts 
For the speech modality, several prompts for each different kinds of dialogue (filling 

(DGet), presentation (DSay), or help) have to be defined: the default one, for the different 
user levels, and for all possible recognition errors (no input, no match, service timeout, etc.), 
and the number of times that the assistant allows every error to occur (1, 2, 3, …) before 
transferring the call to an operator or exiting. 

To speed up the process of typing all these prompts, the assistant offers three 
possibilities: 1) reuse prompts already available for the current application, 2) reuse prompts 
generated in previous applications and saved as libraries, or 3) reuse wording libraries saved 
from previous applications. 

 

 
Figure 4.19. Assistant window for copying prompts 
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For the first and second case, the system allows the designer to copy the contents of an 
already defined prompt into the currently edited prompt. Figure 4.19 shows the interface for 
copying prompts when creating a prompt for a specific dialogue. Prompts in this window are 
loaded from previous saved libraries or from other states of the current service. 

For the third case, the system allows the reusability of prompt wordings from old 
applications. The difference between wording and prompt libraries is very subtle (see Figure 
4.20). While a wording only contains full or partial sentences without including prompt 
arguments, SSML information, or breaks, prompt libraries may contain all this information. 
The former are useful for cross-domain services, while the latter are useful, especially when 
they include prompt arguments, for in-domain services or for new versions of the same 
service. In our platform, in order to distinguish them, wording lists are saved with the 
extension pwl and the name is automatically composed concatenating the application name 
and the language (e.g. ApplicationName_LanguageID.pwl). By contrast, prompt libraries are 
saved one for each language of the service with the name tcf.xml in the corresponding folder. 

 
Figure 4.20. Examples of wording and prompt library files. 

Once the prompts for the main language have been specified, the designer has to 
specify them for the additional languages. This process is accelerated by using the main 
language prompt as a template to edit the string parts of the language dependent prompts. 
These prompts can be specified either at once for one language for all dialogues, or for each 
dialogue for all additional languages.  

When editing a prompt for an additional language, only the string and break prompt 
items can be edited, added or removed. Prompt arguments (i.e. slots passed as arguments to 
that prompt) are kept from the main language prompt template, and cannot be removed since 
it is supposed that they are required to provide the information to the user (e.g. Your account 
balance is <slot_balance> euros, in English, or El saldo de su cuenta es <slot_balance> euros, 
in Spanish) with independency of the language. In any case, the wizard allows the designer to 
change the order of the arguments throughout the sentence using the arrows in number 2. 

Figure 4.21 shows the window used to create prompts for additional languages. 
Number 1 notifies the designer about the dialogue, user level, error type, and number of 
occurrence the prompt that is being edited corresponds to. Number 2 shows the prompt in the 
main language. This prompt is used as a template to configure the prompt in number 4 for the 
new language (number 3). As mentioned above, number 6 and 7 allow the designer (through 
the pop-up window shown in Figure 4.19) to use already defined wordings or prompts 
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respectively. The window also allows the designer to use new SSML tags (number 5) and the 
possibility of including audio files in order to allow hybrid prompts (number 8). 

  

 
Figure 4.21. Additional languages prompts setting window. 

 

4.7.1.2 Creation of rule-based grammars 
As mentioned in section 3.4.6.2 (page 72), the Language Modelling Toolkit (LMT) is 

an auxiliary assistant that allows the designer to specify the language models that will be used 
in the runtime system to ‘‘understand’’ the different user answers to the system questions. 
This assistant helps the designer to generate and depict rule-based grammars in JSGF format, 
without requiring the use of third party applications. The assistant was created during the 
GEMINI project, and it is described in detail in [Georgila et al, 2004]. 

Figure 4.22 shows the main window of the assistant. In this example, the grammar 
name, Journey, is defined in number 1. The grammar format is selected (number 2) to be 
written in JSGF in Augmented Backus-Naur representation (it is also possible to select 
writing it in XML format). The grammar language is selected in step 3 as British English 
(en_UK). In step 4, the designer defines the rules that compose the grammar, specifying if 
they are public or private. For each rule, it is possible to define rule attributes in step 5. The 
rule attributes allow the definition of the slots to be used to store semantic information. In the 
example, destination is the name of the slot that will store the semantic interpretation given 
by the specific token uttered by the user (i.e. Lisbon, Paris, Athens, or Madrid). Finally, in 
step 6 the designer introduces, using a pop-up window not shown in the figure, the set of 
possible tokens the user can say in that specific rule. The pop-up window allows the designer 
to match the rule attribute with the corresponding semantic interpretation. 



Chapter 4: Speed up strategies applied in the dialogue design  

119 

The assistant includes several accelerations that simplify the process of creating the 
grammars and pronunciation dictionaries for the speech recognizer. For instance, during the 
definition of the grammar, the assistant allows the designer to specify references to other 
rules, grouping and optional groupings, alternatives, rule expansions, and multi-word tokens. 
Besides, when creating the rules, the designer can type in words and strings of words or insert 
them from multiple external vocabulary files. In addition, it is possible to define all the 
tokens related to a rule and mapped to the same semantic attribute. For instance, in Figure 
4.22, the rule <arrival> has four tokens (Lisbon, Paris, Athens, and Madrid) and all of them 
have the same semantic concept, “destination”. Since this information can be stored in a 
database consisting of hundreds or thousands of records, the assistant allows the designer to 
load a file containing all database records, to link them to the semantic attribute, and to 
decide if they are optional, or if they have to be expanded zero or more times, or expanded 
one or more times. 

 

 
Figure 4.22. Example of the definition of a grammar rule using the Language Modelling 

Toolkit 

Finally, the assistant also incorporates a vocabulary builder component that generates 
the phonetic transcriptions, in the Speech Assessment Methods Phonetic Alphabet 
(SAMPA 61) format, of the words included in the grammar in order to create the 
pronunciation dictionary used by the speech recognition. Currently, the tool allows the 
automatic transcription for the four original languages supported by the AGP (i.e. English, 
German, Greek, and Spanish). However, in order to allow the transcription for other 

                                                 

 
61 http://www.phon.ucl.ac.uk/home/sampa/index.html  

http://www.phon.ucl.ac.uk/home/sampa/index.html�
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languages, the tool includes a language-independent function that enables the user to write 
context-dependent rules for grapheme-to-phoneme and phoneme-to-grapheme conversions. 
Finally, [Georgila et al, 2004] report a subjective evaluation where different kind of 
grammars and scenarios were evaluated, showing the efficiency of the tool considering that it 
saves time and prevents designers from making mistakes that can be hard to locate if the 
grammar is generated by hand. 

4.7.1.3 Creation of stochastic grammars 
In addition to the possibility of creating context-free grammars using JSGF files, the 

platform includes two new functionalities incorporated by the author of the thesis, in order to 
create and debug stochastic language models. The first functionality allows the designer to 
obtain a text file with all the sentences that a JSGF grammar can produce when all its rules 
are automatically and recursively expanded. This feature allows the designer to debug the 
grammar providing a full list of all the sentences that the ASR can recognize. The second 
functionality is the automatic creation of a stochastic grammar based on word n-grams 
generated from the file with all the previously generated sentences. The main motivation for 
this functionality is to create automatically the stochastic grammars required by the ASR. 
This way, the ASR can support large and open vocabularies, improving the service and 
allowing a more robust and flexible recognition of user’s utterances.  

The process of creating the grammars is done using the assistant shown in Figure 4.24 
after specifying the grammar and clicking in button number 1. The first step is to generate a 
raw text file containing all possible sentences generated from an existing rule based grammar 
file (currently, only JSGF files are accepted but in future releases it will be possible to use 
others formats) created using the built-in assistant of the platform (section 4.7.1.2) or from 
other platforms. 

 

 
Figure 4.23. Example of full generation of possible sentences from a JSGF file 
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The process for generating the sentences is to first expand all rule names (e.g. 
<Category>, <I_want>, etc. in Figure 4.23) defined in the file, considering at the same time 
all the possible combinations with special JSGF symbols for alternatives, grouping and 
optional grouping (i.e. |, () and [] respectively). Although the assistant is flexible and robust 
enough to parse several kinds of rule names, there are some limitations regarding the standard 
JSGF format; for example, the assistant does not expand recursive/nested rules, incomplete or 
malformed rules, unary operators neither weights information. These improvements will be 
considered in future developments of the platform. 

The second step, number two in Figure 4.24, is to generate the stochastic grammar from 
the sentences created in the previous step or from new texts. The designer needs to select, 
number 3, the text file generated in the previous step or include more files, and the name of 
the grammar file to be generated (number 4). By default, the assistant automatically proposes 
the name of the output file using the name of the JSGF file used in the previous step or from 
the first text file selected in step three. With this information, the assistant generates three 
files: 1) the grammar file (up to trigrams), 2) a vocabulary file containing all different words 
that appears from the selected texts, and 3) the pronunciation file, in SAMPA format, for the 
recognizer.  

 

 
Figure 4.24. Assistant for the creation of stochastic language models 
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4.8  Conclusions 

In this chapter, we have described all the accelerations included in the design platform 
in order to speed up the design and guide the designer through all the steps required to create 
a multimodal and multilingual dialogue service. Apart from the direct applicability of these 
accelerations in the design platform, and the advantages for designers, the proposed 
accelerations are in most cases innovative and do not exist in any of the current commercial 
and research platforms. 

Different types of accelerations have been proposed according to the requirements, 
capabilities, and available information at each assistant. In some cases, the accelerations take 
advantage of heuristic information extracted from the contents of the backend database used 
in the service or from an object oriented data model structure that represents the tables, fields, 
and relationships between fields of the database. In other cases, the accelerations consist of 
the application of predefined and configurable rules that using contextual and previously 
defined information from other assistants, allows the generation of different kinds of 
proposals that simplify the process of creating and fulfilling the dialogue flow. Finally, other 
accelerations consist of different wizard windows or simplified processes that help designers 
to complete, create, or debug models (e.g., grammars, prompts, SQL commands) required by 
the design and runtime platform. 

In order to provide some of the accelerations, an automatic procedure to extract 
heuristic information from the backend database was created. During this process, we had to 
deal with some limitations of the connecting database driver, mistakes in the definition of the 
fields in the database, and for mapping some field types supported by the platform but not for 
most database engines. These problems were solved through a set of regular expressions that 
were evaluated on different available databases obtaining an average correlation of 89.6 % 
when compared to the classification made by a human evaluator. 

In relation with the accelerations included to create the data model structure we have 
proposed a new assistant that automatically exploits the heuristics extracted from the database 
contents in order to automatically propose, organize, and simplify the process of defining the 
classes and attributes. 

In relation with the assistant that defines the prototypes of the database access 
functions, we have incorporated a new wizard window that allows the automatic generation 
and debugging of SQL queries used by the real-time system. Internally the system 
implements an automatic procedure that analyzes and proposes the SQL statements using 
information regarding the type of the input/output parameters. This acceleration contributes 
to reduce the necessity of learning a new programming language (SQL in this case), and goes 
one step forward to similar assistants in current development platforms: the queries are 
automatically proposed. Another acceleration, proposed and implemented by the partners of 
the GEMINI project, allows the definition of relations between the function arguments and 
the data model structure. Then, in the following assistants, these relations are exploited 
trough different kind of automatic proposals that simplify the design. 

In relation with the assistant where the state flow model is generated, during this thesis, 
we have contributed with a new graphical interface that simplifies the creation of the 
transition network, and provides a clear overview of the dialogue flow by using an automatic 
algorithm that reduces and reorganizes the information displayed to the designer. On the 
other hand, the main accelerations are the automatic generation of different state proposals 
that can be used to quickly create complex states, together with the possibility of using an 
automatic analysis of the feasibility of the slots defined in a given state of being requested 
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using mixed initiative forms or direct forms. Both accelerations represent an important effort 
for the reduction of the design time and to improve the quality of the generated flow in 
comparison to current development platforms. Especially interesting is the process of 
automatically proposing the slots to be requested using mixed-initiative forms or directed 
dialogues which is not provided in any other platform. 

In relation with the retrieval modelling assistant, it has been the assistant where the 
higher number of accelerations have been proposed and implemented. Specifically we have 
incorporated several automatic dialogues and templates that can be used to obtain or present 
information to the final user. In a similar way to the previous assistant, the proposed 
dialogues help to reduce designer mistakes when creating new dialogues by proposing default 
built-in dialogues. Besides, we have incorporated an auxiliary window where the designer 
can find all the actions that are considered relevant for the dialogue being edited. This 
acceleration and the procedure to fulfil the information presented to the designer do not exist 
in any other platform and it is one of the most important contributions of this thesis. In 
addition, we have also created an automatic procedure to help the designer to connect the 
input/output parameters of different actions and dialogues with the local/global variables that 
contain or will contain the information for/from those actions and dialogues. Again, in this 
case the assistant applies different rules and mechanisms to automate this process that is 
usually made by hand in other development platforms. Finally, we have also designed a 
simple procedure to define dialogues with mixed-initiative or over-answering capabilities. 

In relation with the assistant that defines the specific details for the speech modality, the 
proposed accelerations were the automatic generation of the dialogue flow required for the 
confirmation handling of the user answers, together with an assistant where the dialogue flow 
for providing the information contained in a list of retrieved results after querying the 
backend database can be specified. In this case, both accelerations provide innovative 
contributions to the design of spoken dialogue applications by proposing different procedures 
and dialogue flows, codified through predefined templates, considering the number of items 
to show to the user, the number and type of the slots to be requested, as well as the 
confirmation type to be used. Finally, the assistant semi-automatically proposes the 
information required to complete some actions or steps of the dialogue flow. 

Finally, other assistants in the platform were also accelerated in order to allow the quick 
definition of language dependent prompts and pronunciation vocabularies used by the speech 
recognizer, as well as the creation and debugging of stochastic grammars.  
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55  EEVVAALLUUAATTIIOONN  OOFF  TTHHEE  AACCCCEELLEERRAATTIIOONN  

TTEECCHHNNIIQQUUEESS  

In order to estimate the goodness of the platform, its assistants, and the different 
acceleration techniques, two different types of evaluations were proposed: the first one is a 
subjective evaluation where several persons, with different levels of experience on designing 
and programming dialogue applications, rated the design platform and its assistants. The 
second one is an objective and subjective evaluation, where another set of designers were 
proposed to evaluate the platform using a measurement system that provided several 
objective metrics when using the assistants and compared our platform with an alternative 
assistant with less accelerations. Finally, these evaluators were also asked to fill in a 
subjective evaluation form. The next sections present full details for both evaluations. 
Finally, in section 5.3 (page 147) we present the conclusions of the evaluations. 

5.1 Subjective Evaluation 

In order to rate the usability and acceptability of the platform, during the GEMINI 
project we carried out a subjective evaluation of all the assistants included in the Application 
Generation Platform (AGP). The main topics evaluated at this time were: a) the friendliness 
of each assistant in the platform and the whole platform interface, b) the complexity and time 
required to learn to use each assistant and the whole platform, c) the level of functionality of 
each assistant, d) the level of consistency, transparency, and intuitiveness of each assistant, 
and e) the willingness of the evaluators to use the platform to develop dialogue applications. 
Appendix D contains the detailed questionnaire the evaluators had to answer.  

5.1.1 Experimental setup 

Since this evaluation was carried out during the GEMINI project, we were able to 
evaluate the platform and its assistants with different groups of evaluators created from the 
partners of the project. In this case, the Greek group was created from people from the 
University of Patras – Wire Communication Lab (WLC 62) and from the Knowledge 63 
company. The German group was created from workers at Temic SDS GmbH company 
(currently, Harman-Becker 64). Finally, the Spanish group was created from people working 
or studying at the Universidad Politécnica de Madrid (UPM). In turn, these groups were 
divided into three categories considering the level of knowledge and experience on designing 
dialogue applications. The three categories considered were: novices, i.e. testers that never 
developed a dialogue application before, intermediate, i.e. testers with some experience on 
using or designing dialogue services, and finally experts, i.e. evaluators who previously had 
used other platforms or languages to develop dialogue applications.  

                                                 

 
62 http://www.wcl.ee.upatras.gr/ 
63 http://www.knowledge.gr/  
64 http://www.harmanbecker.com/  

http://www.wcl.ee.upatras.gr/�
http://www.knowledge.gr/�
http://www.harmanbecker.com/�
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Partner Novice Intermediate Expert Total 

WCL (Greece) 11 4 0 15 

KNOW (Greece) 0 4 6 10 

HB (Germany) 9 0 0 9 

UPM (Spain) 4 3 0 7 

Total 24 11 6 41 

Table 5.1. Distribution of the evaluation participants for the subjective test 

Table 5.1 shows the statistics and details about the forty-one participants involved in 
this subjective evaluation. From WLC, 15 subjects, post-graduate students, were involved. 
All of them having experience in at least one programming language, but most of them with 
no experience in dialogue applications. From this group, four were classified as intermediate 
level since they had some experience in Web applications. From Knowledge, 10 subjects, 
developers working in the company, evaluated the platform. Fifty percent of the subjects 
were speech application developers, whereas the other fifty percent were Web application 
developers. In this group, the average number of years of experience in designing dialogue 
applications was three. Therefore, they were categorized as intermediates and experts. From 
Temic, nine subjects, software engineers working in the company, evaluated the platform. All 
of them were classified as novices as they had never before written a dialogue application. 
Finally, from the UPM, seven subjects, pre-graduate students and teachers of the university, 
were involved. In this case, three were classified as intermediate with an average of four 
years of experience in speech dialogue development. The age of the users was varying in the 
range of 21 to 49 years old. Considering the subjects’ mother tongue, the groups included 
Greek (61%), Spanish (17%), and German (22%) speakers. Figure 5.1 illustrates the final 
distribution of programming skills of the users involved in the evaluation. 

 
Figure 5.1. Final distribution of experience status for the evaluation participants of the 

subjective test 

The evaluation was done in one session of 3-4 hours. This session was divided into 
three main blocks. To start with, an overview of the platform was presented to the 
participants. Including also information about some definitions and terms (e.g., 
multimodality, over-answering, mixed-initiative, etc.) used during the evaluation that were 
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not known at all by most of the participants, especially the novice users. Besides, the 
architecture of the platform, the sequence of the layers, and the functionality of each assistant 
were also explained.  

During the second block, the participants received a detailed demonstration of each 
assistant, its interface, capabilities, accelerations, settings, and proper input and output were 
described. The demonstration was based on a demo version of a banking application.  

Finally, in the third section, the evaluators were asked to use each assistant of the 
platform in order to create an appropriate model for a new dialogue service. For instance, the 
testers were asked to perform the following tasks: to create the data model for three complex 
classes, to prepare at least three database access functions for the DCMA. In addition, they 
had to design at least four states in the SFMA, to get the information about a house loan, to 
do a transaction of a certain amount between two accounts using mixed-initiative and to 
obtain the current value of a currency in the RMA. The final goal of all these tasks was to 
cover more than the 90% of the functionality of the AGP. In any case, in order to carry out all 
these tasks within the limitation of the 3-4 hours of the evaluation, the participants were 
allowed to create and reuse some predefined libraries and models without starting from 
scratch. After finishing the evaluation, a short discussion was carried out about the main 
problems that they had faced, and they were also asked to answer a questionnaire with 
specific questions for each assistant and for the overall appearance and behaviour of the 
platform. 

 

5.1.2 Evaluation results 

As we have described before, after finishing the evaluation of each assistant and the 
whole platform, the participants were asked to answer the questionnaire included in 
Appendix D. The questionnaire consists of four questions per assistant and seventeenth for 
the overall AGP. The scale used by most of the questions is a 10-point scale being 1 the 
minimum and 10 the maximum score. In this section, we will show the results obtained for 
each of the four questions per assistant and for the overall evaluation of the AGP.  

In summary, we can say that all the assistants were rated positively, with an average 
score between 7.0 and 8.5, which is a very homogeneous score. Here, the ADA, DMA, 
SFMA, DCMA, MERA-Speech, and UMA assistants were rated, in average, between seven 
and eight considering the four initial questions. The RMA was rated as having a very good 
overall appearance and extremely good functionality. However, it had some difficulties in 
learning and was perceived as less intuitive. The most probable reason is that it is the 
assistant that provides the biggest functionality for dialogue design, as it is the place where 
detailed design is made, and the evaluating designers were given very little time to learn each 
assistant and practise with them, so in practice evaluators only read part of the documentation 
provided beforehand regarding the designs they were asked to do.  

On the other hand, the participants rated the assistant for the modality and language 
extension (MEA) below seven for all the questionnaire sections. In this case, the low results 
are probably the result of the time required to set the prompts and grammars (text typing), 
especially for different language definitions where machine translation and more prompt and 
grammar libraries would be desirable. 

• How quickly did you learn to use each assistant? 
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As we can see in Figure 5.2, the average score for all the assistants was 7.7, which is a 
very good rate considering the different functionalities and processes done by each assistant. 
As we have previously mentioned, the RMA obtained only a 6.4 score mainly due to the short 
time the participants had to use it and the big number of functionalities offered by this 
assistant. In the other hand, the MERA-Speech, the other assistant developed in this thesis, 
was highly rated since most of the complexity of the generated flow is hidden to the 
designers. 

 
Figure 5.2. Evaluation results for the question about how quick the participants learnt to use 

the platform assistants 

 

• Is the assistant easy and intuitive to use? Do you know what to do at each step? 

According to Figure 5.3, the average rating for all the assistants in the platform was 7.3. 
Here we observe a similar behaviour regarding the previous question, i.e. the most complex 
assistants have the lower score. It is interesting also to observe again that the MERA-Speech 
is one of the most positively rated assistants. One of the reasons was that its graphical 
interface contained enough information to guide the designer. 

 

 
Figure 5.3. Evaluation results for the question about how easy and intuitive were the platform 

assistants 

 



Chapter 5: Evaluation of the acceleration techniques 

129 

• Is the functionality of the assistant sufficient? 

Figure 5.4 shows the results for the third question in the survey. Here we can see that 
all the assistants were highly rated, with an average score of 8.0. In this case, the RMA and 
MERA-Speech assistants obtained the maximum scores. It is important to mention that, at the 
time of this evaluation, most of the accelerations described and designed by the author of this 
thesis had not been included in the DMA, DCMA, and SFMA assistants, therefore they could 
have obtained a higher score. On the other hand, the MEA assistant was the assistant with the 
lowest score. As we mentioned above this was mainly due to the low number of accelerations 
included in it. 

 
Figure 5.4. Evaluation results for the question about how sufficient was the functionality of 

each platform assistant 

 

• How do you rate the appearance of the assistant (consistent, transparent, and 
intuitive)? 

Figure 5.5 shows the results for the last question about each assistant. The average 
score for all the assistants is 8.0. It is interesting to observe that for this question the results 
were more homogenous but consistent with the previous one. Again the assistants designed 
and implemented by the author of the thesis were the ones that obtained the highest scores. 

 
Figure 5.5. Evaluation results for the question about how consistent, transparent, and intuitive 

the users rated each platform assistant 
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Figure 5.6 shows the average results for the four general questions included in the 
survey considering each assistant independently. 
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Figure 5.6. Average results of the subjective evaluation for general questions about the 
assistants 

 

Finally, the questionnaire gave the participants the opportunity of providing comments 
and suggestions about each assistant. Next, a summary of their comments is provided. 

• “All the assistants require some kind of contextual help at “mouse-over” in order 
to guide the designers about the capabilities and functionalities of the assistant”; 

• “Some of the assistants require some kind of GUI adaptability to the monitor 
resolution”; 

• “The SFMA and RMA functionality should eventually be integrated into one 
assistant, as they are using at a high degree the data model”; 

• “The RMA is the most demanding regarding the time needed to understand it and 
use it, however it boasts a high quality GUI, desirable for the other assistants too”; 

• MERA-Speech: “very nice functionality for lists handling, offering a wide range 
of possibilities”; 

• UMA: “very simple functionality, that could eventually be integrated into one of 
the Speech modality assistants (MERA-Speech or MEA)”; 

• MEA: some users remarked that setting additional language prompts was too 
slow, possible due to the expectation of automatic text translation from the main 
language; 

• MEA: additional knowledge and learning time is required at this level (for a 
speech developer to get used with Web pages specific items, and for Web 
developers to understand speech resources design). 

 

Finally, the participants had to answer the second part of the questionnaire to evaluate 
the platform as a whole. In this evaluation, 1 means very poor and 10 means excellent. Table 
5.2 shows the results of this section of the evaluation. The overall score was in average: 8.37, 
with the maximum scores in the following aspects: 
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• Speeding up the development time of an application 

• Over-answering and Mixed-initiative functionality 

• Lists handling for speech applications 

 

Question Average 
rating 

The provision of data modelling and connecting to external data sources 8.7 

The provision of application state flow modelling  8.6 

Easy adaptability to other languages  8.2 

Easy adaptability to other modalities  7.9 

Ready-made error-handling (nomatch, noinput)  8.1 

Speed up of development time as compared to writing VoiceXML/+xHTML 
code by hand  9.0 

Provision of user modelling  7.8 

Provision of mixed-initiative dialogue handling  8.5 

Provision of list handling  8.6 

Provision of over-answering  9.0 

Provision of easy connection to run-time modules  7.9 

Table 5.2. Subjective evaluation of the platform 

Following we include the questions and a short description of the statistics obtained for 
each one. 

Did you learn quickly how to make applications with the AGP? 
In this case, 55% of the users said yes, and 45% of the users said no. Considering the 

level of experience, most of the novice and intermediate participants answered “yes”, while 
experts answered “no” in most of the cases. The reason for this answer from the experts was 
that they had certain expectations of the platform and the basic training received at the 
beginning of the evaluation was considered as not enough.  

Do you think non-experts could use the AGP efficiently? 
In this case, 32% said “yes”, although they were concerned about terms that are not 

familiar for novice users such as over-answering, mixed-initiative, multimodality, etc. On the 
contrary, 68% of testers said “no”. They considered that the platform is useful only for 
experts; and that non-experts will not be able to design and deploy a good dialogue 
application even using the AGP. However, they considered that with more training, it should 
be possible. In any case, this is a common procedure for all speech or Web platforms. 



Speed Up Strategies for the Creation of Multimodal and Multilingual Dialogue Systems 

132 

How do you rate the overall appearance of the AGP (consistent, transparent, and 
intuitive)? 
The average score in this question was 7.7. This low score is mainly due to the fact that 

for the overall rating users considered also the AGP GUI, the basic functionality of each 
assistant and the overall effort to use the platform, and not only the specific platform 
functionality (i.e. mixed-initiative, list handling, etc.). 

Do you find the various assistants of the AGP are well integrated? 
In this case, 88% of the users answered “yes”. However, some testers considered 

important to suggest a possible merging of some of the assistants (e.g., DMA, DCMA and 
SFMA, or RMA and SFMA). 

Would you use this system in the future or recommend it to develop speech/Web 
applications? 
Positively, 95% of the testers answered “yes”. Only two expert Web developers said 

“no” because they preferred to write HTML code by hand instead of using the AGP. 

 

5.2 Objective Evaluation 
Finally, the performance and usefulness of the different accelerations included in the 

platform were validated through an objective evaluation. Here, our idea was to obtain a set of 
quantitative measures obtained by different testers when they were requested to perform 
different tasks using the AGP and a parallel tool that does not include any of the accelerations 
described in this thesis. Then, these measures were used to compare the performance of each 
assistant and the whole platform in relation to the other tool. The next section describes the 
experimental setup including information about the proposed quantitative measures, the 
assistants and tasks that were evaluated, the tool used in the comparison with the AGP, as 
well as information about the participants, and the answers of the evaluators to a subjective 
test measuring the assistants and their accelerations. 

5.2.1 Experimental setup 

The first thing we had to specify was the objective measures to obtain. However, 
currently there is not a standard method for evaluating the accelerations proposed. [Jung et al, 
2008] propose a set of quantitative measures for measuring the performance of a dialogue 
design platform with accelerations. In their proposal, they set different tasks that the 
evaluators had to carry out using the platform with accelerations and an open text editor 
chosen by each participant. During the evaluation, different metrics are measured such as 
mouse clicks, keystrokes, and elapsed time. Then these metrics are used to compare the 
performance of the platform with the hand-made models created using the text editor. 

For evaluating our platform, we have decided to follow a similar approach, introducing 
some differences, obtaining a set of similar quantitative measures when different assistants of 
the AGP are used in order to complete a set of previously defined tasks. Then, we compared 
these quantitative measures with the ones obtained when annotating the same tasks in the 
internal language format used by the platform, i.e. GDialogXML syntax. In this case, the 
evaluators made the annotation using a semi-automatic assistant called Diagen (see section 
3.4.6, page 71) already included in the platform. The reason to use this assistant, instead of 
allowing the evaluators to use any text editor of their liking, was to make a fairest comparison 
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between both evaluations. It is well known that writing any information in any XML-based 
language is a tedious and difficult task (especially if the XML document is required to be 
well formed and the XML tags are case-sensitive as in the GDialogXML specification). In 
addition, the assistant reduces the necessity of memorizing the XML specification. On the 
other hand, almost all developers and development platforms use some kind of tool for 
writing from scratch or performing fine-tuning of the code generated by the main application. 
Diagen is a representative example of this kind of applications.  

In addition, it is important to mention that the main reasons for selecting a comparison 
between using the AGP assistants and Diagen, instead of comparing with other development 
platforms, was that we could not find any commercial or academic platform comparable to 
the AGP. For instance, most of these platforms create only VoiceXML applications instead of 
multimodal services as in the AGP, or they do not take into account the Database information 
neither include all the accelerations that we wanted to evaluate. Finally, most of the 
commercial platforms have an advanced graphical interface that we were not interested on 
evaluating. It is well known that the appearance of the GUI will have a great influence over 
the evaluators. 

The evaluation was done by 9 testers which were classified in the same three levels 
defined for the subjective evaluation (section 5.1.1, page 125): novice, intermediate, and 
expert. All the evaluators had some experience in at least one programming language but 
most of them had no, or a very little, experience in designing dialogue applications. The 
evaluators, most of them pre-graduate students at our university, were then classified 
according to their level of experience on developing dialogue applications resulting in the 
following groups: 4 evaluators in the novice group, 3 in the intermediate level, and 2 in the 
experts group. From this group, only three participants had some knowledge of the AGP. The 
average age was 27 years old (from 22 to 41 years old). 

Since not all the assistants in the platform were developed by the author of the thesis 
neither they include most of the accelerations proposed and described in this thesis, we 
decided to include in the evaluation only the following assistants that are the basic 
contribution of this thesis: DMA, DCMA, SFMA, RMA, and MERA-Speech. All these 
assistants were initially proposed to be also evaluated using the Diagen assistant. However, 
after considering the high complexity of the dialogues produced by the MERA-Speech due to 
the automatic templates included on it, we decided not to include this assistant in the non-
accelerated evaluation, since it would involve an excessive work and, evidently, the 
comparison would be unfavourable. 

 

 
Figure 5.7. Interface used to start the evaluation of the different assistants in the AGP and 

using the Diagen assistant 
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Figure 5.7 shows the window used to perform the evaluation of the different assistants. 
Number 1 allows the selection of the name of the evaluator in order to save the corresponding 
files with the statistics. Number 2 is a check box to indicate that the evaluation can be started. 
This check box controls if the testers are using the assistant for training purposes or for 
evaluation. Number 3 and 4 allow the evaluator to select the assistant to be evaluated using 
the AGP or Diagen respectively. Number 5 allows the evaluator to save the quantitative 
measures of the current assistant being evaluated. 

The evaluation was done in two sessions of 4 hours each. During each session, the 
testers were trained in all the assistants to be evaluated at that session. During the first 
session, the evaluators received a complete explanation of the whole platform, the goals of 
the evaluation, and the interfaces used to get the statistics. Finally, they also received 
instructions and evaluated the three first assistants in the evaluation: DMA, DCMA and 
SFMA. During the second session, the evaluators learnt how to use and evaluated the RMA 
and MERA-Speech assistants. In general, each assistant evaluation was divided into three 
main blocks: in the first one, the evaluators received instructions about the capabilities and 
accelerations included in the corresponding assistant through examples of use. In the second 
block, the evaluators were proposed to carry out an example task using the assistant in order 
to consolidate the knowledge acquired in the first block and to allow to answer to the doubts 
that could arise when practicing with the assistant. Finally, during the third block, the 
evaluation was carried out and later the evaluators were also requested to fill in a subjective 
survey to measure the acceptance, usability, intuitiveness, and most interesting features of 
each assistant, etc. 

As we have mentioned before, the quantitative measures proposed in [Jung et al, 2008] 
are the number of keyboard strokes, the number of mouse clicks, and elapsed time. In this 
evaluation, we have included one more measure: the number of times the user presses the 
delete key when typing. The goal of this new metric was to provide an additional measure of 
the difficulty of introducing information in the assistants or writing the GDialogXML code. 
Besides, since the assistants reduce the number of times the designer had to type, this fact 
could also be reflected in the number of errors the designers could make. In order to obtain 
these statistics, each assistant to be evaluated was executed in parallel with a measurement 
system. This system captures all the events from the mouse and keyboard, differentiating the 
events occurring in the assistant window from events occurring in other applications. Finally, 
we also included an automatic and invisible mechanism (the testers were not aware of this 
process) for recording and saving the screen during the evaluation. The recorded videos were 
later reviewed in order to find out the main problems the testers found and to obtain a visual 
feedback of the process that the testers followed to complete the tasks. These videos also 
allowed us to discover if the testers used or not the accelerations included in the assistants, 
and the steps that took most of the elapsed time during the evaluation. 

Figure 5.8 shows the program used to save the statistics. Number 1 allows the evaluator 
to select the step to be evaluated according to the current assistant selected in the previous 
form window (Figure 5.7). Each time the evaluator changes the step the system automatically 
checks out if the statistics has been saved or not, and asks the evaluator what to do. Number 2 
is used to start or to pause the evaluation. When the evaluation is paused, neither mouse nor 
keyboard events are registered. Number 3 allows the evaluator to save the statistics and to go 
to the next step in the evaluation. Number 4 is used to clear all the registered events for a 
given step, starting it from scratch. Number 5 shows the different counters used in the 
evaluation. Number 6 and 7 allow the evaluators to reduce in one the number of clicks and 
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keystrokes registered. The objective of these two buttons was to allow the evaluator to correct 
manually an error when evaluating the assistants, and to measure the difficulty/uncertainty of 
a given task considering that the evaluator was probably confused. In the same way, number 
7 automatically records the number of times the evaluators press the backspace or delete 
keys. In practice, the evaluators rarely use these two buttons, so we only used the number of 
times the backspace or delete keys were used. 

 
Figure 5.8. Interface to record the mouse and keyboard events during the evaluation 

5.2.2 Description of the evaluated tasks and results 

In order to test the different accelerations included in the platform, we designed a set of 
tasks to be performed by the testers using the assistants included in the AGP and using 
Diagen. Each of the proposed tasks could be divided into one or several steps in order to test, 
gradually, the different possibilities and accelerations allowed by the assistants, as well as the 
different kind of problems that a designer could find when developing a real application. This 
section will briefly describe the different tasks proposed and the steps included in each task, 
as well as graphics comparing the performance of the assistants of the AGP vs Diagen. In 
order to simplify the presentation of the evaluation and the comparison considering the 
different tasks, participants, and metrics, we have included a different graphic for each task 
and assistant evaluated. In general, these figures show the average improvements, in 
percentage, obtained when comparing each quantitative measure obtained using the 
corresponding assistant in the AGP and with Diagen for each type of participants, for all, and 
the average improvement considering all the metrics. In each figure, a positive value means 
that the assistants of the AGP perform better than Diagen, and a negative value means that 
Diagen outperforms the corresponding assistant. Finally, we have included in Appendix E 
tables with all the information represented in the graphics, the specific values for each 
quantitative measure obtained during the evaluation, and the results of a subjective evaluation 
with general questions about the evaluated assistants and Diagen.  

For the DMA assistant, we proposed the evaluators to test two different steps or cases. 
In the first one, they were requested to create a class model with two atomic attributes. Both 
attributes were related to the database. In this case, it was expected that the evaluators used 
the assistant described in section 4.2.1 (page 89). However, during the evaluation we 
observed a big difference between the time used by experts and novices/intermediates to 
fulfil the task. For that reason, we repeated the available strategies of the assistant to the 
participants. After the evaluation, we reviewed the videos of each tester and confirmed that 
some of the novice and intermediate testers did not use the available accelerations but create 
each attribute using an alternative, not accelerated, method. Nevertheless, as we can see in 
Figure 5.9, the AGP performs better reducing in average the design time by 56.6%, the 
number of clicks in 30%, the keystrokes in 93.1%, and the number of keystroke errors (i.e. 
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using the delete or backspace keys) in 96.3%. Finally, we can see that in average for all the 
participants the proposed accelerations obtain a 69% improvement when compared with 
Diagen. 

 
Figure 5.9. Chart with the improvements obtained when evaluating the Data Model Assistant 

for the creation of a class structure with database dependency 

In the second step, the testers were asked to create a mixed class structure, including 
two atomic attributes (both related with the database and with language dependency) and one 
complex attribute (a list of embedded objects). This time, during the evaluation, and 
reviewing later the video recordings, we observed that the participants used the available 
wizard with accelerations to create the two atomic attributes and used the available 
mechanism to create the complex one. Figure 5.10 shows the improvements for this 
evaluation. Here we can see that there is a big improvement using the AGP for the number of 
keystrokes and keystroke errors. This is mainly due that for this task the GDialogXML code 
is more complex and the evaluators had to type much more, and the possibility of making 
errors was also higher. Besides, we also observed that the improvements for the elapsed time 
between the experts and novices was quite similar, which means that both were using better 
the available accelerations. Considering that this task requires a greater and more complex 
GDialogXML code we should expect bigger improvements in the elapsed time. However, 
when we inspected the video recordings we observed that the participants were getting used 
to the Diagen interface and therefore working faster with it. This behaviour was increasing 
throughout all the evaluation and it is a collateral effect that should be kept in mind. Finally, 
we observe that for the number of clicks there is a negative improvement (14.3%) for the 
intermediate participants. In this case, the video recording showed that one of the 
intermediate testers had some problems to create the complex attribute using the AGP, then 
generated more clicks than the others do. As a future solution, we propose to extend this 
assistant with a new wizard window specialized in creating complex attributes. Finally, the 
global improvement in this case was 61.9%. 
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Figure 5.10. Chart with the improvements obtained when evaluating the Data Model 

Assistant for the creation of a mixed class 

For the DCMA assistant, we proposed the evaluators one single task. It consisted on 
creating a function with two input arguments and one output argument. In this case, all the 
parameters were related to the data model. Although this assistant includes very few 
accelerations, Figure 5.11 shows that the design time can be reduced in 19.9%, and 16.6% in 
general. From these results, we propose as future improvements to define a new mechanism 
for defining the input/output parameters that could be especially useful for novice and 
intermediate users in order to reduce the keystroke errors, number of clicks, and elapsed time. 
Finally, it is important to mention that the participants were able to test the functionality of 
creating and testing SQL statements using the wizard described in section 4.3.2 (page 93). 
However, this process was not included in the evaluation because this kind of information is 
not included in the GDialogXML syntax and therefore it cannot be generated by Diagen. 

 
Figure 5.11. Chart with the improvements obtained when evaluating the Data Connector 

Model Assistant for the definition of the prototype of a database function 
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For the SFMA assistant, we proposed the testers to perform three steps. The first step 
consisted of creating a state with one slot related to the database. Here the testers had the 
option of creating the state using the proposal of automatic states with slots or the empty state 
template and then defining the slot. Figure 5.12 shows the improvement results during this 
step. In this case, the average improvement was 46.6%, and the elapsed time was reduced in 
average 56.7%. Here, the video recordings showed that all, except one of, the participants 
used the proposal of automatic states instead of using the empty state template. 

 
Figure 5.12. Chart with the improvements obtained when evaluating the State Flow Model 

Assistant for the creation of a state with one slot 

For the second step, the evaluators were required to create a state with two slots, where 
both slots had to be set as mixed initiative. Besides, it was necessary to create a transition to 
other state. This step allowed the testers to check the automatic unification of slots to be 
requested using mixed-initiative dialogues and the automatic creation of an undefined state 
when it is referred as a transition state (i.e., top-down design).  

The inspection of the recorded videos showed that most of the participants quickly 
created the state using the proposed states from the DMA. However, some of the novice 
testers did not use the proposal of states creating the state using the empty template and 
defining the slots one by one. Another fact we discovered inspecting the video recordings 
was that the evaluators were spending a lot of time reviewing the final state created using the 
AGP in order to check if it corresponded to the one specified by the evaluation. Although this 
behaviour is normal, we observed that for Diagen, since a lot of XML text was generated, 
they did not spend so much time in that revision. Therefore, the improvements should be 
greater in a normal case. In any case, according to Figure 5.13, the average improvement 
using the proposed accelerations in this assistant was 42%. 
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Figure 5.13. Chart with the improvements obtained when evaluating the State Flow Model 

Assistant for the creation of a state with mixed initiative slots and one transition  

Finally, the third step was the creation of a connection between two states. This step 
allowed the testers to check some of the functionalities included in the graphical user 
interface (see section 4.4.1 and Figure 4.6, page 96). Although the final improvement was 
38.1%, as we can see in Figure 5.14, it is obvious, considering the number of clicks, that for 
the participants it was not enough and should be simplified. This conclusion was also 
corroborated by the final subjective questionnaire, where most of the participants, and 
especially experts, agreed that the procedure to create the connections using the GUI should 
be changed by another one similar to the one existing in most graphics editors, i.e., 
connecting two blocks using anchor points. Although, they also considered that if the number 
of connections had been high then the proposed method would be better appreciated. 

 
Figure 5.14. Chart with the improvements obtained when evaluating the State Flow Model 

Assistant for connecting two states 
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For the RMA assistant we proposed the evaluators three different tasks. The first one 
was the creation of a menu-based dialogue (see section 3.3.2, page 63). In this case, it is 
expected that the final user can answer, using language independent concepts, three different 
options: PersonalInformation, GeneralInformation, or Transaction. According to Figure 
5.15, the participants were requested to fulfil the dialogue GetTopLevelCategoryByName 
defining the three different options. In order to get the user answer the dialogue 
DGet_CategoryName had to bee selected. Then, depending on the user’s selection, which is 
stored in the slot CategoryName, the system will call different dialogues: 
Personal_Information, General_Information, or Transactions. Although, at first sight, this 
process looks complicated, using the proposals of dialogues (section 4.5.2, page 103) and the 
automatic DGet dialogues (section 4.5.1, page 101) the complete dialogue flow can be 
created in less than one minute. 

 
Figure 5.15. Proposed flow for the evaluation of a menu-based dialogue in the RMA 

 

According to Figure 5.16, the average improvement was 81.5%, reducing the design 
time in more than an 88%. We also observe a high improvement in the number of keystrokes 
and keystroke errors since the XML code is more complex.  

 
Figure 5.16. Chart with the improvements obtained when evaluating the Retrieval Model 

Assistant for creating a menu-based dialogue 
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Although the improvements of the AGP in this step are extremely high, we observe that 
the improvements in the number of clicks are not as remarkable. For this reason, we propose 
to improve the graphical interface in future releases of the platform. For instance, allowing 
the specification of several concepts at the same time or adapting the proposal window to the 
dialogue type (i.e., menu-based, sequence, while, etc.) in order to generate complex dialogue 
flows to be used as a template instead of using small items to build it. 

In the second step, the participants were asked to create a dialogue 
(SFM_GetLoansCategoryByName) with over-answering and an IF-Then-Else condition. 
Figure 5.17 shows the flow proposed for this task. In this case, the designer has to use a DGet 
dialogue (DGet_LoansType) to fill in a compulsory slot (LoansType) and an optional slot 
(HouseLoansType). In the proposed flow, in case that the final user wants to obtain 
information about house loans, the compulsory slot will be set to the concept 
HOUSE_LOANS, and the system will jump to another dialogue 
(GetHouseLoansSubCategoryByName) where the other slot will be filled in 
(HouseLoansType) to save the subcategory of available house loans (e.g., for building, for 
repairing, for buying, etc). However, since in the current edited dialogue we define this slot 
as optional, it should be possible for the final user to fill it in using the over-answering 
capabilities of the DGet dialogue (DGet_LoansType). In case this slot is already filled in, it 
will not be requested in the posterior dialogue.  

On the other hand, according to the figure, it is also possible that the final user does not 
want information about house loans but about other loans. In that case, the proposed flow is 
to call to a database access function (PGetInformationByCategory) that receives two input 
parameters (InfoCategory and InfoSubCategory) and returns a single string parameter. In the 
example, the first input parameter is set to ‘LOANS’, and the subcategory parameter is set to 
the concept stored in the compulsory slot. Then, the returned information is assigned to a 
local string variable (InfoText). Finally, the local variable is used as input to a DSay dialogue 
(DSay_InfoText) that plays the retrieved information to the final user. The goal of this step 
was to allow the evaluators to use the following accelerations: the dialogue proposals window 
(section 4.5.2, page 103), the automatic matching of arguments between actions (section 
4.5.3, page 105), the procedure for including compulsory and optional slots (section 4.5.4, 
page 106), and the possibility of defining different programming structures (section 3.3.2, 
page 63).  

 
Figure 5.17. Proposed flow for evaluating a dialogue with aver-answering and conditional 

actions 
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According to Figure 5.18, all the quantitative measures are positive with an overall 
average improvement of 88%. According to the Table E.1 in Appendix E, the average 
elapsed time when using Diagen was 1493 seconds (around 25 minutes), in comparison to the 
140 seconds (2½ minutes) when using the AGP. In this case, the elapsed time is one order of 
magnitude greater than using the RMA. The main reasons for these values is the big 
complexity of the GDialogXML syntax when codifying the optional and compulsory slots 
and the low number of accelerations included in Diagen to codify conditional actions. In 
addition, the high number of keystrokes and keystroke errors confirms these reasons. 

 

 
Figure 5.18. Chart with the improvements obtained when evaluating the Retrieval Model 

Assistant for creating a dialogue with over-answering and a conditional structure 

The third task we proposed to the participants, see Figure 5.19, was the creation of a 
mixed-initiative dialogue (DGet_MI_Template) including the creation of a global variable 
(Amount) to save the information returned by a DGet dialogue (GetTransactionAmount). 
Then, the next step is to access the database using the function PerformTransaction that 
receives the credit and debit accounts and the transaction amount, returning if the transaction 
is performed or not. The next step in this demo version is to jump to a dialogue for asking the 
user if another transaction or service is desired. In a more realistic dialogue, a conditional 
loop should be required to guarantee that the transaction is performed or to notify the user if 
that is not the case and try again. However, this demo flow was enough to test the 
accelerations provided by the assistant for defining mixed-initiative dialogues (section 4.5.4, 
page 106), for matching variables (section 4.5.3, page 105), the dialogue proposals window 
(section 4.5.2, page 103), and for defining local/global variables.  

According to the table Table E.1 in Appendix E, the average time for defining the flow 
using the AGP was 94 seconds (around 1½ minutes). In this case, the recording videos 
showed that the participants used all the available accelerations, although they spent some 
more time in creating the local variable since this was a new process that is not highly 
accelerated and that they had not practiced before. Unfortunately, we cannot provide a 
quantitative comparison between the AGP and Diagen, since the evaluation of this step with 



Chapter 5: Evaluation of the acceleration techniques 

143 

Diagen could not be carried out. The reason was that at this time of the evaluation the testers 
were tired, and some of them reluctant to continue, after evaluating the previous task (i.e., 
dialogue with over-answering and conditional actions) with Diagen. Although we tried to 
motivate them, at the end we gave up because we thought that their results would not be 
accurate because of the lack of motivation, and also because this step is relatively similar to 
the previous one although it would have required more time to perform given its higher 
complexity. For that reason, we concluded that, in any case, the objective measures would 
show, again, the superiority of the platform over Diagen. 

 

 
Figure 5.19. Proposed flow for a dialogue with mixed-initiative and the creation of a global 

variable 

 

For the MERA-Speech assistant, we proposed a two steps task. The first step was the 
creation of a DSay dialogue for presenting a list of objects. In this case, the proposed 
dialogue provides information about the rates for selling or buying different international 
currencies. The average time used by the evaluators to configure this dialogue was only 89 
seconds using only 17 clicks. Thanks to the different accelerations included in this assistant, 
the evaluators did not need to type in any information avoiding keystroke errors and reducing 
considerably the elapsed time. The last step was to automatically fill-in all the DGet 
dialogues included in the design. In this case, as we mention in section 4.6.2 (page 113), the 
assistant automatically proposes the strategy to fill in all the dialogues and automatically 
creates all the internal actions for the handling of errors in the speech recognition system. 
This acceleration allowed the participants to spend in average only 4 seconds, which they 
spent reviewing the proposed profile (simple or full) for each dialogue and clicking in the 
button to start the fill in process, in any case, without requiring any typewriting. 

Finally, Figure 5.20 provides an overview of the average improvement considering all 
the tasks per assistant. As we can see, the accelerations proposed in this thesis produces an 
average improvement of 65.5% for defining the data model structure (DMA), a 16.6% for 
defining the prototypes of the database access functions (DCMA), 42.2% in the definition of 
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the finite state model of the application (SFMA), and a 84.8% for defining all the actions of 
each state of the dialogue flow (RMA). This way, we obtained an overall average 
improvement of 52.3% that corresponds to a 56.5% improvement in the elapsed time, 13.4% 
for the number of clicks, 84% in the number of keystrokes, and 55.2% in the number of 
keystroke errors. These results are consistent with the number and scope of the accelerations 
described in this thesis. We can also observe that the improvements were greater in the 
assistants where the more complex structures and actions are required; this way, we 
accelerate the design and guide the designer in the steps where it is more needed. 

 
Figure 5.20. Chart with the average improvement by assistant considering all tasks  

Although these results are good, we are sure that they could be better since after 
reviewing all the videos recorded during the evaluation, we found out that the evaluators 
spent too much time reviewing each step which incremented the elapsed time measured by 
the evaluation system. In addition, when we were carrying out the evaluation, we observed 
that the evaluators were quickly used to the Diagen interface since the mechanism for 
codifying the different steps and tasks in GDialogXML syntax were very similar (see section 
3.4.6.3, page 72). In contrast, when evaluating the assistants of the AGP, the evaluators were 
required to learn a different methodology and accelerations at each assistant making more 
difficult its use. Finally, we also found that some of the evaluators did not use all the 
available accelerations of the assistants, but they resorted to other methodologies less 
straightforward. 

5.2.3 Subjective survey 

At the end of the two sessions of the evaluation, the evaluators were requested to fill-in 
a subjective survey about the different assistants and accelerations evaluated in this section. 
This survey was similar to the one used during the subjective evaluation described in section 
5.1 (page 125), but including new specific questions about the accelerations (see Table 5.3), 
and including open questions to provide comments and suggestions.  

In this survey, the participants were asked to answer a 4-item questionnaire per 
assistant with general questions about the appearance of the assistant, its level of 
intuitiveness, how quickly it was to learn it, and if the functionality of the assistant was 
enough. Then, they also answered to a 12-item questionnaire with specific questions about 
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the accelerations included in the AGP. In most questions users had to rate the relevant 
attribute or characteristic using a 10-point scale (1=minimum, 10=maximum). 

Figure 5.21 shows the results of the general questions about the different assistants 
evaluated. In this case, we observed that these results are consistent, and better in all the 
cases, with the evaluation presented in section 5.1.2 (see Figure 5.6, page 130). The 
improvements are mainly due to the incorporation of new accelerations proposed in this 
thesis, together with the correction of some bugs, and the simplification of some procedures. 

 
Figure 5.21. Chart with the results of the subjective evaluation for general questions about the 

assistants 

On the other hand, Table 5.3 shows the questionnaire used to evaluate the main 
accelerations included in each assistant. The evaluated accelerations correspond to the ones 
used during the objective evaluation. This way, the participants had the possibility of using 
and experimenting with them, therefore their results are relevant since they are given in the 
heat of the moment. According to the table, all the accelerations were positively assessed 
with an average value of 9.0, with the maximum scores in the following accelerations: 
automatic generation of action proposals (section 4.5.2, page 103) and the easiness to define 
the state flow model (section 4.4, page 94). Finally, it is also important to highlight the last 
question since the participants showed an unquestionable preference for the AGP in contrast 
to using Diagen. 

Finally, the survey included a section for comments and suggestions of the subjects 
with respect to the accelerations of each assistant. A summary of the main comments for each 
assistant is described next. 

• DMA: A comment from one of the evaluators summarizes the most important 
acceleration in this assistant: “The creation of classes using the database 
information is extremely useful”. However, there are some aspects of the graphical 
interface that can be improved such as drag and drop capabilities, copy and paste, 
and the direct edition of the attributes using the boxes in the workspace instead of 
using buttons and boxes on the toolbar. 

 

 



Speed Up Strategies for the Creation of Multimodal and Multilingual Dialogue Systems 

146 

Assistant Specific Questions About the 
Accelerations Novice Interm. Expert Av. All 

DMA 
Facility to create the data model structure 

using information from the DB  
(No useful at all – Very useful) 

8.5 9.3 9 8.9 

DCMA 
Facility to define and test the database 

access functions  
(No useful at all - Very Useful) 

8.8 9.3 9 9.0 

SFMA Facility to design the state flow model  
(Very Difficult - Very Easy) 9.8 8.7 9.5 9.3 

RMA 

Facility to define global or local variables  
(Very difficult - Very Easy) 8.0 8.0 9.5 8.3 

Facility to define dialogues with Mixed-
Initiative  

(Very Difficult - Very Easy) 
9.3 8.0 10 9.0 

Facility to create dialogues with Over-
Answering  

(Very Difficult - Very Easy) 
9.3 8.3 9.5 9.0 

Acceleration for passing arguments 
between actions  

(No useful at all - Very Useful) 
9.3 8.0 9.5 8.9 

Automatic generation of action proposal 
for each dialogue  

(No useful at all – Very Useful) 
9.5 10.0 10 9.8 

Tooltips to preview complex actions 
(No useful at all – Very Useful) 8.0 9.0 9 8.6 

MERA-
Speech 

Acceleration for the management of the 
presentation of lists of objects  

(No useful at all - Very Useful) 
9.3 9.3 8 9.0 

Quick configuration of error handling 
(nomatch, noinput, etc.) 

(No useful at all - Very Useful) 
9.3 8.7 8.5 8.9 

Diagen 

Comparison of Speed development 
between using Diagen or the assistants of 

the AGP  
(0=I Prefer Diagen – 10=I Prefer AGP) 

9.5 10.0 10.0 9.8 

Table 5.3. Subjective evaluation results for specific questions about the accelerations 

• DCMA: This assistant was considered easy to use since the menus were clear and 
simple. The most valuable accelerations were the automatic creation of SQL 
statements and the automatic proposal of data model classes/attributes and 
tables/fields when defining the arguments. One of the participants suggested to 
improve the process of defining the input/output parameters through a graphical 
interface instead of the text-based interface currently implemented. 

• SFMA: The most valuable accelerations were the proposals of states from the 
classes and database functions, as well as the automatic unification of slots as 
mixed-initiative. One suggestion for this assistant was to implement a new 
mechanism for creating complex states in order to avoid the unification step 
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required when the designer selects two or more proposals of states in the auxiliary 
window. Another suggestion was to implement an easiest method, for instance 
using a right-click menu, to define the first state in the model instead of opening the 
state for edition (currently the designer has to specify it before saving the model 
since this information is compulsory to organize sequentially the states in the 
canvas). Finally, the procedure for connecting states was considered as non-
intuitive at all, although it is easy, some evaluators have shown a preference for 
implementing a similar mechanism as in other graphical tools where two or more 
objects are connected using anchor points and drawing the connection line.  

• RMA: In this assistant, the best accelerations were the window with the proposal 
of actions, the automatic creation of variables when passing arguments between 
actions, and the intuitive mechanism for creating conditional actions. The only 
suggestions were related with the graphical interface, for instance changing the 
position of some buttons in the assistants to make them easy to access, to avoid 
modal windows that prevent the designer from performing other tasks such as 
creating variables or editing other actions, since the mouse or keyboard focus 
cannot be redirected to other windows, etc. 

• MERA-Speech: This assistant was highly appreciated since the steps when 
defining the presentation of lists were very clear and intuitive for all the 
participants. The automatic creation of the error handling was highly appreciated, 
although some evaluators requested the possibility of pre-visualizing and 
performing fine-tuning on the automatic flow created by the assistant. 

• Diagen: Although this assistant does not include too many accelerations, the 
evaluators considered the process of creating any section of GDialogXML code 
through different pop-up windows, and pre-defined templates (see section 3.4.6.3, 
page 72), as easy, simple, and fulfilling most of their requirements. However, 
during the objective evaluation two main problems were detected: 1.) The 
information collected through the different pop-up windows can be lost in case of 
problems. Besides, sometimes it is confusing for the designer to follow the process 
of completing many nested items. 2) The templates were not enough for most 
designers, especially those unfamiliar with the GDialogXML syntax. The proposed 
solutions were 1.) The creation of a window listing all the actions that the designer 
checks using the pop-up windows. The action table would allow the designer to go 
back to an incomplete step before accepting the whole set of actions and 
GDialogXML code. 2) The templates have to be complemented by new pop-up 
windows and contextual help allowing more complex structures, and providing 
default or previously defined values. In addition, several other accelerations such as 
auto-completion, tags in colours, and reducing the number of times they need to 
delete and overwrite some default messages included in some of the templates. 

5.3 Conclusions 

With the objective of evaluating the performance of each of the assistants that make up 
the platform, as well as the accelerations proposed in this thesis we carried out a subjective 
and objective evaluation. In detail, we proposed for the objective evaluation the collection of 
different metrics such as elapsed time, number of clicks, keystrokes, and keystroke errors in 
order to measure the performance of each acceleration and assistant, as well as a parallel 
GDialogXML editor included in the platform. Then, a comparison between the assistants 
with accelerations and the GDialogXML editor was carried out. The results of this evaluation 
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confirm that the design time can be reduced in more than a 56% and the number of 
keystrokes in 84%. Besides, the subjective evaluation showed that all the accelerated 
assistants obtained a global score between 8.0 and 9.0. Therefore, both evaluations confirm 
the designer-friendless of the platform, as well as its usability, and the contribution of the 
proposed accelerations to reduce the design time and to simplify the design process. 

In relation with the accelerations included to create the data model structure the 
objective and subjective evaluation showed that the proposed accelerations helped to reduce 
the design in a 65.5%, to increase the subjective overall rating of the assistant from 8.1 to 8.3, 
and to score the new procedure for creating the data model structures with an 8.9. 

In relation with the assistant that defines the prototypes of the database access 
functions, the objective evaluation showed an average improvement of 16.6% when 
compared to Diagen, which resulted in a reduction of 19.9% in the design time. The 
subjective evaluation also presents an increase in the overall rating from 7.9 to 8.3. The 
assistant for generating the SQL statements was rated with a 9.0.  

In relation with the assistant where the state flow model is generated, the objective 
evaluation showed an average improvement of 42.2% when compared to Diagen, which 
resulted in a reduction of 62.1% in the design time and 78.5% in the number of keystroke 
errors. The subjective evaluation also presents an increase in the overall rating from 7.7 to 
9.0. In this case, the improvements made to the graphical interface, and the state proposals 
and mixed initiative slots contributed the most to this new perception of the assistant.  

In relation with the retrieval modelling assistant, i.e., the assistant that defines the 
actions to be done in each state, the subjective evaluation showed that the accelerations 
included in this assistant were scored in average with an 8.9, and the assistant with an 8.6. 
The objective metrics showed that the proposed accelerations contribute to reduce the design 
time by an 89.4%. 

In relation with the assistant that defines the specific details for the speech modality, the 
automatic generation of the dialogue flow required for confirmation handling and the wizard 
for defining the dialogue flow for the presentation of lists of retrieved results after querying 
the backend obtained high subjective marks with an 8.9 and 9.0 respectively. Although the 
objective evaluation could not be completed with comparisons between the AGP and Diagen, 
given the high complexity of the GDialogXML models, the obtained results confirm that the 
accelerations are quite remarkable. Besides, the overall score given by the participants in the 
evaluation for this assistant was 9.0. 
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66  DDEEVVEELLOOPPMMEENNTTSS  AANNDD  IIMMPPRROOVVEEMMEENNTTSS  

AAPPPPLLIIEEDD  TTOO  TTHHEE  RRUUNNTTIIMMEE  SSYYSSTTEEMM  

Besides all the previously described acceleration strategies applied to the design 
platform and its assistants, as well as all the efforts made to generate and provide the final 
service in different languages, throughout the thesis we also worked in improving two 
important components of the runtime system, namely an automatic language identification 
(LID) system and an automatic speech-to-sign language translation system. The former is 
important since it allows the identification of the final user’s language at the beginning of the 
dialogue in order to load the correct acoustic and language models to be used during the call. 
The later is also important because it provides a mechanism for accelerating the specification 
of system prompts for different modalities, and to allow that the same service can be provided 
to different kinds of final users without requiring too much effort or specific knowledge from 
the designer. Both systems were selected in our effort to improve the multilingual and 
multimodal capabilities of the final service. 

Unlike the acceleration strategies presented in the previous section, where different 
kind of heuristic, rule-base, and contextual information were used to accelerate the design, in 
this section the proposed improvements will be mainly based on using statistical information. 
This approach has the advantage that different automatic algorithms are applied in order to 
create the models used by the language identification system and the machine translation 
system without requiring too much participation from the designer, this way reducing also the 
design time and contributing to guarantee the multimodal and multilingual capabilities of the 
design and runtime platform. 

This chapter is divided into two main sections. The first one presents an innovative and 
successful language modelling technique based on using an n-gram ranking of frequencies for 
providing long-span information to a state-of-the-art LID system based on the PPRLM 
technique. In this work, two main objectives were considered: a) to accurately identify the 
language, and b) to use a reduced audio segment in order to identify the language as soon as 
possible. These factors are quite important since they help to guarantee the user satisfaction, 
to provide reliable speech recognition results, and to allow a quick setup of the service. 

The second section describes a successful technique for improving an automatic 
machine translation system that can be used to translate the previously defined prompts for 
the service into an animated representation in the sign language. In this case, the goal was the 
creation of an adaptation technique that can be applied to the target language model that is 
used by the machine translation system during the process of generating the translated 
sentence, in order to guarantee that the candidate sentences are grammatically and 
syntactically correct. Our main contribution lies on using retrieved counts from online 
resources to adapt the original counts of the n-grams that appear in the target language, as 
well as the creation of the list of n-grams to be queried on the Web. Apart from being 
innovative, the proposed technique is especially interesting for applications where the 
training data is scarce to estimate properly the language model used during the decoding 
process for translating sentences from one language into the other. 
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6.1 Language Identification System 

As mentioned in the state of the art (section 2.3, page 36), many methodologies for 
language identification have been proposed. Among them, the most widely used and 
successful technique is PPRLM. In PPRLM, several parallel phone recognizers and language 
models are used during the identification process. This section describes a novel approach for 
language identification based on a text categorization technique, namely an n-gram frequency 
ranking, and the incorporation of different acoustic information. In our system, we use a 
parallel phone recognizer, the same as in PPRLM, but instead of using as phonotactic 
constraints the traditional n-gram language models (PPRLMNG) we use a new language 
model which is created using a ranking with the most frequent n-grams (PPRLMRANK), 
keeping only a fraction of them. The objective is to select the n-grams that are more 
discriminative between languages. Then the distance between the ranking for the input 
sentence and the ranking for each language is computed, based on the difference in relative 
positions for each n-gram. The final objective of this ranking is to be able to model reliably a 
longer span than the obtained using the traditional n-gram models used in PPRLMNG, namely 
5-gram instead of trigram, because for using this ranking it is not necessary to use any kind of 
smoothing technique, so it requires less training data for a reliable estimation. The results 
show that this approach overcomes PPRLMNG thanks to the inclusion of n-grams of higher 
order (i.e., 4-gram and 5-gram) in the classifier. Besides, two alternatives are shown: a 
ranking with absolute values for the number of occurrences, and a ranking with 
discriminative values. In addition, we have also combined this technique with other sources 
of information (feature vectors in our classifier) such as acoustic scores at sentence and 
phoneme level, as well as phoneme duration, which in previous research experiments have 
also proved to be relevant and provide additional improvements. 

6.1.1 System Description 

6.1.1.1 Database corpus 
The database used for carrying out the experiments described in this thesis is a 

continuous speech database, which consists of very spontaneous conversations between 
controllers and pilots. For speech recognition it is a very difficult database, noisy and very 
spontaneous, as in “Lufthansa four two seven nine start up approved clear to Frankfurt 
standard departure somosierra one echo three six left squawk one zero two three report 
parking position”. A big drawback with this database is that all speakers are native Spanish. 
Therefore, many of them do not reflect all the phonetic variations in English, and they mix 
Spanish words for names, airports, greetings, and goodbyes even when the rest of the 
sentence is in English.  

The database consists of approximately 9 hours of speech for Spanish, consisting of 
4998 sentences, and 7 hours for English corresponding to 3132 sentences. Since the proposed 
technique has to be applied to dialogue systems, only sentences with a minimum of 0.5 s and 
a maximum of 10 s (with an average duration of 4.5 s) were considered. This restriction is 
important since many of the techniques reported in the literature take advantage of using 
longer sentences (e.g. with an average duration of 30 s). 

6.1.1.2 Parallel phone recognizer followed by language modelling (PPRLM) 
As mentioned in the state-of-the-art (see section 2.3.1, page 39), the most widespread 

and successful technique for LID is Parallel Phone Recognition followed by Language 
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Modelling (PPRLM) [Zissman, 1996], which classifies languages based on the statistical 
characteristics of the allophone sequences. The technique consists of two stages: First, a 
phone recognizer takes the speech utterance and outputs the sequence of allophones 
corresponding to it, without using any phonotactic constraint during the Viterbi decoding. 
Then, the sequence of allophones is used as input to a language model (LM) module that 
scores the probability that the sequence of allophones corresponds to the language. In order to 
recognize different languages the system is made up of N parallel phone recognizers and M 
language models modelled for the M different languages to recognize. In theory, PPRLM 
allows having phone recognizers modelled for languages different from the languages that 
have to be identified. However, the performance of the system increases if there is a match 
between the input language and the language of the acoustic models, because in that case, it is 
possible to model explicitly the phonetic variations of each language.  

During the classification step, the unknown utterance is transcribed using each of the N 
parallel recognisers. Then a score is calculated for each of the N transcriptions using the M 
language models as represented in Figure 6.1. In our system, N and M are equal to two, 
corresponding to the Spanish and English languages. 

 

Figure 6.1. PPRLM scores used for the LID system 

Finally, an overall score is calculated through an average between both scores obtained 
for the same language using Eq. 6.1. In this way, the target language is the one that obtains 
the highest overall score. 

2

SC3 SC1
_;

2

SC2  SC0
_





 ENGSCSPASC  

Eq. 6.1 

Regarding the language models, in most PPRLM systems it is frequent to use back-off 
n-gram models or independent n-gram language models of different orders interpolated 
linearly using the deleted interpolation technique (see Eq. 6.2) In this equation, weights α1, 
α2, and α3 correspond to the unigram, bigram and trigram model respectively; α0 stands for 
the zero-gram or equally distributed probability model. Although this technique alleviates the 
data sparcity problem, it still exists, as described in [Cordoba et al, 2003][Cordoba et al, 
2006c], where a PPRLM system using trigrams, PPRLMNG in our notation, performs slightly 
better than another one using 4-grams.  
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Eq. 6.2 

One problem with this approach was that the weights of the n-grams, i.e. α0, α1, α2, and 
α3, were difficult to integrate in our approach, the Gaussian classifier which is described in 
the following section, as the scores for the unigram, bigram, and trigram models were 
independent in our feature vector. For that reason, in [Cordoba et al, 2007b] a different 
formulation was proposed (see Eq. 6.3).  
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Eq. 6.3 

In this case, instead of multiplying each feature by its weight in the distance measure, it 
was proposed to divide the variance of the Gaussian distribution of each score by a 
corresponding λi weight (Eq. 6.3). For low values of λi, the final variances are increased, so 
the distances are smoothed (which is good for less discriminative features). This smoothing 
weight is quickly adjusted with good results and allowed us to maintain the models 
independent in our feature vector. 

6.1.1.3 Gaussian classifier for LID 
In spite of all its advantages, as it is described in [Ramasubramaniam et al, 2003], the 

general PPRLM approach has a flaw: there is the possibility of having a different bias in the 
log-likelihood score for the languages considered. This is even more evident when the phone 
recognizers have a different number of units, therefore the language with fewer units will 
have higher probabilities in the LM score (think of the unigram case), and the classifier will 
tend to select that language. Since in our system we have 61 allophones for English, and 49 
allophones for Spanish, in [Cordoba et al, 2006c] we proposed to use a Gaussian Mixture 
Model (GMM) classifier instead of the usual decision formula applied in PPRLM. The 
advantage of the Gaussian classifier is that it does not suffer from the bias problem, as it does 
not use an absolute discriminant function. Besides, we can increase the number of Gaussians, 
in order to better model the distribution that represents our classes, following the classical 
HMM modelling approaches (i.e., Gaussian splitting and Lloyd re-estimation after each 
splitting with a maximum of iterations).  

Therefore, with all the scores provided by every LM in the PPRLM module, we prepare 
a score vector. Now, the recognized language is not the one with the largest average score. 
Instead, the distance between the input vector of LM scores and the Gaussian distributions for 
every language is computed, and the distribution that is closer to the input vector is the one 
selected as identified language. Therefore, the LID problem can be treated as a conventional 
N-class classification problem (for N languages) in the score space of dimension D (D scores 
considered in our system). Each class is represented by a Gaussian density Ν(µl, Σl), where µl 
and Σl are the mean and covariance of class l. They are estimated from the training data of P 
vectors of class l using Eq. 6.4. Here, we have considered the weighted Euclidean distance (Σ 
diagonal) instead of a full covariance matrix as we are aware of the insufficient training data 
to estimate the full matrix. 
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A test utterance is classified as language l* based on its score vector ν using Eq. 6.5. 
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Eq. 6.5 

Finally, an important conclusion presented in [Cordoba et al, 2006c] is that, instead of 
using absolute values for the scores, it is important to use differential scores as a 
normalization mechanism. This differential score is the difference between the score obtained 
by the LM of the same language of the acoustic models considered (Spa-Spa or Eng-Eng) and 
the score obtained by the other ‘competing’ language(s): SC0 – SC1 and SC3 – SC2 in Figure 
6.1. In this case, we applied it to unigram, bigram and trigram separately, with six features in 
total that are listed in Table 6.1 

Phonemes-SPA 

SCO-SC1 for unigram 

SCO-SC1 for bigram 

SCO-SC1 for trigram 

Phonemes-ENG 

SC3-SC2 for unigram 

SC3-SC2 for bigram 

SC3-SC2 for trigram 

Table 6.1. Differential score vector 

Table 6.2 shows the results using PPRLMNG and a Gaussian classifier for the optimum 
combination of weights. This system will be the baseline for the remaining of this chapter. 
More details about the baseline system can be found in [Cordoba et al, 2003] and [Cordoba et 
al, 2006c]. However, to show the benefits of the proposed technique we will first show the 
results using a mono-Gaussian classifier and afterwards we will present the results for the 
multi-Gaussian classifier.  

Gaussians LID  
Error rate (%) 

1 3.69 
2 3.74 
3 3.75 
4 3.75 

Table 6.2. LID error rate results for PPRLMNG 
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6.1.1.4 General conditions of the experiments 
The LID system uses a front-end with PLP coefficients derived from a mel-scale filter 

bank (MF-PLP), with 13 coefficients including c0 and their first and second-order 
differentials, giving 39 parameters per frame. For the phone recognizers, we have used 
context-independent continuous HMM models. For Spanish, we have considered 49 different 
allophones and, for English, 61 different allophones. All models use 10 Gaussians densities 
per state per stream. 

In order to increase the reliability of the results presented in the next sections, we 
performed a cross-fold validation, dividing all the available material in 9 subsets. Using in 
each pass:  

• 4 blocks for estimating the acoustic models and the Gaussian distribution for the 
LMs and the ranking,  

• 3 blocks for estimating the language models for PPRLM, the n-gram ranking or 
the n-gram probabilities, and the Gaussian distribution for the acoustic scores and 
duration,  

• 1 block for the test-set and parameter fine-tuning,  

• 1 block for the validation set.  

Besides, this block distribution is consistent with the one proposed in [Cordoba et al, 
2006c] where it was checked that the acoustic models and the Gaussian mixtures for the LMs 
can be trained using the same data as it does not participate in the LM estimation, and the 
same can be applied for the mixture estimation of acoustic scores with the data used to train 
the LMs. Moreover, this distribution provides more robust and effective models since the 
Gaussian mixtures are estimated on different sets of the training data allowing that the 
distribution of the scores matches better the one that will be obtained in the evaluation set. 

Another issue that we also considered when splitting the database into these blocks was 
that since this database consists of conversations between controllers and pilots, and that the 
same controller uttered a large group of sentences which were sequential in the database until 
there was a shift change, it was possible that the system made some kind of speaker 
modelling instead of language modelling, i.e., the models could be capturing the specific 
characteristics of a predominant controller instead of the language used. For that reason, we 
decided to create the lists using a random selection procedure, namely Fisher-Yates, which 
assures the maximum dispersion in speaker selection. In previous experiments, [Cordoba et 
al, 2006c], this random selection resulted in an important improvement of 16.6% in average 
and 5% in the minimum, showing that in fact there was some sort of implicit speaker 
modelling. 

6.1.2 Proposed Technique: n-gram Frequency Ranking 

As we have described before, one of the main problems with our current PPRLMNG 
system is the existence of data sparcity problem and the inability to use longer span 
information (n-grams of higher order than trigram). In spite of all our efforts to alleviate these 
problems, they remain as we described in [Cordoba et al, 2006c], where our system using 
trigrams performs better than when we using 4-grams. In this section, we describe our efforts 
to reduce both problems [Cordoba et al, 2007a].  
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6.1.2.1 Base system: all n-grams in one ranking 
In [Cavnar and Trenkle, 1994], an interesting technique that combines local information 

(n-grams) and long-span information (collected counts from the whole utterance) is 
described. In general terms, during training the technique proposes the creation of a ranked 
template with the N (typically 400) most frequents n-grams (up to n-grams of order five) of 
the character sequences in the train corpus for each language sorted by occurrence and then 
orthographically in case two or more n-grams contain the same occurrence (e.g., positions 10 
and 11 in Figure 6.2).  

During the evaluation, a dynamic ranked template is created for the phoneme sequence 
of the recognized sentence following the same procedure. Then a distance measure is applied 
between the input sentence template and each language dependent template previously 
trained. The distance for a given ranking T is calculated using Eq. 6.6.  
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Eq. 6.6 

Where L is the number of n-grams generated for the input sentence. If an n-gram does 
not appear in the global ranking (meaning that it has not appeared in training or it is not in the 
top n-grams selected) it is assigned a maximum distance: the size of the ranking. The selected 
language is the one that presents the higher correlation between templates (i.e., the lower 
distance).  

  
Figure 6.2. Example and calculation of distance score using a ranking of n-grams as proposed 

by [Cavnar and Trenkle, 1994] 

Figure 6.2 shows an example of one of the templates created in our system for English 
and the template created for the unknown sentence. Although this technique is very simple, it 
provides good results for language recognition of written texts (up to 93%, depending of the 
length of the sentence to be recognized and the size of the template). 

In order to start with our experiments we decided to follow the original proposed 
technique and use it as our baseline system. Here, we used the same input as PPRLMNG: the 
sequence of allophones generated by the phone recognizer, but with the difference of using 
this ranking instead of the interpolated n-gram based LM module considered in PPRLMNG. In 
addition, the combination of PPRLMNG with the proposed technique, PPRLMRANK, allowed 
us to include longer span information (4-gram and even 5-gram) into the language model. 
However, as the information used by the classification system is very similar to PPRLMNG 
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(i.e. frequency of occurrence of n-grams), we were afraid that results could be at most 
similar, but as we will show in the next sections, the proposed technique improves clearly 
PPRLMNG. In any case, we will also have four independent rankings, as we had four LMs in 
PPRLMNG (see Figure 6.1), trained using the same blocks used to train the acoustic models 
(section 6.1.1.4). In this first experiment, L was also set to the top 400 n-grams, as proposed 
by [Cavnar and Trenkle, 1994], but the LID rate was 7.5% error rate, which is higher than the 
obtained using PPRLMNG (Table 6.2), therefore we decided to research other alternatives.  

Our first variation from [Cavnar and Trenkle, 1994] is the application of what we called 
the “golf score”. As the number of occurrences of the n-grams in the input sentence is very 
low, most n-grams have the same number of occurrences and should have the same position 
in the ranking. It is the same as a ranking in golf (the sport): all players with the same number 
of strokes share the same position. It meant a relative improvement of 5% (from 7.5% to 
6.4%). Figure 6.3 shows an example of the modification applied to the original template 
using the proposed “golf” score. 

 
Figure 6.3. Example of the modification of a ranking template using the “golf score” 

Then, we applied our Gaussian classifier to these scores as we did with PPRLMNG 
using the differential scores described in section 6.1.1.3. In Figure 6.4, we can see the results, 
with the optimum number of Gaussians, of using the ‘golf’ ranking and varying the ranking 
size. In this case, our best results are obtained using rankings with 3,000 n-grams. 

 
Figure 6.4. LID error rate results varying the ranking size and using the ‘golf’ ranking  
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6.1.2.2 N-gram specific rankings 
After examining the ranking templates created following the original proposal, we 

arrived to the conclusion that they were not optimum for our task since the top positions were 
always devoted to the unigrams and bigrams that we already knew that were less 
discriminative for language identification. For instance, in PPRLMNG, the optimum result is 
always obtained applying the highest weight to the trigrams. Therefore, we decided to have 
different rankings for each n-gram order. This introduces a small change in our Gaussian 
classifier, we now have 10 features in our vector, the same 6 features in Table 6.1 for 
unigram, bigram, and trigram, and 4 new features for 4-gram and 5-gram. 

Table 6.3 shows an example of the n-gram specific ranking used in this section. The 
table shows the first five positions in the ranking for the given n-gram order and the number 
of occurrences of the respective sequence of phonemes. The table also shows an example of 
the “golf technique” in the four-grams w_^_n_t and w_^_n_z, highlighted in yellow. In this 
case, both n-grams occur 165 times and both are ranked in position 3, however the next 4-
gram, t_u:_w_^, is ranked in position 5, since there is no rank 4. 

 

Rank Phoneme 
N-Grams Counts Rank 

Phoneme  
N-

Grams 
Counts 

[1-gram] [2-gram] 
1 n 4293 1 w_^ 1531 
2 r 4125 2 ^_n 1279 
3 k 3301 3 z_'i 701 
4 s 2984 4 t_u: 600 
5 t 2883 5 .._n 544 

[3-gram] [4-gram] 
1 w_^_n 1125 1 u:_w_^_n 268 
2 u:_w_^ 324 2 z_'i_r_ou 208 
3 'i_r_ou 302 3 w_^_n_t 165 
4 z_'i_r 269 3 w_^_n_z 165 
5 ou_w_^ 196 5 t_u:_w_^ 161 
  [5-gram]   
  1 t_u:_w_^_n 133   
  2 w_^_n_t_u: 115   
  3 w_^_n_z_'i 112   
  4 n_t_u:_w_^ 104   
  5 ^_n_t_u:_w 103   

Table 6.3. Example of an n-gram specific count-based ranking for English. 

According to Table 6.4, the ranking size for unigram and bigram is different between 
languages. For that reason, it was necessary to include an additional normalization in the 
distance measure. In this case, we divide it by the number of items in the set for that n-gram 
order. In the table, the difference in the ranking size for the unigrams corresponds to 
phonemes that occur in one language but not in the other (i.e. compare the size between 
ENG_ENG and CAST_CAST). However, even when using the same phoneme set (i.e. 
ENG_CAST and CAST_CAST) there are differences, this is mainly due to specific 
phonemes that users cannot easily pronounce in the other language. 
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 Number of Elements 
Phone Set ENG CAST 

Lang. Model ENG CAST ENG CAST 
[1-gram] 61 48 56 49 
[2-gram] 2550 1842 2836 1977 
[3-gram] 3000 3000 3000 3000 
[4-gram] 3000 3000 3000 3000 
[5-gram] 3000 3000 3000 3000 

Table 6.4. Ranking size for the different n-grams and languages 

In Table 6.5, we can see the results using this approach. Now, the ranking size 
presented in the table is the maximum allowed in the ranking creation algorithm, because for 
unigram and bigram there are less than 3000 different items. The results show a high 
improvement with this approach, which is due to the fact that there is more information as 
more n-grams are considered globally in the system, and that the new information is 
estimated more reliably. Nevertheless, the performance of this method is still below 
PPRLMNG results (Table 6.2). 

Ranking size One ranking 
+ ‘golf’ 

Specific ranking 
+ ‘golf’ 

Improvement (%) 

1000 6.11 4.46 27.0 

2000 5.11 3.96 22.5 

3000 4.39 3.82 13.0 

4000 4.42 3.96 10.4 

Table 6.5. LID error rate results with n-gram specific ranking 

6.1.2.3 Measure of separation between distributions 
One of the main difficulties we suffered in the LID experiments is that they were very 

time consuming, as we had to modify many weights (one for each n-gram) and we were using 
the cross-fold validation technique. During the experiments with PPRLMNG, we had the same 
problems, however at that time we just considered up to trigrams, but with the new proposed 
technique, that we were confident we could use up to 5-grams, the combination of weights 
was increased. Therefore, we decided to restrict the weights considered in the experiments 
using, for each feature, information regarding the separation between the pdf distributions for 
each candidate language. In order to do it, we applied Eq. 6.7 that is usually used in feature 
selection algorithms to reduce the dimensionality of the input vectors. Moreover, from our 
experience, we have also found that there is a very strong correlation among this measure of 
separation between the Gaussian distributions and the results in LID. When using the 
formula, a high value means that the feature is especially discriminative between languages. 
In the equation, μ1 and μ2 are the mean values for the feature considering Spanish and English 
input sentences respectively, and σ1 and σ2 are the respective covariances. 
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Eq. 6.7 
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Table 6.6 shows the separation which is obtained with PPRLMNG and PPRLMRANK for 
each n-gram considered.  

Order PPRLMNG PPRLMRANK 

trigram 10.57 8.42 

4-gram - 6.41 

bigram 8.54 5.35 

5-gram - 4.43 

unigram 3.17 2.06 

Table 6.6. Comparison of feature discrimination between PPRLMNG and PPRLMRANK 

Therefore, the discriminative power of PPRLMNG is higher, especially for the trigram, 
but the nice thing of PPRLMRANK is that we also obtain a nice discrimination with the 4-gram 
and 5-gram that could not be used in PPRLMNG due to insufficient training data. In addition, 
the table helps to understand and confirm the results in Table 6.2 and Table 6.5, where 
PPRLMNG outperforms our ranking proposal. 

6.1.2.4 N-gram discriminative ranking 
After considering the discriminative power offered by higher order n-grams (see Table 

6.6) and that the specific n-gram rankings were not working as well as we could expect, we 
considered another solution. In this case, inspired in the work of [Nagarajan and Murthy, 
2004], where better LID results could be obtained using the most discriminative units, we 
decided to give more relevance (higher positions) in the ranking  to the items that are actually 
more specific to the language that is being identified, i.e. n-grams with a high frequency in 
one language but with zero or low frequency in the competing languages. In order to do it, we 
applied document/topic classification techniques.  

The first option was to use the tf-idf (see section 2.2.1.3, page 31), which has been 
widely used for topic classification in many different fields. However, as we only have two 
languages, it only discriminates n-grams that appear in one language but not in the other, and 
very few n-grams in our database fulfil that. Therefore, we proposed a variation to tf-idf. In 
this case, after the original global rankings are created, we have the number of occurrences of 
each n-gram: n1(w) = occurrences of n-gram w in the current language, and n2(w) = 
occurrences of n-gram w in the competing language (it would be the average in the 
competing languages to extend this measure to multiple languages). 
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Being, in Eq. 6.8, N1 the sum of all occurrences for the current language and N2 for the 
competing language, and T1 and T2 the ranking templates created for each language. As the 
number of total occurrences will be different for each language and n-gram order, before the 
subtraction a normalization is needed to have comparable amounts (see Eq. 6.9). 
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Eq. 6.9 

Using these normalized values we considered several alternative formulae with the 
same philosophy as tf-idf for the final number of occurrences considered for the ranking 
(which we will call n1’’) and studied the separation between the Gaussian distributions for 
each language obtained using each formula before diving into the LID experiments (see 
Table 6.7). To summarize, only the average separation for all 5 n-grams is presented. First, 
we proposed a purely discriminative solution Eq. 6.10: 
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Eq. 6.10 

According to the table, with this formulation there is a nice improvement over the non-
discriminative ranking. The next proposal was to include an item frequency term in the 

formula (see Eq. 6.11 

), but in this case we lost part of the discriminative power. For that reason, we decided 
to reduce the effect of the first term by taking its logarithm or the square root obtaining 
higher improvements. 
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Eq. 6.11 

 

Formula Average Separation 

Original – no discriminative 6.15 
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Table 6.7. Average feature discrimination (several formulas) 
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Finally, the last formula in Table 6.7, proposed by my advisor, provided the best 
classification power, probably because it normalizes the values between 1 and -1. Here one 
means that the n-gram appears in the current language but not in the other competing ones 
(n2’=0), indicating that it is especially relevant for that language; -1 meaning just the opposite 
(n1’=0), so the n-gram does not appear in the current language.  

Table 6.8 shows that the discrimination for the ranking trigram is now very similar to 
the PPRLMNG trigram, and with a light improvement for the 4-grams. In addition, results are 
better than those obtained in Table 6.6. 

6.1.2.5 Threshold 
One factor that has to be also addressed with these measures is that they are very prone 

to overtraining, i.e. n-grams that just appear once or twice in training for one language and 
never for the competing language(s) will be at the top position of the list, even though they 
are probably irrelevant.  

Therefore, we decided to apply a threshold: if (n1’+ n2’) < θng, send the item to the last 
position in the ranking. After applying a greedy algorithm, the optimum thresholds were θ1g= 
6, θ2g= 4, θ3g= 3, θ4g= 2, θ5g= 2 for unigram, bigram, trigram, 4-gram, and 5-gram 
respectively. 

 

Order PPRLMNG Discriminative  
PPRLMRANK 

trigram 10.57 9.71 

4-gram - 6.61 

bigram 8.54 7.12 

5-gram - 4.25 

unigram 3.17 2.19 

Table 6.8. Comparison of feature discrimination between PPRLMNG and discriminative 
PPRLMRANK 

 

6.1.2.6 Results using the discriminative PPRLMRANK system 
In Table 6.9 (third column), we can see the LID error rate results using the proposed 

technique (in parenthesis the relative improvement in comparison to PPRLMNG). For 
simplicity, the table only presents the results for a ranking size equal to 3000. We can see 
that, even with one Gaussian, results are better than PPRLMNG. However, when the number 
of Gaussians grows the improvements are lower. Probably, the reason is that we now have a 
10-feature vector instead of six with PPRLMNG, so it is more difficult to estimate reliably 
several Gaussians with our training database. The improvement over PPRLMNG for the best 
results is 13.0% (3.21 versus 3.69). Over the non-discriminative ranking, it is 16.0% (3.21 
versus 3.82) (see Table 6.5). 
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Gaussians PPRLMNG Discriminative  
PPRLMRANK 

1 3.69 3.21 (13.0%) 

2 3.74 3.22 (13.9%) 

3 3.75 3.32 (11.5%) 

4 3.75 3.24 (11.4%) 

Table 6.9. LID error rate results for PPRLMNG versus discriminative PPRLMRANK 

6.1.2.7 Longer span of the technique 
We also checked the relevance of including 4-grams and 5-grams in the proposed 

technique for LID. According to Table 6.10, considering only up to 4-gram or up to trigram 
results are worse than using all n-grams. Therefore, we are clearly taking advantage of longer 
span information using the proposed technique. 

Order LID error  
rate results 

Up to 5-gram 3.21 

Up to 4-gram 3.36 

Up to trigram 3.65 

Table 6.10. LID error rate results for including incrementally long-span information  

6.1.2.8 Accumulative improvements 
Figure 6.5 shows the accumulative improvements obtained with the modifications 

proposed in this thesis (from section 6.1.2.2 to 6.1.2.5) to the basic ranking described in 
section 6.1.2.1 which clarifies the relevance of each alternative proposed. 

 
Figure 6.5. Accumulative LID error rates reductions over the original ranking technique 
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6.1.3 Incorporation of additional information 

One drawback with PPRLM is that the basic technique only takes into account 
information regarding the allophone sequence. As we mentioned in the section 2.3 (page 36), 
other techniques such as the “GMM tokenizer” provide a good performance using both 
acoustic and “sequence of sounds” information. Unfortunately, the addition of new 
information cannot be included using the basic PPRLM formula (see Eq. 6.1). However, this, 
and other sources of information, can be included taking advantage of the Gaussian classifier. 

Since previous experiments from my advisor, published in [Cordoba et al, 2006c] and 
[Cordoba et al, 2007b], proved that the fusion of PPRLMNG and acoustic scores provided 
better results using different feature vectors in the Gaussian classifier, we decided to check if 
the fusion of the n-gram discriminative ranking proposed in this thesis with these acoustic 
scores could also be used to improve the system. This section describes in detail the new 
sources of information as proposed in the papers, the results reported in the papers using them 
alone or in combination with PPRLMNG, as well as the experiments we did in the thesis for 
combining them with our proposed technique. 

6.1.3.1 Inclusion of the sentence acoustic score 
The first additional information is the acoustic score at the sentence level, normalized 

by the number of frames, obtained by the phone recognizers for both languages. Since the 
values of the acoustic score were not homogeneous at all and the estimated distributions had 
a big overlap between the languages that we wanted to classify, all experiments using those 
scores provided worse results. The solution proposed in the papers was to use the difference 
between the score for the Spanish phone recognizer and the score for the English phone 
recognizer as feature value (“differential scores” according to section 6.1.1.3, page 152). This 
approach can be extended to several languages using Eq. 6.12. Here, the differential score is 
the difference between the acoustic score of the current language and the average acoustic 
score from the n-1 different languages. In this case, the overlap between the estimated 
distributions reduced drastically. 

∑
≠∀−

−
n

ij
ji ScoreAc

n
ScoreAc _

1
1_   

Eq. 6.12 

In order to estimate the acoustic score distributions we utilized the same set used to 
train the language models because those sentences have not been used to train the phone 
models. This way we trained the Gaussian distributions for allophone sequence scores and 
acoustic scores separately, as they use different training data for the estimation (it is very 
similar to the treatment of different feature vectors in HMM models). 

 

Gaussians PPRLMNG PPRLMNG  
+ Sent. Acoustic 

Discriminative  
PPRLMRANK 

Discriminative  
PPRLMRANK 

+ Sent. Acoustic 

1 3.69 3.21 (13.0%) 3.21 (13.0%) 2.79 (13.1%) 

Table 6.11. Comparison of LID error rate results for including the sentence acoustic score to 
the PPRLMNG and the discriminative PPRLMRANK systems 
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As we can see in Table 6.11 (fifth column), the results are outstanding, obtaining even 
better results than the fusion of PPRLMNG + sentence acoustic scores (third column), which 
provided improvements (given in the column in parenthesis) in average of 13.0%. On the 
other hand, when comparing PPRLMNG with the proposed technique PPRLMRANK + sentence 
acoustic scores the results are in average 24.4% better. Finally, the inclusion of acoustic 
information is even better than only using the discriminative PPRLMRANK technique (fourth 
column). In this case, the relative improvements (given in parenthesis) are 13.1% in average 
when compared to the third column. Finally, we also did experiments with the fusion of all 
three models (i.e. PPRLMNG + Discriminative PPRLMRANK + sentence acoustic) and we 
obtained a minimum of 2.66%, which is a nice additional improvement (4.7%) over 
“Discriminative PPRLMRANK + acoustic”. 

6.1.3.2 Inclusion of the acoustic score for each phoneme 
After obtaining promising results with the incorporation of acoustic information at the 

sentence level, we now considered to add the acoustic score for each individual phoneme, 
also proposed in previous papers, taking into account that this feature could also have a 
strong variation depending on the language. Using the Gaussian classifier, we modelled the 
distribution for the acoustic score of each phoneme. For each input sentence, we have its 
corresponding sequence of phonemes using the Spanish and English phone recognizers. 
Figure 6.6 shows the procedure to create the vector with the acoustic score for each phoneme.  

 
Figure 6.6. Example of the procedure to create the vector with the acoustic score for each 

phoneme 

In the example, number 1 shows the N frames of a recognized sentence using the 
English phoneme set. In the figure, the first three frames correspond to phoneme /‘a/. Number 
2 shows the recognized sentence using now the Spanish phoneme set. Observe that since we 
are using different phoneme sets the number of frames assigned to each phoneme may be 
different as well as the identity of the phonemes itself. Considering that in the previous 
experiments we found that the “differential scores” approach was a better option because 
these scores have a strong variability, we decided to apply the same concept here. In order to 
do it, a new score is calculated for each frame as SCnew_i = SCEnglish_i – SCSpanish_i. In the 
figure, numbers 3 and 4 correspond to the new calculated differential scores considering each 
language. It is important to highlight that although the score changes for each frame, the 
recognized phonemes remain without change (i.e., the same number of frames and sequence).  

The next step is to create the score vector in number 5. In this case, we have to compute 
the average differential score (μi in the figure) for each phoneme appearing in the sentence 
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(averaging the new calculated differential score over all frames belonging to that phoneme) 
obtaining a feature vector with as many features as the total number of phonemes in the 
system for all languages. Obviously, phonemes not appearing in the sentence do not 
contribute to the final score in the classifier (in the figure they obtain a 0 value). It is also 
important to explain that each average value for the new vectors, numbers 5 and 6, are 
different even when they share the same number of dimensions, i.e., total number of 
phonemes in both sets, since the number of frames assigned to a given phoneme and the 
average differential scores are different for each language. 

In order to reduce the size of the feature vector it was necessary to group some 
allophonic variations. The first approach was to consider 34 different phonemes for each 
language, but even then, the vector was too large, so the estimations were unreliable. Then, it 
was decided to apply a feature selection algorithm to reduce the dimensionality, by using the 
same approach described in section 6.1.2.3 (page 158), applying Eq. 6.7, in order to 
determine which features were more discriminative. The next step was to test the system 
using the first 24, 30, and 35 features, keeping at the end 30 features as the optimum. To get 
an idea of the information provided by the incorporation of the acoustic score for each 
phoneme, we should mention that using the same equation, the discrimination for the 
sentence acoustic score is 6.84, whereas for the 30 features of the acoustic score for each 
phoneme it ranges from 3.52 to 0.54. Finally, according to the reported papers, using only 
this feature it is possible to obtain an 8.17% error rate in LID that is slightly better than using 
the sentence acoustic score (8.20%), see Table 6.12. 

6.1.3.3 Inclusion of the duration for each phoneme 
Finally, following the previous reported work, we also considered that phoneme 

duration could also be different depending on the input language and included this feature 
vector into the Gaussian classifier. In this case, we modelled the Gaussian distribution for the 
average duration of each phoneme in the system. For each input sentence, we computed the 
average duration for each phoneme resulting in that the feature vector had as many features 
as the number of phonemes.  

However, it is important to mention that this feature presents an important problem 
because the duration produced by the recognizer is too difficult to normalize. The 
“differential scores” approach would be to subtract the average duration for the competing 
language, but, as the phoneme sets are different for each language, this subtraction is not 
possible. Therefore, two normalizations were considered: a) Subtract the average phoneme 
duration of the competing language; b) Subtract the phoneme duration of the competing 
language for the phoneme that had the largest part in common with the current one, so it will 
be the most probable “competing” phoneme. In the previous experiments (b) was the best 
option. Later, the feature vector was reduced using the same feature selection technique as in 
the previous section, keeping 22 features as the optimum value. Unfortunately, the reported 
results using only this new feature vector showed that the LID error result was 32.31%, 
which was clearly a bad result confirming that there were still normalization problems, see 
Table 6.12. In spite of these previous results, we decided to test this feature in combination 
with our technique. 

6.1.3.4 Individual features 
When mixing several sources of information differences are less evident. Therefore, we 

will first show in Table 6.12 the results of each source independently. The results show that 
the n-gram ranking provides a 13.0% improvement over PPRLM and prove that the phoneme 
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duration is the least discriminative feature, which can be due to problems in the 
normalization. 

Gaussians PPRLMNG Disc. 
PPRLMRANK 

Sentence  
Acoustic 

Phoneme  
Acoustic 

Phoneme  
Duration 

1 3.69 3.21 8.20 8.17 32.31 

Table 6.12. LID error rate results for individual feature vectors 

6.1.3.5 Combination of all features 
Finally, Table 6.13 shows the results when combining several feature vectors and the 

relative improvements over the PPRLMNG and the PPRLMRANK base systems considering 
also the discriminative power of each feature according to Table 6.12.  

Row Feature vectors LID 
Rate 

Improvements 
PPRLMNG 

Improvements 
PPRLMRANK 

1 PPRLMNG + Sentence Acoustic 3.21 13.0% - 

2 PPRLMNG + Phoneme Acoustic 3.13 15.2% - 

3 PPRLMNG + Phoneme Duration 3.68 2.7% - 

4 PPRLMNG + both Acoustics 3.05 17.3%  

5 PPRLMNG + both Acoustics + Duration 3.25 11.9%  

6 PPRLMRANK + Sentence Acoustic 2.79 - 13.1% 

7 PPRLMRANK + Phoneme Acoustic 2.78 - 13.4% 

8 PPRLMRANK + Phoneme Duration 3.08 - 4.1% 

9 PPRLMRANK + both Acoustics 2.67 - 16.8% 

10 PPRLMRANK + both Acoustics  
+ Durations 

2.59 - 19.3% 

11 PPRLMNG + PPRLMRANK 2.85 22.8% 11.2% 

12 PPRLMNG + PPRLMRANK  
+ Sentence Acoustic 

2.66 27.9% 17.1% 

13 PPRLMNG + PPRLMRANK  
+ both Acoustics 

2.54 31.2% 20.9% 

14 PPRLMNG + PPRLMRANK  
+ both Acoustics + Durations 

2.52 31.7% 21.5% 

Table 6.13. LID error rate results for feature vector combinations 
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From the results reported in Table 6.13, we can see in rows 1 and 2 that in the 
PPRLMNG system the acoustic information at phoneme level provides a better improvement 
than the information at sentence level as the individual results predicted. According to row 3, 
the fusion of PPRLMNG and phoneme duration only provides a low improvement as 
expected, although it is worse than the obtained using the acoustic information. Considering 
rows 4 and 9, in both systems, PPRLMNG and PPRLMRANK, both acoustic scores improve the 
identification rate. This is expected since both scores are complementary. However, when we 
compare rows 5 and 10 we can see the results for combining all the scores; in this case, the 
PPRLMNG systems obtains slight worse results when compared with only the acoustic 
information. However, for the PPRLMRANK the results are slightly betters.  

The results reported in rows 6 to 9 show that the fusion of the PPRLMRANK and the 
acoustic features provides similar improvements like in PPRLMNG. However, these 
improvements are a bit lower probably because they begin from a better system. If we 
consider now row 11, we observe that the fusion of PPRLMNG and PPRLMRANK provides a 
nice improvement, which is surprising, as they use the same source of information, i.e. the n-
grams. Observing rows 12 and 13, we can see that the fusion of PPRLMNG + PPRLMRANK + 
Acoustic scores provides further improvements, which shows again that they all provide 
complementary information. Finally, row 14 shows that our best system is the fusion of all 
the scores acoustic and durations and both PPRLM systems. 

6.1.3.6 Evaluation of the Multi-Gaussian Classifier  
After finishing the definition of the proposed technique and all the features that make 

up the input vector to the backend classifier, we decided to check if we could get higher 
improvements using a Multi-Gaussian classifier applying different number of mixtures to the 
different features proposed previously and growing up from one to four mixtures. The reason 
for growing up to only four mixtures was to avoid overtraining (see Table 6.2) and to reduce 
the time required to train the models and optimize the weights for all the features in the input 
vector. 

Table 6.14 shows the LID error rate results using a multi-Gaussian classifier, where the 
number of mixtures has been selected to provide the maximum LID rate. From rows 1-5 we 
show the results for each feature separately. It is interesting to observe that in most of the 
cases, the optimal number of Gaussians is 1, except for the phoneme acoustic and phoneme 
duration where the high variability of these features is better modelled by a higher number of 
Gaussians. In general, the improvements using the multi-Gaussian classifier are small when 
compared to the mono-Gaussian classifier. The only exception is for the phoneme duration 
where the multi-Gaussian allows a considerable improvement of 21.5%. 

From rows 6 to 8 we can see the results for combining the PPRLMNG system with the 
different acoustic and duration features. In this case, we observe that increasing the number 
of Gaussians provides improvements to the LID rate. In any case, none of these combinations 
provides better results than the ones obtained using the PPRLMRANK approach proposed in 
this thesis. 

In rows 9-10 we observe the results for combining the PPRLMRANK and the acoustic 
and duration features. In this case, the multi-Gaussian classifier provides slightly 
improvements as in the previous case. 

Finally, we decided to check if the combination of our proposed technique with the 
traditional PPRLM system could provide any improvements when increasing the number of 
Gaussians. Row 12 shows that unfortunately the improvement is almost insignificant. 
However, it confirms that both systems provide complementary information. 
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Row Feature vectors 
Optimal 
Num. of 

Gaussians 

LID Rate 
MonoGaussian 

LID Rate 
MultiGaussian 

1 PPRLMNG 1 3.69 3.69 (0%) 

2 Sentence Acoustic 1 8.20 8.20 (0%) 

3 Phoneme Acoustic 4 8.17 7.85 (3.97%) 

4 Discriminative PPRLMRANK 1 3.21 3.21 (0%) 

5 Phoneme Duration 4 32.31 25.37 (21.5%) 

6 PPRLMNG + Sentence Acoustic 4-1 3.21 3.06 (4.67%) 

7 PPRLMNG + Phoneme Acoustic 3-4 3.13 3.10 (0.98%) 

8 PPRLMNG + Phoneme Duration 1-4 3.68 3.49 (5.16%) 

9 PPRLMRANK + Sentence Acoustic 3-2 2.79 2.91 (-3.94%) 

10 PPRLMRANK + Phoneme Acoustic 1-4 2.91 2.70 (2.88%) 

11 PPRLMRANK + Phoneme Duration 1-4 3.08 3.09 (-0.32%) 

12 PPRLMNG + PPRLMRANK 4-2 2.85 2.84 (0.35%) 

Table 6.14. LID error rate results using the Multi-Gaussian classifier 

 

6.1.3.7 Analysis of Confidence Intervals 
In order to assess the reliability of the LID rates presented in the previous sections we 

analysed them considering the 95% confidence interval given by Eq. 6.13.  

( )
n

ppInterval −
±=

10096,1
2

 

Eq. 6.13 

In this equation, p is the obtained LID rate and n is the number of sentences used in the 
test set. Since we have used a cross-fold validation, n is equal to the total number of available 
sentences in the database, in this case, 8130. Unfortunately, even using the cross-fold 
validation the total number of sentences is small, therefore the confidence intervals are quite 
big.  

In this section, we will compare the most interesting combinations of the presented 
systems with the different sources of information considered, checking if there is an overlap 
in the confidence intervals or not. Since the multi-Gaussian experiments did not provide 
significant improvements, we will only compare the mono Gaussian systems. 

Figure 6.7 shows the comparison of LID error results obtained using the PPRLMNG, 
PPRLMRANK, and the combination of both systems. In this figure, we can see that there is an 
overlap in the results for PPRLMNG and PPRLMRANK. For that reason, we cannot be sure that 
both systems are significantly different. We have to take into account that the total number of 
sentences is small, even though we use the cross-fold validation technique. 
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However, the last bar shows that when both techniques are combined the new system 
provides better results than considering PPRLMNG alone. In this case, the new system 
provides better results thanks to the contribution of the information provided by the 
PPRLMRANK system, which, as we have already said is a very nice contribution of the 
proposed technique. 
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Figure 6.7. LID error rate results and confidence intervals considering the PPRLMNG, 
PPRLMRANK, and the fusion of both systems 

 

6.1.4 Conclusions  

In this section, we have demonstrated that the n-gram Frequency Ranking approach 
proposed in this thesis can overcome PPRLMNG thanks to the longer span that can be 
modelled. In our first attempt, we started from a widely known technique for LID on written 
text. Later, we introduced several new ideas and important changes to the original technique 
in order to obtain considerable improvements when compared with a state-of-the-art LID 
system, i.e. PPRLMNG.  

In relation with the ranking technique the first conclusion we arrived to was that the 
ranking size should be increased as much as possible when that number of different n-grams 
is available. In our case, it was set to 3000. Another conclusion is that instead of using a 
common ranking for all n-grams it should be better to use n-gram specific rankings. 
Moreover, we have also demonstrated that the selection of the most discriminative n-grams to 
create the rankings provides better results, which are able to overcome PPRLMNG (13% 
relative improvement). In this case, we have proposed different formulations in order to 
normalize the results and to provide better results than the widely used tf-idf metric. 

On the other hand, we have also demonstrated that the measure of separation between 
pdf distributions is a good tool to reduce the number of experiments and to anticipate which 
features are going to be actually discriminative for the LID task. 

Taking advantage of the incorporation of a Gaussian classifier to discriminate between 
the languages, we also included different acoustic and duration based information that 
resulted in an additional improvement (16.8% improvement) in the LID rates, showing that 
all the features proposed provide complementary information. Nevertheless, when 
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considering the discriminative power of each of the acoustic and duration information 
included, we found that the acoustic score for each phoneme is a slightly better feature than 
the sentence acoustic score, and the phoneme duration is the less contributing. Surprisingly, 
the combination of the baseline PPRLMNG system, the new proposed technique, and the 
acoustic and duration information, all combined, provided a new improvement of 31.2% 
when compared with the baseline system and with a 20.9% when compared with using only 
the discriminative ranking.  

On the other hand, the results with a multi-Gaussian classifier did not produce 
considerable improvements when compared with the mono-Gaussian classifier. This is 
mainly due to the size of our current database and possibly to the homogeneity of some of the 
features used.  

Finally, the analysis of confidence intervals showed that the combination of the 
proposed discriminative ranking system with the traditional PPRLMNG systems provides 
significant improvements when compared to a system that only uses the traditional approach. 
Unfortunately, when we compared the best system using the PPRLMNG system (i.e. 
combined with acoustic information) and our best LID system (a combination of all sources, 
the PPRLMNG, the proposed PPRLMRANK, plus acoustic and duration information), we did 
not obtain a significant difference, although it has to be taken into account that the database 
size is small. 

 

6.2 Automatic Translation of Dialogue Prompts into the Sign 
Language  

This section describes in detail the work done for improving the multimodal and 
multilingual capabilities of the runtime system developed for this thesis, and for allowing the 
design of new kind of services and target population without too much effort for the designer. 
Specifically, a statistical machine translation system is proposed in order to allow the 
automatic translation of the prompts of the system into an animated representation using a 3D 
avatar. The goal of this new system is to extend the number of modalities supported by the 
platform but, especially, to allow the design of services for a new target population, i.e. deaf 
people. Since, in general, the designers do not know the sign language, the language of deaf 
people, this translation system alleviates this problem providing an automatic way to convert 
previously defined written or spoken prompts into their representation in the sign language. 

Unfortunately, as we have pointed in the state-of-the-art (section 2.4.4, page 50), 
currently most of the commercial and research automatic translation systems are based on 
statistical approaches that require a huge number of parallel texts to be trained. However, as 
we have also indicated, currently most of the available sign language (SL) corpora consist of 
only a few hundred sentences that are too small or too general for training purposes. In 
addition, it is too hard to find such kind of corpus available from online content. 

Therefore, since we wanted to include in this thesis an automatic translation system and 
considering that we also had a small corpora to train the translations models, we decided to 
address the problem of data sparseness, proposing a new language model adaptation 
technique. In our proposal, reported in [D’Haro et al, 2008], the idea is to create a new 
language model (LM) that adapts the original target LM used by the Machine Translation 
(MT) system. In our experiments, the source language corresponds to the Spanish sentences 
defined as system prompts in the platform, and the target language corresponds to the 
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translation of the Spanish sentences into a written representation of the corresponding 
Spanish Sign Language (LSE) signs (i.e., glosses).  

The experiments reported in this section were done using a restricted domain corpus 
that consists of written sentences containing information about procedures and requirements 
needed to apply or renew the National Identity Document (DNI).  

6.2.1 Runtime System for the Speech-to-Sign Language Translation 
System 

Figure 6.8 shows the main components of the speech-to-Sign Language system used in 
this thesis. The system is made up of three main modules. The first module is a state of the art 
recognizer developed in our group [Cordoba et al, 2001] that captures the acoustic signal of 
the spoken utterance of the non-deaf users, and produces the sequence of words with the 
maximum a posteriori probability given by the acoustic and language models. The acoustic 
models provide the knowledge about acoustics, phonetics, microphone and environment 
variability, gender and dialect differences among speakers, etc.  

 

 
Figure 6.8. Spoken Language to Sign Language translation system 

 

The recognizer uses context-dependent continuous Hidden Markov Models (HMMs) 
built using decision-tree state clustering with more than 1,800 states and 7 mixture 
components per state. These models were trained with more that 40 hours of speech and 4000 
different speakers using the SpeechDat database in order to make it robust against the great 
range of final users of the service. Although SpeechDat is a telephone speech database, the 
acoustic models could be used in a microphone application because Cepstral Mean 
Normalization (CMN) and Cepstral Variance Normalization (CVN) techniques were used to 
compensate the channel differences. As front-end, our recognizer uses PLP coefficients 
derived from a Mel-scale filter bank (MF-PLP), with 13 coefficients including the energy 
coefficient, c0, and their first and second-order differentials, giving 39 parameters for each 10 
ms frame. The speech recognizer uses a set of 45 allophone units of the Spanish language and 
16 silence and noise models for detecting acoustic sounds (non-speech events like 
background noise, speaker artifacts, filled pauses, etc.) that appear in spontaneous speech.  
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On the other hand, the language models provide the knowledge about what constitutes a 
possible sentence, what words are likely to co-occur, in what sequence, the domain, the 
speaker style, and the lexical and grammatical complexity and variations of spoken language. 
In our system, we use a statistical n-gram based language model of order two (i.e., bigrams) 
due to the data sparseness, as there are only 266 sentences to train the model, which is too 
small considering the size of the vocabulary and the amount of different n-grams. Although 
the recognition system can generate a N-best list of recognized sentences sorted by similarity 
to the spoken utterance, in our work we only use the optimal word sequence. Finally, the 
recognizer also generates a confidence measure with values ranging from 0.0 (lowest 
confidence) to 1.0 (highest confidence) for each recognized word in the word sequence 
[Ferreiros et al, 2005]. 

The second module corresponds to a statistical phrase-based machine translation (SMT) 
system, which translates the recognized utterance into a sequence of semantic symbols, i.e., 
glosses, representing the grammar structure and sequence that follow the Spanish Sign 
Language. In order to generate the translation, the system uses three different models: the 
lexicon model, the alignment model, and the language model. The lexicon model provides the 
probability of translating one word into another and helps to disambiguate between words 
reducing problems due to homonymy or polysemy. The alignment model provides the 
probability of mapping words/group of words in the source sentence and words/group of 
words in the target sentence, considering in this case several factors such as phrase length, 
positions of the words, contexts, previous alignments, etc. Finally, the language model is used 
to provide knowledge about the well formedness of the translated sentence, evaluating also 
the syntactic and semantic structure of the candidate sentences. In sections 6.2.4 and 6.2.5 
(page 174 and 177) we provide a more detailed description of the translation system and the 
language model used in our system. 

Finally, the third module is the animated agent or avatar. The avatar is the responsible 
for providing the graphical output in the sign language for the deaf users. In order to do it, the 
avatar receives as input a gesture sequence, i.e., the translated sentence using glosses as 
words. Then, the system searches each gloss in a predefined dictionary that codifies the 
sequence of movements of the avatar to play the sign. In our system, the selected avatar was 
VGuido, created during the European project eSIGN (see section 2.4.4 and 3.5.2, page 50 and 
75). In our case, we took advantage of the possibility of including this avatar in our runtime 
platform as an ActiveX. This toolkit also includes the eSIGN Editor environment that was 
used to define and store the signs using HamNoSys and SiGML notation. A more detailed 
description of this system can be found in [San-Segundo et al, 2008]. 

6.2.2 Bilingual Corpus 

For our task, the translation system was focused on a limited domain, composed by 
sentences spoken by an officer when assisting deaf people in applying for, or renewing, the 
National Identity Document (DNI). In this context, a speech-to-sign language MT system is 
very useful because most of the officers do not know the Spanish Sign Language (LSE). The 
corpus consists of 416 sentences selected from spoken dialogues between officers and 
hearing users.  

The main features of the corpus are summarized in Table 6.15. For both text-to-sign 
and speech-to-sign translation the same test set was used. In order to train the language model 
for the target language, it was necessary to create a dictionary of text symbols called glosses 
that represent each sign to be animated by the avatar. The dictionary was defined by a sign 
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language expert who analyzed each Spanish sentence and translated them into a sequence of 
glosses using the Spanish sign language grammar. For instance, a sentence like “tú tienes que 
pagar 20 euros de tasa'' is translated into the following glosses: “FUTURO TÚ VEINTE 
EURO TASA PAGAR OBLIGATORIO”, or the sentence “el DNI debe ser renovado cada 
cinco años” is translated into “CADA CINCO PLURAL AÑO RENOVAR DNI TÚ 
OBLIGATORIO”. In these examples, each sign has been represented by a gloss written in 
capital letters. The final size of the glosses dictionary was around 320. Observe the ordering 
of the glosses and the semantic-like representation.  

As it is also shown in Table 6.15, the size of the vocabulary in comparison to the 
overall amount of running words in the training set is very high (17%). In addition, the 
perplexity of the test set is high considering the small size of the vocabulary. Both values are 
unquestionable signs of data scarcity, which is likely to cause a high dispersion when 
estimating the parameters of the statistical translation models. 

 

Training Spanish LSE 

Sentences Pairs 266 

Number of Words 3153 2952 

Vocabulary 532 290 

Dev and Test Spanish LSE 

Sentences Pairs 150 

Number of Words 1776 1688 

OOV 90 30 

Vocabulary 427 250 

Perplexity (3-grams) 15.4 10.7 

Table 6.15. Corpus statistics summary 

 

In these circumstances, the high amount of unknown words in the test set (OOVs, Out-
of-vocabulary) represents another important issue. In this task, there are 90 OOVs out of 532 
(16.9%). Since the current statistical system does not use any morpho-syntactic parser to 
analyze the unknown words, it can hardly cope with them. So far, in the literature only naïve 
methods have been implemented to face the translation of OOVs. The usual adopted solution 
displays the unknown input word itself, without any change, in the output language. This 
solution is successful on the assumption that most of the unknown words are proper names, 
numbers, etc. That is, OOVs correspond to tokens that can be transcribed in the same way in 
any language. However, in this task, most of the OOVs correspond to non-proper names, 
which indeed do not match any symbol in the Sign Language. Therefore, the usual solution 
was not totally useful under this framework, and thus, new solutions had to be proposed in 
future developments. In [San-Segundo et al, 2007], we presented some solutions to this 
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problem, although they were not applied in the present thesis, considering only the usual 
solution of maintaining the same word in both languages. 

Finally, the sentences were randomly divided into three sets, with 266 phrases for 
training. With the remaining sentences, we created three-fold cross validation sets leaving 50 
sentences for development and 100 for test each time. For both text-to-sign and speech-to-
sign translation experiments the same test and development sets were used. 

6.2.3 Speech Recognition Results 

As we have mentioned, one of our goals with this system is the possibility of 
automatically translating written or spoken prompt sentences defined in the platform. In the 
former case, 416 sentences were collected from spoken dialogues between officers and 
hearing users when applying or renewing the DNI document as we have described in the 
previous section. 15 speakers were recorded (eight men and seven women), each one uttering 
50 sentences from the test and development sets, obtaining 750 utterances in total. This way, 
each test sentence was uttered by five different speakers. The objective of recording all these 
speakers was to obtain realistic results, as the speech recognizer must be speaker 
independent. 

 

WER (%) Ins (%) Del (%) Sub (%) 

26.39 3.53 6.92 15.95 

Table 6.16. Speech recognition results. 

 

Table 6.16 shows the recognition results using the system described in section 6.2.1 and 
a bigram language model. The WER is high which is probably due to the low number of 
sentences available to train the model. The main reasons for these poor recognition results are 
also the big influence of the OOV rate (see Table 6.15) over the WER results (16.9% vs. 
26.39%), the poorly trained LM, and the fact that some speakers uttered some sentences with 
a low volume. Without these problems, the same recognition system has a 4.2% WER in a 
similar task [Cordoba et al, 2005]. 

6.2.4 Statistical Machine Translation System 

As we have described in the state-of-the-art, in automatic language translation, the goal 
is to translate a text, given in some source language, into a target language. Given a source 
string, in Spanish for this task, J

J fff 11 = , it must be translated into a target string, in 
Spanish Sign Language, I

I eee 11 = . Among all possible target strings, the system will 
choose the string with the highest probability that is given by Bayes decision rule: 

 

{ } { })Pr()|Pr(maxarg)|Pr(maxargˆ 111111
11

IIJ
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Eq. 6.14 
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Here, )|Pr( 11
IJ ef  is the string translation model, whereas )Pr( 1

Ie  is the probability given 
by the target LM. The arg max operation denotes the search problem, i.e. the generation of 
the output sentence in the target language. We must observe that the language and the 
translation models provide independent information, so they can be trained individually. The 
following paragraphs describe the method to create the translation model and the next section 
will describe the adaptation technique used to train reliable language models. 

As we mentioned in the state-of-the-art, currently one of the most widely statistical 
machine translation approaches is the phrase-based translation method reported by [Koehn et 
al, 2003]. The training process is carried out in three steps: 

• Word alignment: The goal is to calculate the best correspondence, i.e. 
alignments, between the words in the source language and the words, i.e. glosses, in 
the target language. In our current system, the alignment was trained using the open 
source software GIZA++ 65 [Och and Ney, 2003] optimizing the alignments on the 
development set. During the training, we set the following parameters: 5 iterations 
for the IBM-1 model, 0 iterations for IBM-2 model, and 3 iterations for IBM-3 and 
IBM-4. Since model IBM-5 is more complex and requires more time and data to 
train, we did not use it. The automatic classes of words used by models 3 and 4 was 
trained using the open source program MKCLS [Och, 1999], and the number of 
classes was set to 50. 

 

 
Figure 6.9. Example of an alignment template and phrase alignments for a Spanish to Spanish 

Sign Language sentence pair 

 

• Phrase extraction: In this step, all phrase pairs that are consistent with the word 
alignment are collected. During the training process of the translation model, the 
maximum phrase size was fixed to seven. In order to perform this process we used 

                                                 

 
65 http://code.google.com/p/giza-pp/  
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the program ‘phrase-extract’ included in the Pharaoh 66 toolkit, setting as heuristic 
to create the phrases the grow-diag-final algorithm. This algorithm creates an initial 
phrase based on using reliable alignment points after intersecting the word 
alignments created from the source-to-target language and the target-to-source 
language. Then, the algorithm adds less reliable neighbouring points based on using 
the union between both parallel word alignments. Finally, the algorithm prunes the 
inconsistent alignments based on the interactions of the EM algorithm and the 
maximum phrase size. Figure 6.9 shows an example of an alignment template used 
for the creation of the phrase table where the maximum phrase size was set to three 
to simplify the selection of the source n-grams that needed to be used to query the 
Web in our proposed technique (see section 6.2.5, steps 1 and 2). 

• Phrase scoring: In this step, the phrase translation probabilities, )( ii efp  and 

)( ii fep , and lexical weights, i.e., the probability of the phrase given the word 
alignment, are computed for all phrase pairs using the program ‘phrase-score’ 
included in the Pharaoh toolkit. Although in our proposed adaptation technique we 
only use the phrase translation probabilities, the algorithm calculates both at the 
same time. 

• Minimum Error Training: After training the phrase table, the next step is to 
optimize the values of the different parameters used during the decoding process. 
The weights are optimized on the BLEU score using the sentences that appear in the 
development set. Specifically, the algorithm optimizes the weight for the language 
model, the phrase translation model, the distortion model, and the word penalty. 
The two former correspond to the phrase translation model trained in the previous 
step and the language model trained using the SRILM toolkit [Stolcke, 2002] using 
a baseline trigram model or through the proposed technique in the next section. The 
two latter correspond to a factor, α in Eq. 6.15, that modifies the phrase translation 
probability as a function of the relative distance between the positions of the current 
and previous translation phrases (i.e., starti and endi-1), and a weight w that 
penalizes too short sentences. Eq. 6.15 shows the formula used to select the best 
translation sentence. 
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Eq. 6.15 

Finally, during the evaluation, the optimized weights are used for the Pharaoh decoder 
in order to produce the N-best translations; in our case, we selected only the first candidate. 
Then, different programs provided by the toolkit allow the calculation of the different quality 
metrics explained in section 2.4.3 (page 47), in our case: WER, PER, BLEU, and NIST. 

                                                 

 
66 http://www.isi.edu/licensed-sw/pharaoh/  
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6.2.5 Proposed Adaptation Technique 

According to the Bayes decision rule, Eq. 6.14, the target language LM, )Pr( 1
Ie , is used 

for ensuring that the translated sentences are well formed and fluent. In order to obtain good 
results, it is necessary that the target language model is reliably trained using a large corpus 
to provide good estimations of the occurrences of the different n-grams that appear in the 
training data. However, in most applications it is difficult to have or to obtain such kind of 
corpus available. In addition, since our corpus contains only a few sentences, the target 
language model could not be estimated properly. Therefore, it was obvious that some kind of 
adaptation technique had to be applied to overcome this problem. Therefore, we had to find 
solutions for two problems: the first one was the creation of the background corpus to adapt 
with the in-domain data, and the second one, the selection of a successful technique for 
performing the adaptation. 

In order to solve the first problem, we considered that an interesting solution for the 
small corpus available was to start creating a background corpus for the source language and 
then to apply the translation model, )|Pr( 11

IJ ef , to translate the new collected sentences into 
the target language obtaining this way new target data to adapt with. 

In section 2.2.1.5 (page 34), we described several methodologies for gathering new 
training data. Among the proposed techniques, an interesting alternative method to generate 
the background corpus is to collect Web frequency counts using information retrieval (IR) 
techniques. [Keller and Lapata, 2003] and [Zhu and Rosenfeld, 2001] report different 
experiments that confirm that LMs estimated using Web frequency counts can be used for 
adaptation purposes providing comparable or better results than the ones obtained retrieving 
full sentences from online pages, and with the big advantages of reducing the system latency 
and avoiding the incorporation of undesirable sentences. 

However, before continuing we have to solve one important issue: how to create the list 
of selected keywords to retrieve from the Web. In this case, we first decided to create a list of 
target n-grams for which we wanted to obtain more reliable counts. Obviously, we wanted to 
include all the n-grams from all orders, especially trigrams. However, if the number of n-
grams is too high we have to impose some threshold in order to reduce the number of 
selected n-grams. In our case, after considering different possibilities, we set a threshold 
based on the phrase translation probability )( ii efp , i.e., the probability of translating one 
target-side n-gram (LSE) into a source-side n-gram (Spanish). Our goal is to consider a given 
target n-gram only if the retrieved source-side n-gram is highly correlated with it. In order to 
obtain the translation probability, we took advantage of the phrase translation table created 
during the training of the statistical machine translation system (see section 6.2.4). During 
this process, the phrase table is created using the Pharaoh toolkit, modifying the maximum 
phrase size from the default value of seven to three in order to simplify the selection of the n-
grams to be used to query the Web. 

After solving the first problem, we focused on finding the adaptation framework. In this 
case, we were especially interested in methodologies operating at the count level since the 
proposed methodology for creating the background corpus relies on retrieving Web 
frequency counts instead of full sentences. In [Bellegarda, 2004] several methods to 
overcome this problem are described. In most cases, the adaptation consists of building two 
LMs, one trained from the in-domain corpus and another one from a background corpus (out-
of-domain, or less specific corpus which is expected to be bigger than the in-domain one), 
and then applying an adaptation formula that modifies the well estimated background model 
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using information from the in-domain model. Among the best adaptation techniques proposed 
in the literature we decided to use the Maximum A-Posteriori (MAP) [Bacchiani et al, 2006] 
method. In this technique, the adaptation is made at the frequency count level using Eq. 6.16. 
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Eq. 6.16 

Here, CI and CO are the frequency counts for the in-domain and out-of-domain corpora 
respectively, α and β are weight factors, estimated empirically to reduce the bias of the 
estimators and to apply a different weight to each component model. 

The next step was to retrieve the frequency counts from the Web for the selected 
source-side n-grams and converting them back into target-side n-grams. In this case, we again 
used the phrase translation table but in the opposite direction, )( ii fep , i.e., the probability of 
translating a source-side n-gram into a target-side n-gram. After that, it was possible to apply 
the adaptation framework, MAP, using the original target-side n-grams counts and the 
‘translated’ n-grams retrieved from Internet, in order to generate a new language model that 
could be used to adapt with the original one. Finally, with the new adapted LM we were able 
to evaluate the quality of the new translated sentences. 

 

 
Figure 6.10. Flow diagram of the proposed adaptation technique 



Chapter 6: Developments and improvements applied to the runtime system  

179 

Figure 6.10 shows the process of the methodology proposed in this thesis. According to 
this figure, the adaptation is done in three steps: 

1. Backward: To start with, the system uses the phrase pairs table created independently 
during the training of the translation probability Pr(f1

J |e1
I) (Eq. 6.14). The table 

consists of a list of n-gram pairs that are consistent translations between the source 
and target language, with their probabilities )( ii efp  and )( ii fep , and lexical weights 
[Koehn et al, 2003]. Using this table, the system creates the list of source-side n-
grams, used in the next step, that satisfy )( ii efp  ≥ θ. Here, the threshold θ is used to 
reduce the number of n-gram pairs to query the Web and to guarantee that the source-
side n-grams are reliable translations of the target-side n-grams that we wanted to 
improve. After experimenting with different values and options, θ was finally set to 
1/ni, where ni is the number of reverse translations for if . However, it could be fixed 
as a function of the corpus size and the translation model quality. The final list 
consisted of 1270 source-side n-grams (410 unigrams, 497 bigrams, and 362 
trigrams). 

2. Information Retrieval (IR): Using the n-gram list, the system queries the internet to 
obtain Web frequency counts using the Google-API 67. In this case, we had to deal 
with some limitations of the API; mainly, we were limited to perform only 100 
queries at day per registered keyword, and considering that the total number of n-
grams in the list was 1270, we decided to ask Google for a less restrictive license. In 
this case, the new keyword allowed us to perform 10,000 queries at day. This way, we 
were able to perform the retrieving process in just one day. Then, a new source LM 
was created interpolating the original LM (in-domain) and the MAP-adapted source 
LM created applying Eq. 6.16 between the retrieved source-side n-gram counts and 
the original counts. 

3. Forward: Finally, the translation table is applied again, but on the opposite direction, 
to obtain the n-gram frequency counts on the target side. The conversion is done 
taking each n-gram pair in the list, if , multiplying the retrieved Web count, Nweb( if ), 
by the phrase translation probability, )( ii fep , and summing up all the contributions 

that satisfy )( ii fep ≥ δ to obtain the counts for the target n-gram, CO(ēi) (see Eq. 
6.17). Then, Eq. 6.16 is applied to merge the counts from the original target-side 
corpus with the ‘translated’ counts. Finally, as in step 2, a new LM is created from the 
linear interpolation of the original target-side LM and the MAP-adapted target LM. 
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Table 6.17 shows an example, in English, of the phrase table used to create the n-gram 
list, as well as the process followed to create the new adapted counts. In this case, for the 
target-side trigram: “YOU MUST DELIVER” there are three suitable translations (ni) on the 
source-side. Given the condition, )( ii efp ≥ θ =1/ni = 0.333, the system only selects the n-
grams pairs one and three during the backward step. For the bigram: “YOU MUST”, ni=4 
then given the condition )( ii efp ≥ θ = ¼ =0.25, the system would select n-grams pairs b and d 
to create the list of n-grams to query the Web. 

The next step is to retrieve the counts from the Web that are presented in column 5 in 
the table. Observe that the system only retrieves the counts of the n-grams that fulfil the 
condition )( ii efp ≥ θ. With these counts, we also create a new MAP-adapted source-side LM 
that interpolated with the original source-side LM allowed us to obtain the perplexity results 
shown in Table 6.18. For the source side, the weight factors from Eq. 6.16 were optimized on 
the dev sets (cross-fold) running a downhill simplex algorithm, resulting in the following 
average values for the source side: βs = 0.000417 and αs = 36.7. The interpolation weight was 
set to λs = 0.51. 

 

Source ( if ) Target (ei) )|( ii fep  )( ii efp  Web 
Counts 

Original 
Counts 

Final 
Counts 

1.) you must deliver 
TRIGRAM: 

YOU  
MUST 

DELIVER 

0.5 1.0 135000 

12 587 2.) you must bring 0.1 0.2 )( ii efp < θ 

3.) you have to 
provide 0.4 0.5 80420 

a.) you should 

BIGRAM: 
YOU  

MUST 

0.18 0.071 )( ii efp < θ 

76 3664 
b.) you have to 0.364 0.739 148000 

c.) you need 0.046 0.143 )( ii efp < θ 

d.) you must 0.410 0.952 179000 

Table 6.17. Example of n-grams in the phrase translation table 

 

During the forward step, we use Eq. 6.17 in order to convert the retrieved counts into 
‘translated’ counts. In this case, in the example the original count for the trigram gloss is 12, 
for the bigram gloss is 76, and setting the MAP weights (α and β) to the optimum values 
obtained using the development data (in this case αt = 48 and βt = 0.0001), the out-of-domain 
target-side trigram count is  

CO
MAP (YOU MUST DELIVER) = 





+
+

+∗
4.05.0

4.0*804205.0*135000*0001.01248  = 587,  

And the bigram adapted count is  
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CO
MAP (YOU MUST) = 





+
+

+
410.0364.0

410.0*179000364.0*148000*0001.076*48 = 3664.  

Using these adapted values, we can train a new target LM using the SRILM toolkit 68 in 
order to generate the MAP-adapted target-side LM. 

Finally, the MAP-adapted target-side LM is interpolated with the original target-side 
LM using an interpolation value calculated optimized on the dev sets (cross-fold) running the 
downhill simplex algorithm. In this case, the interpolation weight was set to λt = 0.52. 

6.2.6 Language Model Experiments 

Table 6.18 shows the perplexity results provided by the baseline LMs and the adapted 
ones for the train, development, and test sets. The results for the test and development sets 
correspond to the averaged perplexities for the three-fold cross validation. The baseline LMs 
are backoff trigram with Good-Turing discount. The perplexities on both sides correspond to 
the adapted LMs. Values in parenthesis are relative improvements over the baseline 
perplexities.  

 Train Dev Test 

 Source Target Source Target Source Target 

Baseline 5.65 5.02 15.34 10.8 15.37 10.7 

Adapted 3.01 
(46.7%) 

3.16 
(37.1%) 

11.92 
(22.4%) 

8.75 
(18.7%) 

12.45 
(18.9%) 

9.04 
(15.5%) 

Table 6.18. Perplexity (PPL) results using the corresponding LM 

According to these results, the proposed adaptation reduces perplexities in both sides, 
with improvements over 15%, so a nice reduction in WER can be expected, according to the 
rule of thumb for reductions in perplexity (see section 2.2.1, page 25)  

In spite of the good improvements in both sides, we can also observe that the 
improvements are higher on the source side than on the target side. In this case, the reduction 
in the target side is due to process of ‘translating’ the counts, i.e., the forward step, since the 
translation table introduces some mismatch that reduces the improvement on the target side 
from 18.9% to 15.5% in the test set. 

6.2.7 Machine Translation Experiments 

As we have explained before, one interesting characteristic of the Bayes decision rule 
used for the translation system, Eq. 6.14, is that the language and the translation models 
provide independent information, so they can be trained individually. Consequently, in the 
experiments presented in this section the proposed language models were not used at all 
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during the process of creating the translation model, therefore the effect of the language 
models can only be measured in the evaluation step.  

It is also important to mention that for training the phrase-based translation model we 
considered only the sentences from the training set and optimized it on the development set, 
using clean sentences and not the recognized texts. This fact is important since the translation 
model is created assuming that the input text is syntactically and grammatically correct. The 
reasons for using the clean text was that we did not have recordings for the train sentences 
but only for the test and development data, and because we wanted to separate the effects of 
the speech recognition errors from the translation model. Finally, in order to create the 
translation model we set the maximum phrase size, in the Pharaoh toolkit, to the default value 
of seven in order to look for better alignments. 

Table 6.19 shows the averaged MT results for the text-to-sign and speech-to-sign 
experiments on the test set for the three different conditions that we have considered: 

• Exp 1: In this case, the system uses the original language model generated 
considering only the sentences from the training set. This is the baseline system. 

• Exp 2: For this experiment, the language model is generated with the proposed 
technique considering only the training set. 

• Exp 3: Finally, in this experiment the language model is trained considering all 
available sentences, i.e., using train, development, and test sets, without including 
any adaptation. Since this model has all the available information, it corresponds to 
the top performance that it is possible to obtain only due to the LM component and 
without the effect of OOVs. 

 

  WER PER BLEU NIST 

Text-to-Sign 

Exp 1 34.74 29.59 0.50 6.30 

Exp 2 33.79 
(2.73%) 

29.1 
(1.68%) 

0.51 
(2.61%) 

6.36 
(1.06%) 

Exp 3 32.62 
(6.1%) 

28.06 
(5.48%) 

0.55 
(9.91%) 

6.57 
(4.23%) 

Speech-to-Sign 

Exp 1 42.87 38.94 0.43 5.65 

Exp 2 42.53 
(0.78%) 

38.57 
(0.95%) 

0.44 
(3.75%) 

5.70 
(0.89%) 

Exp 3 41.43 
(3.36%) 

37.8 
(2.9%) 

0.47 
(9.96%) 

5.86 
(3.62%) 

Table 6.19. Average Machine translation results for the test set (Exp 1-3) 

 

In order to assess the quality of the obtained translations, the four usual evaluation 
measures in machine translation have been taken into account (see section 2.4.3, page 47):  
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• WER (Word Error Rate),  

• PER (Position Independent WER),  

• BLEU (BiLingual Evaluation Understudy),  

• NIST  

The former two are error measures (the higher the value, the worse the quality) whereas 
the latter two are accuracy measures (the higher, the better). We have used BLEU and NIST 
scores since they present high correlation with human translation. In our case, since the target 
corpus in the sign language was manually created by experts, we considered important to try 
to obtain similar translations to the ones created by the experts (see section 6.2.2) when 
translating new sentences. 

According to the table, for the text-to-sign MT system, the results show that the 
proposed technique is able to reach approximately half (2.73%) of the maximum 
improvement (6.1%) in WER that it is possible to obtain due only to the LM component. 
Considering the high ratio of OOVs (10,4%) and the small size of the training data, the result 
is outstanding.  

From these experiments, it is possible to guess that the quality of the translation model 
limits significantly the improvement reached by better LMs. This intuition was confirmed 
when we tested an optimal MT system, i.e. trained using all the available sentences. In this 
case, the WER for Exp3 was 13.06% instead of the 32.62% presented in the table, the WER 
for Exp2 was 15.3%, and the baseline, Exp1, was 16.0%. In this case, using a better phrase 
translation model, the proposed adaptation also produces a relative improvement of 4.4 % 
over the baseline. In this case, the improvement is low, but this is not surprising at all since 
we are using a better translation model. Therefore, during the optimization of the different 
weights for the decoder, the language model receives a smaller weight compared to the 
translation model. 

The second part of the table shows the results for the speech-to-sign language 
translation. Here, we observe that, unfortunately, the improvements are lower. The most 
probable explanation is that the speech recognition introduces errors that are not modelled by 
the translation model since we trained it using clean text. In addition, the decoder does not 
take advantage of the better estimated and high order n-grams ‘translated’ from the Web 
counts because most of the n-grams in the translated sentence do not correspond to the ones 
re-estimated with our technique. 

6.2.8 Conclusions 

In this section, we have described the incorporation of an automatic machine translation 
system that can be used to convert the previously defined written or spoken prompts of a 
dialogue application into animated prompts in the sign language. This way, the design 
platform is extended to support new modalities and a new kind of final users, in this case deaf 
people. 

Then, we have presented a successful technique to adapt the target-side language model 
used for a machine translation system especially in situations where there are very scarce 
resources to obtain reliable models. The technique uses information from the source 
language, Spanish in our task, and from the independently trained phrase-based translation 
matrix in order to create a new LM, estimated using Web frequencies, which adapts the 
counts of the target-side language model through the Maximum A Posteriori method (MAP).  
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For the evaluated task, the proposed technique provided a relative improvement of 
18.9% and 15.5% in perplexity over the base system for the source and target language 
respectively. In this case, the difference between both improvements were mainly due to the 
mismatch introduced by the translation table used to convert the frequencies retrieved from 
the Web into frequencies on the target side. 

In relation with the machine translation experiments, the results for the text-to-sign 
experiment showed that the proposed adaptation provides a 2.73% relative reduction on WER 
that is near to half the performance that it is possible to achieve when only the LM is 
optimized. However, the results for the speech-to-sign experiments did not produce 
considerable improvements, which was probably due to the effect of recognition errors in the 
Web counts for the n-grams with errors and to the fact that the translation model was trained 
using only clean texts instead of using recognized sentences, so it does not model the effect 
of the recognition errors.  
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77  CCOONNCCLLUUSSIIOONNSS  AANNDD  FFUUTTUURREE  WWOORRKK  

In this chapter, we present a summary of the main conclusions (more details can be 
found at the end of each chapter), future work, and contributions of this thesis. Since in this 
thesis we have tackled a wide number of topics and systems, we have organized this chapter 
according to the three main components discussed in this dissertation: the dialogue design 
platform, the language identification system, and the machine translation system. 

A first contribution of this thesis is the analysis of the state-of-the-art regarding 
platforms for the design of dialogue applications. In the thesis, we have described most 
commercial and research platforms to find out their characteristics, positive aspects, and 
limitations, in order to contribute with new ideas to the field and to be able to offer a 
complete, innovative, and up to date alternative development platform.  

The main conclusions for all systems presented in the thesis are detailed below. 

 

7.1 CONCLUSIONS 

7.1.1 Dialogue Platform 

In this thesis, we have described all the accelerations included in a multimodal and 
multilingual design platform in order to speed up the design and guide the designer through 
all the steps required to create dialogue services. The proposed accelerations are, in most 
cases, innovative without a direct correspondence to the ones offered by the current 
commercial and research platforms.  

Different types of accelerations have been proposed according to the requirements, 
capabilities, and available information at each assistant that makes up the platform. The 
proposed accelerations take advantage of heuristic information extracted from the contents of 
the backend database and from an object-oriented representation of the data model structure, 
in order to generate different kinds of proposals that simplify the process of creating and 
completing the dialogue flow. Other accelerations consist of different wizard windows or 
simplified processes that help designers to complete, create, or debug models (e.g., 
grammars, prompts, SQL commands) required by the design and runtime platform in order to 
provide the service. 

In order to study the usability and acceptability of the different assistants of the 
platform, as well as the proposed accelerations we carried out a subjective and objective 
evaluations with participants from different countries, mother tongues, and levels of 
experience in programming dialogue applications. The results showed that the proposed 
accelerations reduced the design time by more than 56%, and obtained a subjective score that 
ranges from 8.0 to 9.0. In addition, the whole platform was rated with an average score of 8.0 
that also confirmed the high performance of the platform and its assistants. 

The first process required to provide the accelerations was the automatic extraction of 
heuristic information from the database. In order to correct some limitations of the connecting 
database driver, mistakes in the definition of the fields in the database, and to allow a correct 
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mapping between the field types supported by the platform and the ones supported by the 
database we defined a set of regular expressions that were able to correct an 89.6% of the 
errors. 

In relation with the accelerations included to create the data model structure we have 
proposed a new assistant that simplifies the definition of the object-oriented classes taking 
advantage of the heuristic information and previous data model libraries. 

In relation with the assistant that defines the prototypes of the database access 
functions, we proposed an automatic process for generating and debugging SQL statements 
used by the real-time system based on the analysis of the input/output and the type of the 
parameters defined in the function prototypes. Another acceleration, proposed and 
implemented by the partners of the GEMINI project, allowed the definition of relations 
between the function arguments and the data model structure, which is used in the following 
assistants trough different kind of automatic proposals that simplify the design. 

Regarding the state flow model assistant, the main accelerations included in this thesis 
were the automatic generation of different state proposals that can be used to quickly create 
complex states, together with the possibility of using an automatic analysis of the feasibility 
of the slots defined in a given state of being requested using mixed initiative or direct 
dialogues. 

By far, the retrieval modelling assistant is the assistant with the highest number of 
accelerations. Here, we have proposed several automatic dialogues and templates that can be 
used to obtain or present information to the final user, the incorporation of an innovative 
auxiliary window where the designer can find all the actions that are considered relevant for 
the dialogue being edited, and an automatic procedure to help the designer to connect the 
input/output parameters of different actions and dialogues with the local/global variables that 
contain or will contain the information for/from those actions and dialogues. Finally, we have 
also designed a simple procedure, not present in most design platforms, to define dialogues 
with mixed-initiative and over-answering capabilities. The subjective evaluation showed that 
the accelerations included in this assistant were scored in average with an 8.9, and the 
assistant with an 8.6. The objective metrics also showed that the proposed accelerations 
contributed to reduce the design time by an 89.4%. 

Considering the assistant that defines the specific details for the speech modality, the 
proposed accelerations were the automatic generation of the dialogue flow required for the 
confirmation handling of the user answers, together with an assistant where the dialogue flow 
for providing the information contained in a list of retrieved results after querying the 
backend database can be specified. This assistant, given its simplicity and the high level of 
acceleration offered was rated during the subjective evaluation with a 9.0 score.  

Finally, other assistants in the platform were also accelerated in order to allow the quick 
definition of language dependent prompts and grammars used by the speech recognizer. In 
this case, we proposed an automatic procedure for creating stochastic grammars from a finite 
state grammar in JSGF format. Other accelerations proposed by the partners of the GEMINI 
project included the possibility of automatically creating pronunciation dictionaries and an 
assistant for creating prompts in different languages using the prompts for the default 
language as template. 
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7.1.2 LID System 

In this thesis, we have proposed a new language model for applying phonotactic 
constraints to a PPRLM-based LID system. The proposed technique is based on using a 
frequency ranking of discriminative n-grams that outperforms the traditional approach based 
on using a deleted interpolation between n-grams of different orders. In our case, we obtained 
an accumulative relative improvement of 13.0% (from 3.69% to 3.21%). 

Our first contribution was the introduction of several new ideas and important changes 
to the original n-gram frequency ranking proposed in the literature for LID on written text. 
For instance, we have arrived to the conclusion that the ranking size should be increased as 
much as possible when that number of different n-grams is available. In our case, it was set to 
3000. Besides, we have demonstrated that instead of using a common ranking for all n-grams 
it should be better to use n-gram specific rankings as it provides better results. Finally, the 
selection of the most discriminative n-grams was an important factor to obtain better LID 
results; in this case, we proposed new formulations based on the widely used tf-idf metric in 
order to normalize the results. 

Besides, we have also demonstrated that the fusion with the traditional PPRLM 
approach and the incorporation of different acoustic and duration based information in 
addition to the proposed n-gram frequency ranking resulted in additional improvements in the 
LID rates. In this case, we obtained an accumulative relative improvement of 31.7% (from 
3.69% to 2.52%) 

On the other hand, we have also demonstrated that the measure of separation between 
pdf distributions of the Gaussian classifier is a good tool to reduce the number of experiments 
and to anticipate which features are going to be actually discriminative for the LID task. 

Finally, it is important to highlight that one of the critical aspects that had contributed 
the most to obtain these large improvements was the incorporation of the Gaussian classifier. 
In this case, the Gaussian classifier allowed us the fusion of different sources of information, 
as well as a reduction of the bias/normalization problem present in traditional classifiers. 
Unfortunately, the size of our current database did not allow us to exploit all the possibilities 
of our multi-Gaussian classifier since the results with a variable number of Gaussian mixtures 
did not produce considerable improvements in the LID rate. 

 

7.1.3 Machine Translation System 

Finally, in this thesis we have also proposed a successful adaptation technique that 
takes advantage of the possibility of obtaining better estimations from the source-side 
language of the translation system and from the phrase-based translation model in order to 
create a new LM for the target-side that can guarantee better translations. In our proposal, the 
new LM was estimated using Web frequencies that adapted the counts of the target-side 
language model through the Maximum A Posteriori method (MAP). The proposed technique 
was evaluated on a restricted domain where deaf people could obtain information for 
applying or renewing the National Identity Document. Our proposed technique provided 
improvements in perplexity and translation for speech-to-sign language and text-to-sign 
language. Unfortunately, the results for the speech-to-sign language translation did not 
produce considerable improvements probably due to the effect of recognition errors that did 
not take advantage of the high order n-gram counts retrieved and adapted from the Web.  
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7.2 FUTURE WORK 

In this section, we will describe the main course of action proposed for each system 
described in the thesis, following the same order as for the conclusions. 

7.2.1 Dialogue Platform 

Considering the good results that we obtained during the subjective and objective 
evaluations, the growing demand of better and more complex dialogue systems, and to 
broaden the functionality of this kind of tools, several interesting ideas can be considered in 
order to improve the platform. This section describes all these ideas that we will classify by 
the different assistants considered in the thesis. In general, the proposals shown in this section 
do not necessarily correspond to improvements on the graphical interface although according 
to the comments of the participants of the subjective and objective evaluations it would be 
nice to have them. 

7.2.1.1 Data model assistant (DMA) 
To allow the automatic creation of complex data model structures created for each table 

in the database and to allow the possibility of including complex attributes using the 
relationships defined in the database between different fields and tables. Here, the assistant 
could also use the heuristics in order to select by default the most probable tables and fields 
to be used as attributes in the new classes. 

To include a new XML tag that specifies when a given attribute in a class will be used 
in the following assistants to provide or to obtain information to/from the user. The idea is to 
accelerate the definition of the input/output parameters when defining the database access 
functions, to reduce the number of proposed dialogues, states, and slots in the SFMA and 
RMA assistants. In addition, the assistant could automatically propose the content of this tag 
based on the contents of the database table and field used to generate the class and the 
attribute. 

7.2.1.2 Data connector model assistant (DCMA) 
To improve the process of defining the input/output parameters of the function 

prototypes through a graphical interface and a toolbar with objects instead of the text-based 
interface currently implemented. 

To extend the capabilities of generating and integrating the SQL statements and the 
script used to connect the database with the VoiceXML server at runtime. This can be critical 
if the complexity of the generated SQL statements is increased. 

7.2.1.3 State flow model assistant (SFMA) 
To extend the possibilities of the current toolbar in the main window in order to provide 

more generic templates that allow the creation of different kinds of states (e.g., template for 
single slot state, mixed slot states, complex states, etc.) and to provide a palette of different 
actions that can provide a simpler mechanism for connecting two or more states through the 
graphical interface. 
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To study the possibility of merging this assistant and the RMA given that both share 
many functionalities. However, in order to take advantage of the predefined separation of 
both assistants (i.e., the RMA uses the information provided by the SFMA to generate action 
proposals for each dialogue and to automatically create DGet/DSay dialogues) we propose 
the creation of a unified two layered assistant that the designer can switch to according to the 
design process. This way, using the first layer the designer specifies the same information as 
in the SFMA, and in the second layer the same information as in the RMA. Although the 
process seems easy, we will have to deal with the possibility of switching between layers 
without requiring a complete definition of the whole dialogue flow or state information. 

7.2.1.4 Retrieval model assistant (RMA) 
To reduce the number of automatic generated dialogues in order to simplify the main 

interface. The results of the subjective and objective evaluation showed that most of the 
proposed dialogues in this window were not used at all. In this case, we propose the 
incorporation of heuristic information to remove the less likely used dialogues to obtain or 
provide information. For instance, a field with too many words is a clear candidate to provide 
information instead of requesting it. Besides, the proposed tag in the DMA assistant should 
also contribute to this process.  

7.2.1.5 Modality extension retrieval assistant for speech (MERA-Speech) 
In this assistant, the main proposal is to allow advanced designers to get access to the 

automatic flow proposed for the DGet and DSay dialogues making possible the modification 
of the default behaviour for the proposed dialogues. 

In addition, it is expected to include new confirmation profiles for the DGet dialogues 
depending on the number and type of the slots to be requested to the user. In this case, the 
incorporation of heuristic information should also contribute to extend the current profiles. 

7.2.1.6 User modelling assistant (UMA) 
For this assistant we plan the incorporation of an innovative methodology for proposing 

the default values for the confidence levels used by each DGet dialogue. In this case, we 
propose to use the heuristics of the database and a set of rules that can be used to modify the 
values specified by the designer in the first stages of the design (i.e., in the ADA assistant). 

7.2.1.7 Common improvements or extensions to other assistants 
For all the assistants, the number of libraries available could be increased. Most of the 

commercial platforms include a set of common libraries such as yes/no, phone numbers, 
SSN, credit card numbers, time of day, etc., as well as more complex libraries for proper 
names, alpha-numeric spelling, addresses, etc. 

New strategies to reduce design time in the generation of grammars and prompts can be 
implemented. For instance, allowing the semi-automatic translation of prompts for the default 
language to the other languages supported by the platform. Besides, the incorporation of 
heuristic information from the database could be used to automatically accelerate the 
generation of the pronunciation vocabularies and to support dynamic grammars. Finally, we 
also suggest the possibility of creating/importing/exporting the speech grammars in JSGF 
format into/from other standard formats in order to allow the platform to reuse grammars 
created with other development platforms. 

The current two modalities could be merged so that they can work at the same time 
using the X + V standard. 
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The incorporation of a new assistant to debug the service in text mode, i.e. without a 
complete underlying speech recognizer or synthesizer. This assistant will be especially 
important for the RMA and MERA-Speech assistants. 

7.2.2 LID System 

In this thesis, we have proposed the incorporation of a long-span language model 
technique that was combined with different acoustic and duration information into a multi-
Gaussian classifier. However, we found problems with the acoustic and duration information 
mainly due to normalization problems. We could research a new normalization approach to 
include the duration of each phoneme into the feature vector. In our current approach, we 
found that this feature did not produce a good separation of the Gaussian distributions 
therefore producing bad results for the LID, although intuitively it should provide additional 
and complementary information to discriminate among languages. 

Another work we want to propose is to explore new techniques to reduce the size of the 
feature vector used as input for the Gaussian classifier. Currently we have applied an 
automatic clustering of the allophones for each language, but we should also try other 
approaches as selecting the most discriminative ones. In [Lucas-Cuesta et al, 2008], we have 
started experiments using Linear Discriminative Analysis (LDA) obtaining promising results. 

Finally, we could merge our current system with a classical GMM-based system that 
uses Shifted Delta Cepstral (SDC) coefficients to better model temporal information. The 
combination of these systems provides also good results according to the literature. 

7.2.3 Machine Translation System 

In this thesis, we have proposed the incorporation of a new adaptation technique for the 
language model used in the decoder for scoring the translation candidates. This approach was 
based on the Bayes decision rule where the main components are the translation model and 
the language model. However, most of the current decoders combine the translation and 
language models via a log-linear model that allows the incorporation other arbitrary features 
as well. As our current decoder also supports the log-linear combination, we propose the 
incorporation of new models based on automatic word-classes or POS-based models. 
Besides, instead of using the traditional linear interpolation for combining the background 
and the adapted language models we propose to explore other techniques such as the 
geometric interpolation or unigram rescaling.  

We also propose to carry out new experiments to test the proposed technique on a 
larger database in order to check the effect of the available number of sentences for training 
over the performance of the method and the number of queries to retrieve using Google. 
Besides, experiments with other languages can show the effect of the Google index on 
different languages. 

We could update our current translation system from the Pharaoh toolkit to the more 
recent Moses toolkit 69. The advantage of this new toolkit is that it allows the incorporation of 
morphological, syntactic, or semantic information through a more complex feature vector 
representing different levels of annotation. The toolkit allows many possibilities such as 

                                                 

 
69 http://www.statmt.org/moses/  
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including only words, in this case producing the same phrase-based models we have used in 
this thesis, including words plus POS tags, including morphemes, including lemmas, etc. In 
addition, the toolkit implements new tools for better decodings, support for new language 
models including also the possibility of combining them in different ways, support for 
confusion network decoding, etc., which we believe can provide new ways to improve our 
current approach and obtain a better translation model. 

Finally, we propose to extend the current database of signs in order to allow the 
creation of new services without requiring too much effort for the designer. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Speed Up Strategies for the Creation of Multimodal and Multilingual Dialogue Systems 

192 

 



 

193 

BBIIBBLLIIOOGGRRAAPPHHYY  

 

PUBLICATIONS GENERATED BY THE THESIS 
 

 

[Cordoba et al, 2007a]  Cordoba, R., D’Haro, L. F., Fernandez-Martinez, F., Macias-
Guarasa, J., and Ferreiros, J. 2007. Language Identification based on n-gram Frequency 
Ranking. Interspeech 2007, pp. 354-357. 

[Cordoba et al, 2007b] Cordoba, R., D’Haro, L. F., Fernandez-Martinez, F., Montero, J. M., 
and Barra, R. 2007. Language Identification using several sources of information with a 
multiple-Gaussian classifier. Interspeech 2007, pp. 2137-2140. 

[Cordoba et al, 2006a]  Cordoba, R., Ferreiros, J., San-Segundo, R., Macías-Guarasa, J., 
Montero, J. M., Fernández, F., D’Haro, L. F., and Pardo, J. M. 2006. Cross-Task and 
Speaker Adaptation in a Speech Recognition System for Air Traffic Control. IEEE 
Aerospace and Electronic Systems Magazine, Vol. 21, No 9, pp. 12-17. 

[Cordoba et al, 2006b] Cordoba, R., D’Haro, L. F., San-Segundo, R., Macías Guarasa, J., 
Fernández, F., and Plaza, J. C. 2006. A Multiple-Gaussian Classifier for Language 
Identification Using Acoustic Information and PPRLM scores. Actas IV Jornadas en 
Tecnología del Habla, pp. 45-48.  

[Cordoba et al, 2006c] Cordoba, R., San-Segundo, R., Macías-Guarasa, J., Montero, J. M., 
Barra, R., D’Haro, L. F., Plaza, J. C., and Ferreiros, J. 2006. Integration of acoustic 
information and PPRLM scores in a multiple-Gaussian classifier for Language 
Identification. IEEE Odyssey 2006: The Speaker and Language Recognition Workshop, 
pp.1-8. 

[Cordoba et al, 2004a] Cordoba, R., Fernández, F., Sama, V., D’Haro, L. F., San Segundo, R., 
Montero, J. M., Macías, J., Ferreiros, J., and Pardo, J. M. 2004. Realización de sistemas 
de diálogo en una plataforma compatible con VoiceXML: Proyecto GEMINI. 
Procesamiento del lenguaje natural Nº 33, pp. 103-110. ISSN:1135-5948. 

[Cordoba et al, 2004b] Cordoba, R., Fernández, F., Sama, V., D’Haro, L. F., San-Segundo, R., 
and Montero, J. M. 2004. Implementation of Dialogue Applications in an Open-Source 
VoiceXML Platform. Intern. Conf. on Spoken Language Processing (ICSLP), pp. I-257-
260.  

[D’Haro et al, 2008] D’Haro, L. F., San-Segundo, R., Cordoba R., Bungeroth, J., Stein, D., and 
Ney, H. 2008. Language Model Adaptation for a Speech to Sign Language Translation 
System Using Web Frequencies and a MAP framework. Interspeech 2008, pp. 2119-
2202. 

[D’Haro et al, 2006] D’Haro, L. F., Cordoba, R., Ferreiros, J., Hamerich, S.W., Schless, V., 
Kladis, B., Schubert, V., Kocsis, O., Igel, S., and Pardo, J. M. 2006. An advanced 
platform to speed up the design of multilingual dialogue applications for multiple 
modalities. Speech Communication Vol. 48, Issue 8, pp.863-887. 



Speed Up Strategies for the Creation of Multimodal and Multilingual Dialogue Systems 

194 

[D’Haro et al, 2004a] D’Haro, L. F., Cordoba, R. de, San-Segundo, R., Montero, J. M., 
Macías-Guarasa, J., and Pardo, J. M. 2004. Strategies to reduce Design Time in 
Multimodal/Multilingual Dialogue Applications. Intern. Conf. on Spoken Language 
Processing (ICSLP), pp. IV-3057-3060. 

[D’Haro et al, 2004b] D’Haro, L. F., Cordoba, R., Ibarz, I., San-Segundo, R., Montero, J. M., 
Macías-Guarasa, J., Ferreiros, J., and Pardo, J. M. 2004. Plataforma de Generación 
Semiautomática de Sistemas de Diálogo Multimodales y Multilingües: Proyecto 
GEMINI. Revista de Procesamiento del Lenguaje Natural No 33, pp. 119-126. ISSN: 
1135-5948. 

[Hamerich et al, 2004a]  Hamerich, S. W., Cordoba, R. de, Schless , V., D’Haro, L. F., 
Kladis, B., Schubert, V., Kocsis, O., Igel, S., and Pardo, J. M. 2004. The Gemini 
Platform: Semi-Automatic Generation of Dialogue Applications. Intern. Conf. on 
Spoken Language Processing (ICSLP), pp. IV-2629-2632.  

[Hamerich et al, 2004b]  Hamerich, S. W., Schubert, V., Schless, V., Cordoba, R., Pardo, J. 
M., D’Haro, L. F., Kladis, B., Kocsis, O. and Igel, S. 2004. Semi-Automatic Generation 
of Dialogue Applications in the Gemini Project. 5th SIGdial Workshop on Discourse 
and Dialogue, pp 31-34. 

[Lucas-Cuesta et al, 2008] Lucas, J.M., Cordoba, R., and D’Haro, L. F. 2008. Applying feature 
reduction analysis to a PPRLM-multiple Gaussian language identification system. V 
Jornadas de Tecnología del Habla, pp. 29-32. 

[San-Segundo et al, 2008]  San-Segundo, R., Barra, R., Cordoba, R., D’Haro, L. F., 
Fernández Martinez, F., Ferreiros, J., Lucas, J.M., Macías-Guarasa, J., Montero, J. M., 
and Pardo, J. M. 2008. Speech to sign language translation system for Spanish. Speech 
Communication Vol. 50, pp.1009–1020, ISSN: 0167-6393. 

[San-Segundo et al, 2007] San-Segundo, R., Pérez, A., Ortiz, D., D’Haro, L. F., Torres, M. I., 
Casacuberta, F. 2007. Evaluation of Alternatives on Speech to Sign Language 
Translation. Interspeech 2007, pp 2529-2532. 

[San-Segundo et al, 2006]  San-Segundo, R., Barra, R., D’Haro, L. F., Montero, J. M., 
Cordoba, R., and Ferreiros, J. 2006. A Spanish speech to Sign Language translation 
system for assisting deaf-mute people. Interspeech 2006, pp. 1399-1402. 

[Vilar et al, 2006]  Vilar, D., Xu, J., D’Haro, L. F., and Ney, H. 2006. Error analysis of 
statistical machine translation output. Intern. Conf. on Language Resources and 
Evaluation (LREC), pp. 697–702. 

 

 



Bibliography 

195 

GENERAL BIBLIOGRAPHY REFERRED IN THE THESIS 
 

 

[Abdel-Fattah, 2005]  Abdel-Fattah, M. A. 2005. Arabic Sign Language: A perspective. 
Journal of Deaf Studies and Deaf Education 10: 2, pp. 212-221. 

[Allen et al, 2001] Allen, J., Byron, D., Dzikovska, M, Ferguson, G., and Galescu, L. 2001. 
Towards Conversational Human-Computer Interaction. AI Magazine, 22(4). pp. 27–
37. 

[Allen et al, 1999] Allen, J., Guinn, C., and Horvitz, E. 1999. Mixed-Initiative Interaction. 
IEEE Intelligent Systems, 14(5), pp. 14–23. 

[Almeida et al, 2002] Almeida, L., Amdal, I., Beires, N., Boualem, M., Boves, L., den Os, E., 
Filoche, P., Gomes, R., Knudsen, J. E., Kvale, K., Rugelbak, J., Tallec, C., and 
Warakagoda, N. 2002. Implementing and evaluating a multimodal and multilingual 
tourist guide. Intern. CLASS Workshop on Natural, Intelligent and Effective Interaction 
in Multimodal Dialogue Systems, pp. 1-7. 

[Araki and Tachibana, 2006] Araki, M., and Tachibana, K. 2006. Multimodal Dialogue 
Description Language for Rapid System Development. 7th SIGdial Workshop on 
Discourse and Dialogue. pp 109-116. 

[Atherton, 1999] Atherton, M. 1999. Welsh today BSL tomorrow. Deaf Worlds 15(1), pp. 11-
15.  

[Bacchiani et al, 2006] Bacchiani, M., Riley, M., Roark, B., and Sproat, R. 2006. MAP 
adaptation of stochastic grammars. Computer Speech and Language, Volume 20(1), 
January 2006, pp 41-68. 

[Balci et al, 2007]  Balci, K, Not, E., Zancanaro, M., and Pianesi, F. 2007. Xface open source 
project and SMIL-agent scripting language for creating and animating embodied 
conversational agents. ACM Multimedia 2007, pp. 1013-1016. 

[Banerjee and Lavie, 2005] Banerjee, S. and Lavie, A. 2005. METEOR: An Automatic Metric 
for MT Evaluation with Improved Correlation with Human Judgments. Workshop on 
Intrinsic and Extrinsic Evaluation Measures for MT and/or Summarization (ACL-
2005), pp. 65-72. 

[Bangalore and Riccardi, 2000] Bangalore, S. and Riccardi, G. 2000. Stochastic finite-state 
models for spoken language machine translation. NAACL-ANLP 2000 Workshop on 
Embedded machine translation systems - Vol. 5, pp. 52-59. 

[Beasley et al, 2001] Beasley, R., Farley, K. M., O’Reily, J., and Squire, L. H. 2001. Voice 
Application Development with VoiceXML. Sams Publishing, 400 p. ISBN: 0-672-
32138-6. 

[Bellegarda, 2004] Bellegarda, J. R. 2004. Statistical language model adaptation: review and 
perspectives. Speech Communication, vol. 42, pp. 93–108. 

[Bellegarda, 2000a] Bellegarda, J. R., 2000. Exploiting latent semantic information in 
statistical language modelling. Proc. IEEE 88 (8), pp. 1279–1296. 

[Bellegarda, 2000b] Bellegarda, J. R., 2000. Large vocabulary speech recognition with multi-
span statistical language models. IEEE Trans. Speech Audio Proc. 8 (1), pp. 76–84. 



Speed Up Strategies for the Creation of Multimodal and Multilingual Dialogue Systems 

196 

[Bennett et al, 2002]  Bennett, C., Llitjós, A. F., Shriver, S., Rudnicky, A. and Black, A. W. 
2002. Building VoiceXML-Based Applications. Intern. Conf. on Spoken Language 
Processing (ICSLP), pp. 2245-2248. 

[Besling and Meier, 1995] Besling, S., Meier, H-G. 1995. Language model speaker adaptation. 
European Conference on Speech Communication and Technology (Eurospeech), 
pp.1755-1758. 

[Bieledfeld, 1994] Bielefeld, B. 1994. Language identification using shifted delta cepstrum. 
14th Annual Speech Research Symposium.  

[Bigi et al, 2004] Bigi, B., Huang Y., and De Mori, R. 2004. Vocabulary and Language Model 
Adaptation using Information Retrieval. Intern. Conf. on Spoken Language Processing 
(ICSLP), pp.1361–1364. 

[Birch et al, 2007] Birch, A., Osborne, M., and Koehn, P. 2007. CCG Supertags in Factored 
Statistical Machine Translation. 2nd Workshop on Statistical Machine Translation, pp. 
9–16. 

[Blei et al, 2003] Blei, D., Ng, A., and Jordan, M. 2003. Latent Dirichlet Allocation. Journal of 
machine Learning Research 3, pp. 993-1022. 

[Bohus and Rudnicky, 2003] Bohus, D., and Rudnicky, A. I. 2003. RavenClaw: Dialogue 
Management Using Hierarchical Task Decomposition and an Expectation Agenda. 8th 
European Conference on Speech Communication and Technology (Eurospeech), pp. 
597-600. 

[Broman and Kurimo, 2005] Broman, S. and Kurimo, M. 2005. Methods for Combining 
Language Models in Speech Recognition. Interspeech, pp. 1317-1320.  

[Brown et al, 1993] Brown, P.F., Della Pietra, and Mercer, R. L. 1993. The mathematics of 
statistical machine translation: Parameter estimation. Computational Linguistics, Vol 
19, No. 2, pp. 263-311. 

[Brown et al, 1992] Brown, P. F., Della Pietra, V. J., de Souza, P. V., Lai, J. C. and Mercer, R. 
L. 1992. Class-based n-gram models of natural language. Computational Linguistics, 
18(4), pp. 467 - 479. 

[Bungeroth et al, 2006] Bungeroth, J., Stein, D., Dreuw, P., Zahedi, M., and Ney, H. 2006. A 
German Sign Language Corpus of the Domain Weather Report. 5th Intern. Conf. on 
Language Resources and Evaluation (LREC), pp 2000-20003. 

[Casacuberta and Vidal, 2006] Casacuberta, F. and Vidal, E. 2006. Learning finite-state 
models for machine translation. Machine learning, pp. 69-91. Ed. Springer Netherlands, 
ISSN 0885-6125. 

[Cassell et al, 2002] Cassell, J., Stocky, T., Bickmore, T., Gao, Y., Nakano, Y., Ryokai, K., 
Tversky, D., Vaucelle, C., and Vilhjálmsson, H. 2002. MACK: Media lab Autonomous 
Conversational Kiosk. Imagina: Intelligent Autonomous Agents, Monte Carlo, Monaco. 

[Cavnar and Trenkle, 1994] Cavnar, W. B. and Trenkle, J. M. 1994. N-Gram-Based Text 
Categorization. 3rd Symposium on Document Analysis and Information Retrieval, pp. 
161-175. 

[Chelba and Jelinek, 2000]  Chelba, C., and Jelinek, F. 2000. Structured language modelling. 
Computer, Speech, and Language 14 (4), pp. 283–332. 



Bibliography 

197 

[Chen et al, 1998]  Chen, S. F., Beeferman, D., and Rosenfeld, R.  1998. Evaluation metrics 
for language models. DARPA Broadcast News Transcription and Understanding 
Workshop, pp. 275–280. 

[Chen and Goodman, 1998] Chen, S. F. and Goodman, J. 1998. An Empirical Study of 
Smoothing Techniques for Language Modelling. TR-10-98, Computer Science Group, 
Harvard University. 

[Chen, 2004] Chen, Y. 2004. EVITA-RAD: an Extensible Enterprise VoIce PorTAl – Rapid 
Application Development tool. Interspeech 2004, pp. 3053-3056. 

[Chiu et al, 2007] Chiu, Y.-H., Wu, C.-H., Su, H.-Y., and Cheng, C.-J. 2007. Joint Optimization 
of Word Alignment and Epenthesis Generation for Chinese to Taiwanese Sign 
Synthesis. IEEE Trans. Pattern Analysis and Machine Intelligence, 29(1):28–39. 

[Chou and Juang, 2003]  Chou, W., and Juang, B. H. eds. 2003. Pattern recognition in 
Speech and Language Processing. CRC Press. 416 pps. ISBN 0849312329. 

[Christopoulos and Bonvillian, 1985] Christopoulos, and C. Bonvillian, J., 1985. Sign 
Language. Journal of Communication Disorders, 18, pp. 1-20. 

[Chung, 2004] Chung, G. 2004. Developing A Flexible Spoken Dialogue System Using 
Simulation. 42nd Annual Meeting on Association for Computational Linguistics (ACL), 
pp. 63-70. 

[Clarkson and Robinson, 1997] Clarkson, P. and R., Robinson, A. J. 1997. Language model 
adaptation using mixtures and an exponentially decaying cache. Intern. Conf. on 
Acoustics, Speech, Signal Processing (ICASSP), pp. 799–802. 

[Cole et al, 2003] Cole, R., Van Vuuren, S., Pellom, B., Hacioglu, K., Ma, J., Movellan, J., 
Schwartz, S., Wade-Stein, D., Ward, W., and Yan, J. 2003. Perceptive Animated 
Interfaces: First Steps toward a New Paradigm for Human Computer Interaction. IEEE 
Transactions on Multimedia: Special Issue on Human Computer Interaction, Vol. 91(9), 
pp. 1391-1405. 

[Cole, 1999] Cole, R., 1999. Tools for research and education in speech science. Intern. 
Conf. of Phonetic Sciences (ICPhS), pp. 1277-1280. 

[Cordoba et al, 2005] Cordoba, R., Macías-Guarasa, J., Sama, V., Barra, R., and Pardo, J. M. 
2005. New Advances in Cross-Task and Speaker Adaptation for Air Traffic Control 
Tasks. Revista de Procesamiento del Lenguaje Natural Nº 35, pp. 21-27. ISSN:1135-
5948. 

[Cordoba et al, 2003] Cordoba, R., Prime, G., Macías-Guarasa, J., Montero, J. M., Ferreiros, 
J., and Pardo, J. M. 2003. PPRLM Optimization for Language Identification in Air 
Traffic Control Tasks. Eurospeech, pp. 2685-2688.  

[Cordoba et al, 2002] Cordoba, R., Montero, J. M., Gutiérrez Arriola, J. M., Vallejo, J. A., 
Enríquez, E., and Pardo, J. M. 2002. Selection of the most significant parameters for 
duration modelling in a Spanish text-to-speech system using neural networks. Computer 
Speech and Language, Vol.16(2), pp 183-203. 

[Cordoba et al, 2001] Cordoba, R., San-Segundo, R., Montero, J. M., Colás, J., Ferreiros, J., 
Macías-Guarasa, J., and Pardo, J. M. 2001. An Interactive Directory Assistance Service 
for Spanish with Large-Vocabulary Recognition. 7th European Conference on Speech 
Communication and Technology (Eurospeech). Vol. II, pp. 1279-1282. 



Speed Up Strategies for the Creation of Multimodal and Multilingual Dialogue Systems 

198 

[Dagan et al, 1993] Dagan, I., Church, K., and Gale, A. 1993. Robust bilingual word 
alignment for machine-aided translation. Workshop on very large corpora, pp. 1-8. 

[Denecke, 2002] Denecke, M. 2002. Rapid Prototyping for Spoken Dialogue Systems. 19th Int. 
Conf. on Computational Linguistic (COLING'02). pp. 1-7. 

[Deerwester et al, 1990]  Deerwester, S., Dumais, S.T., Furnas, G. W., Landauer, T. K., 
Harshman, R., 1990. Indexing by latent semantic analysis. Journal of the American 
Society for Information Science, Vol 41, pp. 391–407. 

[Doddington, 2002] Doddington, G. 2002. Automatic Evaluation of Machine Translation 
Quality Using N-gram Co-Occurrence Statistics. 2nd Intern. Conf. on Human Language 
Technology Research, pp. 138 – 145. 

[Dybkjær and Dybkjær, 2006] Dybkjær, H. and Dybkjær, L. 2006. DialogDesigner: tools 
support for dialogue model design and evaluation. Language Resources and 
Evaluation, Vol. 40 (1), pp. 87-107.  

[Dybkjær and Dybkjær, 2005] Dybkjær, H. and Dybkjær, L. 2005. DialogDesigner – A Tool 
for Rapid System Design and Evaluation. 6th SIGdial Workshop on Discourse and 
Dialogue, pp. 227-231. 

[Eberman et al, 2002] Eberman, B., Carter, J., and Goddeau, D. 2002. Building VoiceXML 
Browsers with OpenVXI. 11th Intern. Conf. on World Wide Web, pp. 713 – 717. 

[Engberg-Pedersen, 2003] Engberg-Pedersen, E. 2003. From pointing to reference and 
predication: pointing signs, eyegaze, and head and body orientation in Danish Sign 
Language. Pointing: where language, culture, and cognition meet. Edited by Sotaro 
Kita, Mahwah, NJ: Lawrence Erlbaum Associates, pp. 269-292. ISBN:0805840141.  

[Federico, 1996] Federico, M. 1996. Bayesian estimation methods for N-gram language model 
adaptation. Intern. Conf. on Spoken Language Processing (ICSLP), pp. 240–243. 

[Feng et al, 2003]  Feng, J., Bangalore, S., Rahim, M. 2003. WEBTALK: Mining Websites for 
Automatically Building Dialogue Systems. Workshop on Automatic Speech 
Recognition and Understanding (ASRU '03). pp. 168-173. 

[Ferreiros et al, 2005] Ferreiros, J., San-Segundo, R., Fernández, F., D’Haro, L.F., Sama, V., 
Barra, R., and P. Mellén. 2005. New Word-Level and Sentence-Level Confidence 
Scoring Using Graph Theory Calculus and its Evaluation on Speech Understanding. 
Interspeech, pp 3377-3380. 

[Flippo et al, 2003] Flippo, F., Krebs, A., and Marsic, I. 2003. A framework for Rapid 
Development of Multimodal Interfaces. 5th Intern. Conf. on Multimodal Interfaces, pp. 
109 – 116. 

[Galescu et al, 1998]  Galescu, L., Ringger, E. K., and Allen, J. F. 1998. Rapid language 
model development for new task domains. ELRA First Intern. Conf. on Language 
Resources and Evaluation (LREC), pp. 807-812. 

[Gauvain et al, 2004] Gauvain, J. L., Messaoudi, A., and Schwenk, H. 2004. Language 
Recognition using Phone Lattices. Intern. Conf. on Spoken Language Processing 
(ICSLP), pp. I-25-28. 

[Georgila et al, 2004] Georgila, K., Fakotakis, N., and Kokkinakis, G. 2004. A graphical tool 
for handling rule grammars in Java speech grammar format. 4th Intern. Conf. on 
Language Resources and Evaluation. 



Bibliography 

199 

[Gildea and Hofmann, 1999] Gildea, D., and Hofmann, T.,1999. Topic-based language 
modelling using EM. Eurospeech, pp. 2167-2170. 

[Glass and Weinstein, 2001] Glass, J. and Weinstein, E. 2001. SPEECHBUILDER: 
Facilitating Spoken Dialogue System Development. European Conference on Speech 
Communication and Technology (Eurospeech), pp. 1335-1339. 

[Gleason and Zissman, 2001]  Gleason, T. P., and Zissman, M.A.. 2001. Composite 
background models and score standardization for Language Identification Systems. 
Intern. Conf. Acoustics, Speech, Signal Processing (ICASSP), pp. 529-532. 

[Good, 1953]  Good, I. J. 1953. The population frequencies of species and the estimation of 
population parameters. Biometrika, 40(3 and 4), pp. 237–264. 

[Goodman, 2001]  Goodman J. T. 2001. A bit of progress in language modelling. Computer 
Speech and Language, Vol. 15(4), pp. 403-434(32). 

[Granström et al, 2002]  Granström, B., House, D., Beskow, J., 2002. Speech and Signs for 
Talking Faces in Conversational Dialogue Systems. Multimodality in Language and 
Speech Systems. Kluwer Academic Publishers, pp 209-241. 

[Gustafson et al, 2000] Gustafson, J., Bell, L., Beskow, J., Boye, J., Carlson, R., Edlund, J., 
Granström, B., House, D., and Wiren, M. 2000. AdApt – A multimodal conversational 
dialogue system in an apartment domain. Intern. Conf. on Spoken Language Processing 
(ICSLP). pp. II -134–137. 

[Gustafson et al, 1998] Gustafson, J., Elmberg, P., Carlson, R. and Jonsson, A. 1998. An 
educational dialogue system with a user controllable dialogue manager. Intern. Conf. 
on Spoken Language Processing (ICSLP), pp. 33-37. 

[Hamerich, 2008]  Hamerich, S. W. 2008. From GEMINI to DiaGen: Improving 
Development of Speech Dialogues for Embedded Systems. 9th SIGdial Workshop on 
Discourse and Dialogue - Association for Computational Linguistics (SIGdial - ACL), 
pp. 92-95. 

[Hamerich et al, 2003] Hamerich, S. W., Wang, Y.-F., Schubert, V., Schless, V., and Igel, S. 
2003. XML-Based Dialogue Descriptions in the Gemini Project. Berliner XML-Tage, 
pp. 404-412. 

[Heeman, 1999] Heeman, P. 1999. POS Tags and Decision Trees for Language Modelling. 
Joint SIGDAT Conference on Empirical Methods in Natural Language Processing and 
Very Large Corpora, pp 129-137. 

[Heidel et al, 2007] Heidel, A., Chang, H-a., and Lee, L-S. 2007. Language Model Adaptation 
Using Latent Dirichlet Allocation and an Efficient Topic Inference Algorithm. 
Interspeech, pp.2361-2364. 

[Herrero-Blanco and Salazar-García, 2005] Herrero-Blanco, Á., and Salazar-García, V. 2005. 
Non-verbal predicability and copula support rule in Spanish Sign Language. Casper De 
Groot & Kees Hengeveld (eds.) Morphosyntactic Expression in Functional Grammar 
(Functional Grammar Series, 27). Berlín: Mouton de Gruyter, pp. 281-315. 

[Hofmann, 1999]  Hofmann, T. 1999. Probabilistic Latent Semantic Indexing. 22nd Annual 
International SIGIR. Conference on Research and Development in Information 
Retrieval (SIGIR-99), pp.50-57. 



Speed Up Strategies for the Creation of Multimodal and Multilingual Dialogue Systems 

200 

[Hurtado et al, 2005]  Hurtado L. F., Blat F., García F., Grau S., Griol D., Sanchis E., Segarra 
E., and Torres F. 2005. Sistema de diálogo para el Proyecto DIHANA. Revista del 
Procesamiento del lenguaje natural Nº 35, pp. 453-454. 

[Hutchins, 2005] Hutchins, J. 2005. Towards a definition of example-based machine 
translation. Workshop on Example-Based Machine Translation, pp.63-70. 

[Ito et al, 2006] Ito, A., Shimada, K., Suzuki, M., and Makino, S. 2006. A User Simulator 
based on VoiceXML for evaluation of spoken dialogue systems. Interspeech, pp 1045-
1048. 

[Iyer and Ostendorf, 1999] Iyer, R. and Ostendorf, M. 1999. Modelling long distance 
dependence in language: Topic mixture vs. dynamic cache models. IEEE Trans. Speech 
Audio Processing, vol. 7, pp. 30–39. 

[Jelinek and Mercer, 1980]  Jelinek, F. and Mercer, R.L. 1980. Interpolated estimation of 
Markov source parameters from sparse data. Gelsema, E.S and Kanal, L.N. (Eds). 
Workshop on Pattern Recognition in Practice, pp. 381-397.  

[Jelinek et al, 1991] Jelinek, F., Roukos, S., Merialdo, B., and Strauss, M. 1991. A dynamic 
language model for speech recognition. DARPA Workshop on Speech and Natural 
Language, pp. 293–295. 

[Jelinek, 1990]  Jelinek, F. 1990. Self-organized language modelling for speech recognition. 
Readings in speech recognition, pp. 450 - 506. 

[Jemni and Elghoul, 2007]  Jemni, M., and Elghoul, O. 2007. Towards Web-Based automatic 
interpretation of written text to Sign Language. 1st Intern. Conf. on ICT and 
Accesibility (ICTA) 2007, pp. 43-48. 

[Jiang, 2005] Jiang, H. 2005. Confidence measures for speech recognition: A survey. Speech 
Communication, Vol. 45, Issue 4, April 2005, pp 455-470. 

[Johnston et al, 2007] Johnston, M., D’Haro, L.F., Levine, M., and Renger, B. 2007. A 
Multimodal Interface for Access to Content in the Home. 45th Annual Meeting of the 
Association for Computational Linguistics (ACL), pp. 376-383. 

[Johnston et al, 2002] Johnston, M., Bangalore, S, Vasireddy, G., Stent, A., Ehlen, P., 
Walker, M., Whittaker, S. Maloor, P. 2002. MATCH: An architecture for multimodal 
dialogue systems. 40th Annual Meeting of the Association for Computational 
Linguistics (ACL), pp. 376–383. 

[Jung et al, 2008]  Jung, S., Lee, C., Kima, S., and Geunbae Lee, G. 2008. DialogStudio : A 
Workbench for Data-driven Spoken Dialogue System Development and Management. 
Speech Communications, 50 (8-9), pp. 683-697. 

[Jurafsky and Martin, 2008] Jurafsky, D., and Martin, J. 2008. Speech and Language 
Processing: An introduction to natural language processing, computational linguistics, 
and speech recognition. Prentice Hall; 2nd edition, 1024 pages. ISBN: 0131873210 

[Katsurada et al, 2003] Katsurada, K., Nakamura, Y., Yamada, H., and Nitta , T. 2003. XISL: a 
language for describing multimodal interaction scenarios. 5th Intern. Conf. on 
Multimodal interfaces. pp. 281–284.  

[Katsurada et al, 2002] Katsurada, K., Ootani, Y., Nakamura, Y., Kobayashi, S., Yamada, H., 
and Nitta, T. 2002. A Modality Independent MMI System Architecture. Intern. Conf. on 
Spoken Language Processing (ICSLP), pp. 2549-2552. 



Bibliography 

201 

[Katz, 1987] Katz, S. 1987. Estimation of probabilities from sparse data for the langauge 
model component of a speech recognizer. IEEE Transactions on Acoustics, Speech and 
Signal Processing, ASSP-35(3), pp. 400–401. 

[Keller and Lapata, 2003] Keller, F. and Lapata, M. 2003. Using the Web to obtain frequencies 
for unseen bigrams. Computational Linguistics. Vol. 29(3), pp. 459-484. 

[Klakow and Peters, 2002]  Klakow, D., and Peters, J. 2002. Testing the correlation of word 
error rate and perplexity. Speech Communication, Vol.38(1-2), September 2002, pp 
19-28.  

[Klemmer et al, 2000] Klemmer, S.R., Sinha, A K., Chen, J., Landay, J. A., Aboobaker, N., 
Wang, A. 2000. SUEDE: a Wizard of Oz prototyping tool for speech user interfaces. In: 
CHI Letters, ACM Symposium on User Interface Software and Technology (UIST), 
Vol. 2 (2), pp. 1–10. 

[Kneser et al, 1997]  Kneser, R., Peters J. and Klakow, D. 1997. Language Model 
Adaptation Using Dynamic Marginals. European Conference on Speech 
Communication and Technology (Eurospeech), Vol 4, pp. 1971-1974. 

[Kneser, 1996]  Kneser, R. 1996. Statistical Language Modelling Using a Variable Context 
Length. 4th Intern. Conf. on Spoken Language Processing, Vol. 1, pp. 494-497. 

[Kneser and Ney, 1995]  Kneser, R. and Ney, H. 1995. Improved backing-off for m-gram 
language modelling. IEEE Intern. Conf. on Acoustics, Speech and Signal Processing, 
volume 1, pp 181–184. 

[Kneser and Ney, 1993]  Kneser, R. and Ney, H. 1993. Improved Clustering Techniques for 
Class-Based Statistical Language Modelling. European Conference on Speech 
Communication and Technology (Eurospeech), pp. 973-976. 

[Knight, 1999]  Knight, K. 1999. A statistical machine translation workbook. Unpublished. 
Available online at http://www.isi.edu/~knight/#pubs [12/12/08]. 

[Koehn et al, 2006] Koehn, P., Federico, M., Shen, W., et al. 2006. Open source toolkit for 
Statistical Machine Translation: Factored Translation Models and Confusion Network 
Decoding. Final report of the 2006 Language Engineering Workshop. Available online 
at http://www.clsp.jhu.edu/ws2006/groups/ossmt/ [12/12/2008] 

[Koehn, 2005]  Koehn, P. 2005. Europarl: A Parallel Corpus for Statistical Machine 
Translation. MT Summit X.  

[Koehn, 2004]  Koehn, P. 2004. Pharaoh: a Beam Search Decoder for Phrase-Based 
Statistical Machine Translation Models. 6th Conference of the Association for Machine 
Translation in the Americas (AMTA-04), pp. 115-124.  

[Koehn et al, 2003] Koehn, P., Och, F. J., and Marcu, D. 2003. Statistical Phrase-Based 
Translation. Conference of the North American Chapter of the Association for 
Computational Linguistics on Human Language Technology (HLT/NAACL). Vol. 1, 
pp. 48-54.  

[Komatani et al, 2003] Komatani, K., Ueno, S., Kawahara, T., and Okuno, H. G. 2003. User 
Modelling in Spoken Dialogue Systems for Flexible Guidance Generation. European 
Conference on Speech Communication and Technology (Eurospeech), pp. 745-748. 

[Kuhn, 1988] Kuhn, R. 1988. Speech recognition and the frequency of recently used words: A 
modified Markov model for natural language. 12th Intern. Conf. Computational 
Linguistics, pp. 348–350. 

http://www.isi.edu/~knight/#pubs�
http://www.clsp.jhu.edu/ws2006/groups/ossmt/�


Speed Up Strategies for the Creation of Multimodal and Multilingual Dialogue Systems 

202 

[Lamel et al, 2000] Lamel, L., Rosset, S., Gauvain, J. L., Bennacef, S., Garnier-Rizet, M., and 
Prouts. B. 2000. The LIMSI ARISE System. Speech Communication, Vol 31(4): pp. 
339-354. 

[Larsson and Traum, 2000] Larsson, S. and Traum, D. 2000. Information state and dialogue 
management in the TRINDI dialogue move engine toolkit. Natural Language 
Engineering Special Issue on Best Practice in Spoken Language Dialogue Systems 
Engineering, Cambridge University Press, U.K., pp.323-340. 

[Lau et al, 1993] Lau, R., Rosenfeld, R., and Roukos, S., 1993. Trigger-based language 
models: a maximum entropy approach. Intern. Conf. Acoustics, Speech, and Signal 
Process (ICASSP), pp. 1145–1148. 

[Lehtinen et al, 2000] Lehtinen, G., Safra, S., Gauger, M., Cochard, J.-L., Kaspar, B., 
Hennecke, M.E., Pardo, J.M., Cordoba, R., San-Segundo, R., Tsopanoglou, A., 
Louloudis, D., and Mantazas, M. 2000. IDAS: interactive directory assistance service. 
Proc. COST249. ISCA Workshop on Voice Operated Telecom Services (VOTS), pp. 
51–54. 

[Levin et al, 2000] Levin, E., Narayanan, S. Pieraccini, R., Biatov, K., Bocchieri, E., Di 
Fabbrizio, G., Eckert, W., Lee, S. Pokrovsky, A., Rahim, M., Ruscitti, P., and Walker, 
M. 2000. The AT&T-DARPA communicator mixed-initiative spoken dialogue system. 
Intern. Conf. on Spoken Language Processing (ICSLP). Vol. 2, pp. 122-125. 

[Li and Lin, 2006] Li, Y-X, and Lin, N-W. 2006. Voice Composer: A Development Tool for 
Voice Applications. International Computer Symposium, pp. 304-309. 

[Li et al, 2006]  Li, J., Yaman, S., Lee, C.-H., Ma, B., Tong, R., Zhu, D., and Li, H. 2006. 
Language Recognition Based on Score Distribution Feature Vectors and 
Discriminative Classifier Fusion. IEEE Odyssey 2006: The Speaker and Language 
Recognition Workshop. pp. 1-5. 

[López-Cozar and Araki, 2005] López-Cózar, R., and Araki, M. 2005. Spoken, Multilingual 
and Multimodal Dialogue Systems: Development and Assessment. 262 pp. Published by 
John Wiley & Sons, ISBN: 0-470-02155-1. 

[López-Cozar et al, 2005] López-Cózar, R., Callejas, Z., Gea M., and Montoso, G. 2005. 
Multimodal, Multilingual and Adaptive Dialogue System for Ubiquitous Interaction in 
an Educational Space. ISCA Workshop (ITRW) on Applied Spoken Language 
Interaction in Distributed Environments, ISSN 0908-1224. 

[López-Cozar and Granell, 2004] López-Cózar, R., and Granell, R. 2004. Sistema de Diálogo 
Basado en VoiceXML para Proporcionar Información de Viajes en Tren. 
Procesamiento del lenguaje natural, Nº. 33, pp. 171-178. 

[López-Moreno et al, 2008] López-Moreno, I., Ramos, D., González-Rodríguez, J., and 
Toledano, D. T. 2008. Anchor-Model fusion for language recognition. Interspeech 
2008, pp. 727-730. 

[Ma et al, 2005] Ma, B., Li, H., and Lee, C-H. 2005. An acoustic segment modeling approach 
to automatic language identification. Interspeech 2005. pp. 2829-2832. 

[Ma et al, 2002] Ma, J., Yan, J., and Cole, R. 2002. CU animate tools for enabling 
conversations with animated characters. Intern. Conf. on Spoken Language Processing 
(ICSLP), pp. 197-200. 



Bibliography 

203 

[Manning and Schütze, 1999]  Manning, C. D., and Schütze, H. 1999. Foundations of 
statistical natural language processing. MIT Press, Cambridge, MA. 680 pp. ISBN: 
0262133601. 

[Masataka, et al, 2006] Masataka, N, Ohnishi, T., Imabayashi, E., Hirakata, M., and Matsuda, 
H.  2006. Neural correlates for numerical processing in the manual mode. Journal of 
Deaf Studies and Deaf Education 11(2), pp. 144-152. 

[McTear, 2004] McTear, M. 2004. Spoken Dialogue Technology: Towards the conversational 
user interface. Published by Springer Ed. 432 pp. ISBN: 1-85233-672-2. 

[McTear, 2002] McTear, M. 2002. Spoken Dialogue Technology: Enabling the 
Conversational User Interface. ACM Computing Surveys, 34(1). pp. 90–169. 

[McTear, 1999] McTear, M. 1999. Software to Support Research and Development of Spoken 
Dialogue Systems. European Conference on Speech Communication and Technology 
(Eurospeech), pp. 339-342. 

[McTear, 1998] McTear, M. 1998. Modelling Spoken Dialogues with State Transition 
Diagrams: Experiences with the CSLU Toolkit. Intern. Conf. on Spoken Language 
Processing (ICSLP), pp. 1223-1226. 

[Meurant, 2004] Meurant, L. 2004. Anaphora, role shift and polyphony in Belgian sign 
language. Intern. Conf. on Theoretical Issues in Sign Language Research 8, pp. 113-
115. 

[Mohri, 2000]  Mohri, M. 2000. Minimization algorithms for sequential transducers. 
Theorical Computer Science, Vol 234 (1–2), pp. 177–201. 

[Monserrat and Gallardo, 2004] Monserrat, V., and Gallardo, B. 2004. V., Estudios 
Lingüísticos sobre la lengua de signos española. Universidad de Valencia. Ed. 
AGAPEA. ISBN: 8437055261. 

[Montero et al, 2003] Montero, J. M., D’Haro, L.F., Cordoba, R., Vallejo, J. A., Gutiérrez-
Arriola, J., and Pardo, J. M. 2003. ANN F0 Modelling for Female-Voice Synthesis in 
Spanish: restricted and non-restricted domains. 15th International Congress of Phonetic 
Sciences (ICPS), pp. 563-566. 

[Moore et al, 2006] Moore, R. C., Yih, W., and Bode, A. 2006. Improved discriminative 
bilingual word alignment. 21th Intern. Conf. on Computational Linguistics and 44th 
Annual Meeting of the ACL, pp. 513-520. 

[Morrissey and Way, 2005] Morrissey, S., and Way, A. An Example-Based Approach to 
Translating Sign Language. Workshop Example-Based Machine Translation (MT 
X05), pp. 109-116. 

[Nagarajan and Murthy, 2004] Nagarajan, T., and Murthy, H. A. 2004. Language 
Identification Using Parallel Syllable-Like Unit Recognition. Intern. Conf. Acoustics, 
Speech, and Signal Processing (ICASSP), pp. I-401-404. 

[Navratil, 2001] Navratil, J. 2001. Spoken Language Recognition – A Step toward 
Multilinguality in Speech Processing. IEEE Transactions on Speech and Audio 
Processing, Vol. 9(6), pp. 678-685. 

[Navratil and Zühlke, 1997] Navratil, and J. Zühlke, W. 1997. Double bigram-decoding in 
phonotactic language identification. Intern. Conf. on Acoustics, Speech, Signal 
Processing (ICASSP), Vol. 2, pp. 1115–1118. 



Speed Up Strategies for the Creation of Multimodal and Multilingual Dialogue Systems 

204 

[Ney et al, 1994] Ney, H., Essen, U., and Kneser, R. 1994. On structuring probabilistic 
dependences in stochastic language modelling. Computer, Speech and Language. Vol 
8, pp. 138.  

[Nigay and Coutaz, 1993] Nigay, L., and Coutaz, J. 1993. A design space for multimodal 
systems - concurrent processing and data fusion. INTERCHI - Conference on Human 
Factors in Computing Systems, pp. 172-178. 

[Nyst, 2004] Nyst, V. 2004. Verbs of motion in Adamorobe Sign Language. Intern. Conf. on 
Theoretical Issues in Sign Language Research 8. pp. 127-129. 

[Och and Ney, 2004] Och, F.J., and Ney, H. 2004. The Alignment Template Approach to 
Statistical Machine Translation. Computational Linguistics, Vol 30 (4), pp. 417-449. 

[Och and Ney, 2003] Och, F.J., and Ney, H. 2003. A Systematic Comparison of Various 
Statistical Alignment Models. Computational Linguistics, Vol. 29(1), pp. 19-51. 

[Och and Ney, 2002] Och, F.J., and Ney, H. 2002. Discriminative training and maximum 
entropy models for statistical machine translation. 40th Annual Meeting of the 
Association for Computational Linguistics (ACL), pp 295–302. 

[Och and Ney, 2000a] Och, F.J., and Ney, H. 2000. Improved Statistical Alignment Models. 
38th Annual Meeting of the Assoc. for Computational Linguistics (ACL), pp. 440–447. 

[Och and Ney, 2000b] Och, F. J., and Ney, H. 2000. A comparison of alignment models for 
statistical machine translation. 18th Intern. Conf. on Computational Linguistics, pp. 
1086-1090. 

[Och, 1999] Och, F. J. 1999. An Efficient Method for Determining Bilingual Word Classes. 
9th Conf. of the European Chapter of the Association for Computational Linguistics; 
(EACL), pp. 71-76. 

[Och et al, 1999] Och, F.J., Tillmann, C., and Ney, H. 1999. Improved alignment models for 
statistical machine translation. Joinst SIGDAT Conf. on Empirical Methods in Natural 
Language Processing and Very Large Corpora, pp 20-28. 

[Oviatt et al, 2000] Oviatt, S. L., Cohen, P., Wu, L., Vergo, J., Duncan, L., Suhm, B., Bers, J., 
Holzman, T., Winograd, T., Landay, J., Larson, J., and Ferro, D. 2000. Designing the 
user interface for multimodal speech and gesture applications: state-of-the-art systems 
and research directions. Journal of Human Computer Interaction, Vol 15(4), pp. 263-
322. 

[Padró and Padró, 2004] Padró Cirera, L., Padró, M. 2004. Comparing methods for language 
identification. Procesamiento del lenguaje natural, Nº. 33, pp. 155-161. 

[Papineni et al, 2002] Papineni, K., Roukos, S., Ward, T., and Zhu, W. J. 2002. BLEU: a 
Method for Automatic Evaluation of Machine Translation. 40th Annual Meeting of the 
Association for Computational Linguistics (ACL), pp. 311-318. 

[Pardo et al, 1995] Pardo, J. M., Giménez de los Galanes, F. M., Vallejo, J. A., Berrojo, M. 
A., Montero, J. M., Enríquez, E., and Romero, A. 1995. Spanish text-to-speech, from 
prosody to acoustics. 15th International Congress on Acoustics, pp. 133–136. 

[Pargellis et al, 2004] Pargellis, A. N., Kuo, H. J., and Lee, C. 2004. An automatic dialogue 
generation platform for personalized dialogue applications. Speech Communication 
Vol. 42, pp. 329-351. 

[Parkhurst and Parkhurst, 2007] Parkhurst, S., and Parkhurst, D. 2007. Spanish Sign Language 
Survey. SIL Electronic Survey Reports 2007-008, 85 p. 



Bibliography 

205 

[Pereira and Riley, 1997] Pereira, F.C., and Riley, M., 1997. Speech recognition by 
composition of weighted finite automata.  Roche, E., Schabes, Y. (Eds.), Finite-State 
Language Processing. MIT Press,Cambridge, MA, pp. 431–453. 

[Polifroni and Walker, 2006] Polifroni, J. and Walker, M. 2006. Learning Database Content 
for Spoken Dialogue System Design. Intern. Conf. on Language Resources and 
Evaluation (LREC), pp. 143-148. 

[Polifroni et al, 2003] Polifroni, J., Chung, G., Seneff, S. 2003. Towards the Automatic 
Generation of Mixed-Initiative Dialogue Systems from Web Content. European 
Conference on Speech Communication and Technology (Eurospeech), pp. 193–196. 

[Polifroni et al, 2000] Polifroni, J., Seneff, S. 2000. Galaxy-II as an architecture for Spoken 
Dialogue Evaluation. Intern. Conf. on Language Resources and Evaluation (LREC), pp. 
725–730. 

[Prillwitz et al, 1989] Prillwitz, S., R. Leven, H. Zienert, T. Hanke, J. Henning, et al. 1989. 
Hamburg Notation System for Sign Languages – An introductory Guide. Intern. Studies 
on Sign Language and the Communication of the Deaf, Volume 5. Institute of German 
Sign Language and Communication of the Deaf, University of Hamburg. 

[Pyers, 2006] Pyers J.E., 2006. Indicating the body: Expression of body part terminology in 
American Sign Language. Language Sciences, Vol. 28, no 2-3, pp. 280-303. ISSN 
0388-0001. 

[Ramasubramaniam et al, 2003] Ramasubramaniam, V., Sai Jayram, A. K. V., and Sreenivas, 
T. V. 2003. Language Identification using Parallel Phone Recognition. Workshop on 
Spoken Language Processing, pp. 109-116. 

[Reyes, 2005] Reyes, I. 2005. Comunicar a través del silencio: las posibilidades de la lengua 
de signos española. Universidad de Sevilla, 310 p. 

[Rodríguez, 1991] Rodríguez, M.A. 1991. Lenguaje de signos. Phd Dissertation. 
Confederación Nacional de Sordos Españoles (CNSE) and Fundación ONCE. Madrid. 
Spain. 

[Rosenfeld, 2000]  Rosenfeld, R. 2000. Two Decades of Statistical Language Modelling: 
Where Do We Go from Here?. Proceedings of the IEEE, Vol. 88(8), pp. 1270-1278.  

[Rosenfeld, 1996]  Rosenfeld, R. 1996. A maximum entropy approach to adaptive statistical 
language modelling. Computer Speech and Language, Vol. 10, pp. 187–228. 

[Rudnicky and Xu, 1999] Rudnicky, A., and Xu W. 1999. An agenda based dialogue 
management architecture for spoken language systems. IEEE Automatic Speech 
Recognition and Understanding Workshop, pp. 337-340. 

[Sai-Jayram et al, 2003]  Sai Jayram, K. V., Ramasubramanian, V., and Sreenivas, T. V. 
2003. Language Identification Using Parallel Sub-Word Recognition. Intern. Conf. on 
Acoustics, Speech, and Signal Processing (ICASSP), pp. I-32-35. 

[San-Segundo et al, 2001a] San Segundo, R., Montero, J. M., Colás, J., Gutiérrez, J. M., 
Ramos, J. M., and Pardo, J. M. 2001. Methodology for Dialogue Design in Telephone-
Based Spoken Dialogue Systems: A Spanish Train Information System. European 
Conference on Speech Communication and Technology (Eurospeech), pp 2165-2168. 

[San-Segundo et al, 2001b] San-Segundo, R. Pellom, B., Hacioglu, K., Ward, W., and Pardo, 
J. M. 2001. Confidence measures for spoken dialogue systems. Intern. Conf. on 
Acoustics, Speech, Signal Processing (ICASSP), pp 393-396.  



Speed Up Strategies for the Creation of Multimodal and Multilingual Dialogue Systems 

206 

[Sarikaya  et al, 2005] Sarikaya, R., Gravano, A., and Gao, Y. 2005. Rapid Language Model 
Development Using External Resources for New Spoken Dialogue Domains. Intern. 
Conf. on Acoustics, Speech, Signal Processing (ICASSP). Vol. 1, pp. 573- 576. 

[Sato and Nagao, 1990]  Sato, S., and Nagao, M. 1990. Towards memory-based translation. 
13th conference on Computational linguistics, Vol. 3, pp. 247-252.  

[Scholz, 2006]  Scholz, K. W. 2006. Speech Service Creation: An overview of Speech 
Services Creation Tools. NY/NJ Chapter Meeting, Avios Co. December 12, 2006. 

[Schubert et al, 2005] Schubert, V, and Hamerich, S. W. 2005. The Dialogue Application 
Metalanguage GDialogXML. European Conference on Speech Communication and 
Technology (Eurospeech), pp. 789-792. 

[Schwenk, 2007] Schwenk, H. 2007. Continuous space language models. Computer Speech 
and Language, Vol. 21, Issue 3. pp 492-518.  

[Seneff and Polifroni, 2000] Seneff, S., and Polifroni, J. 2000. Dialogue management in the 
mercury flight reservation system. ANLP-NAACL Satellite Workshop, pp. 1-6. 

[Sommers, 1999]  Somers, H.L. 1999. Example-based machine translation. Machine 
Translation 14 (2): 113-158. 

[Stein et al, 2007]  Stein, D., Dreuw, P., Ney, H., Morrisey, S., and Way, A. 2007. Hand in 
hand: Automatic Sign Language to English Translation. TMI 2007, pp.214-220. 

[Stein et al, 2006]  Stein, D., Bungeroth, J., and Ney H. 2006. Morpho-Syntax Based 
Statistical Methods for Sign Language Translation. 11th Annual conference of the 
European Association for Machine Translation, pp. 169–177. 

[Stolcke, 2002] Stolcke, A. 2002. SRILM – An Extensible Language Modelling Toolkit. 
Intern. Conf. on Spoken Language Processing (ICSLP), 2, pp. 901–904. 

[Stokoe, 1960]  Stokoe, W., 1960. Sign Language structure: an outline of the visual 
communication systems of the American deaf. Studies in Linguistics. Buffalo, Univ. 
Paper 8. 

[Strik et al, 1997]  Strik, H., Russel, A., van den Heuvel, H., Cucchiarini, C., and Boves, L. 
1997. A spoken dialogue system for the Dutch public transport information service. 
Intern. Journal of Speech Technology, Vol. 2 (2), pp. 121-131. 

[Sumita, 2001]  Sumita, E. 2001. Example-based machine translation using DP-matching 
between word sequences. Data-Driven Machine translation Workshop, 39th Annual 
Meeting of the Assoc. for Computational Linguistics, pp. 1-8. 

[Tam and Schultz, 2006] Tam, Y-C, and Schultz, T. 2006. Unsupervised Language Model 
Adaptation Using Latent Semantic Marginals. Interspeech 2006. pp. 2206-2209 

[Tam and Schultz, 2005] Tam, Y-C, and Schultz, T. 2005. Dynamic Language Model 
Adaptation using Variational Bayes Inference. Interspeech 2005. pp. 5-8. 

[Tillmann et al, 1997] Tillmann, C., Vogel, S., Ney, H., Zubiaga, A., and Sawaf, H. 1997. 
Accelerated DP based search for statistical translation. European Conference on 
Speech Communication and Technology (Eurospeech), pp. 2667–2670. 

[Timmermans, 2005] Timmermans, N. 2005. The status of the sign language in Europe. 
Council Of Europe Publishing, 164 pp. ISBN: 978-92-871-5720-1. 



Bibliography 

207 

[Torres-Carrasquillo et al, 2002a] Torres-Carrasquillo, P. A., Reynolds, D. A., and Deller Jr., 
J. R. 2002. Language identification using Gaussian mixture model tokenization. Intern. 
Conf. on Acoustics, Speech, Signal Processing (ICASSP), pp. I-757-760. 

[Torres-Carrasquillo et al, 2002b] Torres-Carrasquillo, P. A., Singer, E., Kohler, M. A., 
Green R. J, et al. 2002. Approaches to Language Identification using Gaussian Mixture 
Models and Shifted Delta Cepstral Features. Intern. Conf. on Acoustics, Speech, Signal 
Processing (ICASSP), pp.89-92. 

[Toth et al, 2002] Toth, A. R., Harris, T. K., Sanders, J., Shriver, S., and Rosenfeld, R. 2002. 
Towards every-citizen’s speech interfaces: an application generator for speech 
interfaces to databases. Intern. Conf. on Spoken Language Processing (ICSLP), pp. 
1497–1500. 

[Tsai, 2006] Tsai, M. J. 2006. VoiceXML dialogue system of the multimodal IP-Telephony – 
The application for voice ordering service. Experts Systems with Applications 31, pp. 
684-696. 

[Turunen et al, 2004] Turunen, M., et al. 2004. AthosMail - A Multilingual Adaptive Spoken 
Dialogue System for E-mail Domain. Workshop on Robust and Adaptive Information 
Processing for Mobile Speech Interfaces. pp. 77-86. 

[Uebler, 2001]  Uebler, U. 2001. Multilingual speech recognition in seven languages. Speech 
Communication, Vol. 35 (1), pp. 53-69. 

[Vogel et al, 1996] Vogel, S., Ney, H., and Tillmann, C. 1996. HMM-based word alignment 
in statistical translation. 16th Intern. Conf. on Computational Linguistics, pp. 836-841.  

[Wahlster (Ed.), 2006] Wahlster, W. 2006. SmartKom: Foundations of Multimodal Dialogue 
Systems. 644 p. ISBN: 978-3-540-23732-7. 

[Wang, 2002] Wang, K. 2002. Salt: A Spoken Language Interface for Web-Based Multimodal 
Dialogue Systems. Intern. Conf. on Spoken Language Processing (ICSLP), pp. 2241-
2244. 

[Wang and Stolcke, 2007] Wang, W., and Stolcke, A. 2007. Integrating MAP, Marginals, and 
Unsupervised Language Model Adaptation. Interspeech 2007, pp. 618-621. 

[Wang and Acero, 2006] Wang, Y., and Acero, A. 2006. Rapid development of spoken 
language understanding grammars. Speech Communication, Vol. 48(3-4), pp 390-416.  

[Wang et al, 2003] Wang, Y.-F. H., Hamerich, S. W., and Schless, V. 2003. Multi-Modal and 
Modality Specific Error Handling in the GEMINI Project. Workshop on Error Handling 
in Spoken Dialogue Systems, pp. 139-144. 

[Witten and Bell, 1991]  Witten, I., and Bell, T. 1991. The zero-frequency problem: 
Estimating the probability of novel events in adaptive text compression. IEEE 
Transactions on Information Theory. 37(4), pp. 1085-1094. 

[Yamada and Knight, 2001] Yamada, K., and Knight, K. 2001. A syntax-based statistical 
translation model. 39th Annual Meeting of the Assoc. for Computational Linguistics 
(ACL), pp. 523-530. 

[Yin et al, 2006] Yin, B., Ambikairajah, E., and Chen, F. 2006. Combining cepstral and 
Prosodic Features in Language Identification. 18th Intern. Conf. on Pattern 
Recognition. Vol 4, 254-257. 



Speed Up Strategies for the Creation of Multimodal and Multilingual Dialogue Systems 

208 

[Yu et al, 2005] Yu, D., Mahajan, M., Mau, P., and Acero, A. 2005. Maximum Entropy Based 
Generic Filter for Language Model Adaptation. Intern. Conf. on Acoustics, Speech, 
and Signal Processing (ICASSP), Vol.1, pp. 597- 600. 

[Zissman and Berkling, 2001]  Zissman, M. A., and Berkling, K. M. 2001. Automatic 
Language Identification. Speech Communication 35, Issues 1-2, pp. 115-124. 

[Zissman, 1996] Zissman, M.A. 1996. Comparison of four approaches to automatic language 
identification of telephone speech. IEEE Trans. Speech and Audio Processing, Vol. 
4(1), pp. 31-44. 

[Zhao et al, 2004]  Zhao, B., Eck, M., and Vogel, S. 2004. Language model adaptation for 
statistical machine translation with structured query models. 20th Intern. Conf. on 
Computational Linguistics (COLING), pp 411-417. 

[Zhao et al, 2000]  Zhao, L., Kipper, K., Schuler, W., Vogler, C., Badler, N. and Palmer, M. 
2000. A machine translation system from English to American Sign Language. AMTA 
pp. 54-67. 

[Zhu and Rosenfeld, 2001]  Zhu, X., and Rosenfeld, R. 2001. Improving trigram language 
modelling with the World Wide Web. Intern. Conf. on Acoustics Speech and Signal 
Processing (ICASSP), Vol.1, pp 533-536. 

[Zue et al, 2000] Zue, V., Seneff, S., Glass, J., Polifroni, J., Pao, C., Hazen, T. J., and 
Hetherington, L. 2000. JUPITER: A telephone-based conversational interface for 
weather information. IEEE Transactions on Speech and Audio Processing. Vol. 8(1), 
pp. 85–96.  

 



 

209 

AAPPPPEENNDDIIXX  AA..  LLIISSTT  OOFF  AABBBBRREEVVIIAATTIIOONNSS  
 

 

 

ADA Application Description Assistant 
AGP Application Generation Platform 
ANN Artificial Neural Network 
API Application Programming Interface 
ASL American Sign Language 
ASR Automatic Speech Recognizer 
BLEU BiLingual Evaluation Understudy 
BNF Backus-Naur Form 
BOS Bag-Of-Sounds models 
BSL British Sign Language 
CCXML Call Control Extensible Markup Language 
CFG Context Free Grammars 
CGI Common Gateway Interface 
CTI Computer Telephony Integration 
DB DataBase 
DCMA Data Connector Model Assistant 
DM Dialogue Manager 
DMA Data Model Assistant 
DML Data Model Linker 
DNI National Identity Document 
DTMF Dual-Tone Multi-Frequency 
EBMT Example Based Machine Translation 
FIA Form Interpretation Algorithm 
GDialogXML Gemini Dialogue eXtensible Markup Language 
GEMINI Generic Environment for Multilingual Interactive Natural Interfaces 
GMM Gaussian Mixture Model 
GSL Nuance Grammar Specification Language 
GUI Graphical User Interface 
HMM Hidden Markov Models 
IDE Integrated Development Environment 
IR Information Retrieval 
IVR Interactive Voice Response 
J2EE Java 2 Platform, Enterprise Edition 
JDBC Java DataBase Connectivity 
JSGF Java Speech Grammar Format 
LDA Latent Dirichlet Allocation 
LID Language IDentification 
LM Language Model 
LMT Language Modelling Toolkit 
LSA Latent Semantic Analysis 
LSE Lengua de Signos Española 
MAP Maximum-A-Posteriori 
MEA Modality and Language Extension Assistant 
MERA-Speech Modality Extension Retrieval Assistant for Speech 
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MI Mixed-Initiative 
MRCP Media Resource Control Protocol 
MT Machine Translation 
NLG Natural Language Generator 
NLU Natural Language Understanding 
ODBC Open DataBase Connectivity 
OOV Out-Of-Vocabulary 
OV Over-Answering 
PER Position independent word Error Rate 
PLP Perceptual Linear Predicative 
POS Part-Of-Speech 
PPL Perplexity 
PPRLM Parallel Phone Recognition followed by Language Modelling 
PSTN Public Switched Telephone Network 
RMA Retrieval Model Assistant 
SALT Speech Application Language Tags 
SAMPA Speech Assessment Methods Phonetic Alphabet 
SFMA State Flow Model Assistant 
SIP Session Initiation Protocol 
SISR Semantic Interpretation for Speech Recognition 
SLM Statistical Language Model 
SMT Statistical Machine Translation 
SQL Structured Query Language 
SRGS Speech Recognition Grammar Specification 
SSML Speech Synthesis Markup Language 
TTS Text-To-Speech 
UMA User Model Assistant 
VB Vocabulary Builder 
WER Word Error Rate 
XSLT eXtensible Stylesheet Language Transformations 
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AAPPPPEENNDDIIXX  BB..  AADDDDIITTIIOONNAALL  IINNFFOORRMMAATTIIOONN  
AABBOOUUTT  CCUURRRREENNTT  CCOOMMMMEERRCCIIAALL  AANNDD  WWEEBB--
BBAASSEEDD  PPLLAATTFFOORRMMSS  

 

In this appendix, we provide an overview of the main features and accelerations 
included in several commercial and Web-based development platforms that we studied 
during the development of this thesis. This appendix complements the studied we have 
presented in section 2.1.1 (page 8). 

 

B.1 Commercial Platforms 
 

Audium Studio 70: It is an open Integrated Development Environment (IDE) that 
allows developers the creation of interactive and dynamic server-based services. The Audium 
platform consists of two main components: Audium Server and Audium Builder.  

• Audium Server provides the runtime platform, backend connectivity, application 
management, and manages the dynamic generation of the application. 

• The Audium Builder interface allows the complete design of the dialogue flow 
using a graphical tree view representation (see Figure B.1), which is created using 
drag and drop, zoom and right-click commands, and through the customization of 
the different VoiceXML elements incorporated into the design. Besides, Audium 
Builder also allows local and remote application deployment, access to backend 
databases, performing transactions from any Web service or XML-capable system, 
and it can be easily integrated with all major VoiceXML gateway vendors and 
speech solution providers. Finally, Audium Builder includes an extensible library of 
reusable components, known as module inventory, which can be used to create the 
call flow. The platform also includes components for menus, recognizing basic 
inputs, playing back audio prompts, running external applications, etc. Each 
component can be either configured to meet the particular needs of the service, or 
dynamically configured to act differently according to pre-defined business rules. 

One of the most interesting features included in Audium is the possibility of creating 
dynamic applications using dynamic module configurations, rules, worklets, or new modules. 
All of them can be created/used through java classes or Web based HTTP/XML exchange. In 
detail, rules are used to change the call-flow sequence (i.e. similar to if-then-else conditions). 
Dynamic configurations are used to change the VoiceXML content (for instance, to provide 
dynamic content for prompts in the application). Worklets are used to perform background 
processing without changing the call-flow (i.e. similar to the functionality provided by 
ECMA-scripts). Finally, new modules allow the integration of functionalities that the 
platform does not provide (for instance, speech verification) or to create new reusable 
modules.  
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Figure B.1. Audium Builder main window. (Source: [Scholz, 2006]) 

Dialogue Designer by Avaya 71: It is another IDE that includes several tools for 
designing and simulating speech-enabled services. The platform includes pre-built java 
classes and servlets for the dynamic generation of VoiceXML code and speech grammars, for 
the integration with backend databases, as well as support for the Java Telephone API 
(JTAPI) to allow the simulation and integration of telephony services.  

In addition, Dialogue Designer allows the recording of high-quality speech messages, 
access to local and remote databases via the JDBC interface and SQL commands, and support 
for internet service integration using the Web Services Description Language (WDSL), 
Simple Object Access Protocol (SOAP), CCXML, and Remote Procedure Call (RPC) 
protocols. The platform also includes a speech recognition engine, and an embedded 
VoiceXML and CCXML browsers to allow the simulation and debugging of the final service. 
Figure B.2 shows the main components of the Dialogue Designer GUI, which allows full 
access to dialogue libraries and workflow, platform wizards, and component properties. 

Finally, the platform includes an extensive library of predefined prompts in more than 
20 languages, and allows the creation of TTS prompts supporting the SSML specification to 
dynamically modify the synthesis.  
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Figure B.2. Avaya Dialogue Designer. (Source: Avaya product brochure available at the 
corporate website) 

Genesys Voice Platform 72: It is a stand-alone development platform for designing and 
testing VoiceXML-based applications. The platform includes all the necessary modules such 
as speech recognition, text-to-speech, and tools for backend, mainframes integration, and 
access to Web-based information. Genesys allows developers to deploy the service using the 
proprietary GenieHosting service or any Web server selected by the designer. The service can 
be tested using a SIP soft-phone or a Computer Telephony Integration (CTI) simulator that 
allows developers to transfer a call to an operator and to test the passing of arguments 
between dialogues and services (as we have also dealt in our platform successfully, see 
section 4.5.3, page 105).  

The platform includes the following five software components: 1.) The 
Communications Server that acts as a media server interpreting and executing the VoiceXML 
commands, allowing the integration with the text-to-speech, ASR engines, and with the 
Genesys Voice Platform administration system. 2.) The Element Management Provisioning 
System that is a Web-based interface that allows the configuration and administration of the 
application and platform components. 3.) The Genesys Studio that allows the designer to 
develop the service using an intuitive Graphical User Interface. Then, the assistant 
automatically converts the graphical representation into the underlying code in VoiceXML 
without requiring the designer intervention as we do in our platform. 4.) The Voice 
Application Reporter that allows the designer to check user’s interactions with the service, to 
save logging events, and to generate traffic and service reports using pre-defined templates. 
5.) The Genesys Customer Interaction Management Platform Integration that allows, among 

                                                 

 
72 http://www.genesyslab.com/products/genesys_voice_platform.asp  

http://www.genesyslab.com/products/genesys_voice_platform.asp�


Speed Up Strategies for the Creation of Multimodal and Multilingual Dialogue Systems 

 

214 

others, the centralized management of the service, provides intelligent call queuing including 
personalized applications and music on hold, as well as different tools for making routing 
decisions.  

One of the big advantages of the Genesys Voice Platform is that it supports the 
personalization of the applications through customized IVR voices and personalities, which 
can improve the quality of the service and reinforce the image of the company. For instance, 
the platform allows the possibility of automatically send recommendations, optional services, 
or other information of interest to the user while the system is running other time-consuming 
tasks. 

Envox 73: Provides one of the most complete platforms for developing multimodal 
applications, supporting integration with IP, PSTN or mixed telephony environments. It 
includes four components: 1.) the Envox Studio that provides the graphical interface for 
designing the service. 2.) The Communication Server that includes the VoiceXML gateway 
and browser, and acts as run-time platform. 3.) The Envox Console that provides the 
graphical interface to administrate and control the service. 4.) And the Envox Domain Server 
that ensures the continuous availability of the application. The platform may be integrated 
with different speech engines including Microsoft API and Nuance ASR, TTS, and speaker 
verification modules.  

In addition, the platform supports several standard protocols that help to extend the 
VoiceXML specification, allowing new speech-based services and development 
functionalities. For instance, the platform allows the integration with conferencing, video 
messaging, email and fax services (such as receive, send, create or reply emails or faxes), 
extensive integration with backend systems, dynamic creation of Web pages, encryption, 
execution of external applications, and more. In relation with acceleration strategies, the 
platform includes advanced visual debugging tools (allowing variable simulation, 
breakpoints, step-by-step debugging, etc), hardware simulation, call logging, and a SQL 
wizard, which includes similar capabilities as the assistant described in section 4.3.2 (page 
93), that allow the rapid definition of SQL statements suitable for designers with a reduced 
background on database languages and architectures.  

Besides, the platform allows the rapid development of menus, forms, interaction with 
databases, and TTS messages. Like other development platforms, Envox includes pre-built 
library components (such as dialogues, prompts and grammars) for requesting credit card 
numbers, currencies, dates, phone numbers, etc. Different assistants incorporated into the 
platform allow the designer to specify the properties of each component depending on the 
dialogue state; For instance, it is possible to specify the input mode (speech or DTMF), 
confidences, and the number of times the system confirms a slot, etc. Finally, another 
interesting feature is provided through the Nuance RealSpeak TTS system that support 
customs G2P (grapheme-to-phoneme) dictionaries, allowing the creation of new custom rules 
and entries in order to improve the quality of the pronunciation of special words (e.g. proper 
names). 

OpenVXML Studio 74: It is an integrated design and management environment that 
simplifies the interaction of the platform with any VoiceXML compliant platform. The 
toolkit allows the development of DTMF and speech-enabled voice services. The graphical 
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“drag-and-drop” interface allows the designer to create the dialogue flow as shown in Figure 
B.3. Key features included in this tool are built-in templates to support Web services and 
service oriented architectures, standard database templates for allowing an easy connection 
with the enterprise infrastructure, an editor for speech recognition grammars, support for 
common types of prompts (dates, currencies, ordinals, etc.), pre-recorded audio files, and 
support for user and language modelling through branding functionality.  

 

Figure B.3. Example of dialogue design using the OpenVXML toolkit. (Source: OpenVXML 
Web page) 

An interesting feature of this tool is that the design is made through configurable built-
in modules, similar to some of the templates included in our development platform, which 
provide the main functionalities supported by the VoiceXML language. For instance, the 
platform includes the following modules: Fields, For Each, Play Prompts, Call Transfer, 
Comparisons, Menus, Database queries, Web services, etc. Each time a module is used in the 
application, the visual interface allows the designer to setup and configure it.  

Unfortunately, the accelerations provided by the system are limited, since only default 
values are proposed when configuring the modules. Finally, during the design these modules 
are connected in order to define the dialogue flow. Although this approach allows a high level 
of fine-tuning, it could make difficult the creation of very complex services since the flow 
view could become confusing. The solution implemented by this platform is the creation of 
multiple parallel canvases and a special kind of connectors between canvases called 
wormholes. In our platform, we decided to use some kind of encapsulation of the actions 
defined in a dialogue in order to reduce the graphical representation, but allowing the 
designer to switch between a basic and a complex representation of the flow. 

In addition, the platform incorporates the concept of Business Objects, which represent 
the fields of the database that the designer defines as necessary for the current service. This 
concept is similar to the classes and attributes we used in our platform (see section 3.2.2, 
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page 60). These Business Objects are later used in database queries allowing the designer to 
retrieve complex objects; then, each particular attribute of the object is matched to a local 
variable in the dialogue in order to provide the information retrieved from the database to the 
user. In our platform, we follow a similar approach but we went a step forward creating a 
semi-automatic procedure that proposes the matching and automatically creates the local 
variables (see section 4.5.3, page 105).  

Finally, another interesting feature provided by this platform is the methodology used 
for the creation of system prompts. In this case, the assistant allows the designer to type in the 
words that make up the message, and complete it using dynamic values stored in local or 
global variables. The process is very similar to the one we propose in section 4.7.1.1 (page 
116).  

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure B.4. Example of wizards included in the OptimTalk Professional Edition Toolkit. 
(Source: OptimTalk Desktop Suite Web page) 

OptimTalk Desktop Suite 75: It is another development toolkit currently available in 
two versions: a free and a professional edition; both versions run on Linux and Windows, 
although some features may be disabled depending on the operating system. The professional 
edition includes a big number of features such as a GUI interpreter for VoiceXML and 
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CCXML languages, support for TTS messages with SSML tags, speech recognition and 
speech synthesis using the Microsoft Speech API, simultaneous speech recognition and 
keyboard input, voice activity detector for recording, and barge-in. Besides, it includes a 
command line VoiceXML interpreter, logging of CCXML events, and a command line or 
GUI-based Grammar tester. The professional version offers support for Speech Recognition 
Grammar Specification (SRGS) and Semantic Interpretation for Speech Recognition (SISR), 
conferences, and more. Although the user interface is very simple, the platform can be 
interesting for novice programmers, companies with reduced budget, or for creating small 
business services.  

Figure B.4. shows some examples of the wizards included in the professional edition. 
In (a) the designer can evaluate the speech recognition engine and the speech synthesizer for 
a given dialogue, as well as entering DTMF input using the telephone keyboard. In (b) the 
command line interface allows the designer to debug the application using speech from a 
microphone or typing in the utterance using the keyboard. The interface also provides 
information about recognised sentences and barge-in features, as well as useful feedback 
about the grammars and prompts used by the system. Using (c) the designer can set the 
CCXML session manager parameters, telephony hardware, and parameters for the 
VoiceXML interpreter used by the CCXML script, etc. Finally, the grammar tester, depicted 
in (d), allows the designer to type in utterances to be parsed using the current grammar in 
order to check if all the sentences can be correctly recognized or not. Besides, the assistant 
provides the semantic interpretation and other useful information about the utterances that do 
not match the grammar rules. 

Vocalocity App Center 76: This platform includes a graphical user interface (see 
Figure B.5. ) that simplifies the visualization and edition of VoiceXML applications, allows 
error checking, prompt recording and importing, as well as down-sampling of audio files for 
telephony compatibility. The GUI allows the creation of the dialogue flow through an object-
model approach. In this approach, the flow is created using different objects, representing the 
different actions to perform the service, and connecting them through conditioned or direct 
transitions. Each object is defined by different configurable properties that control its 
behaviour. Besides, each object may have one or several outputs depending on its 
configuration for error handling or if there are different result outputs.  

An interesting feature of the platform is that any basic design can be specified in four 
steps by only dragging and dropping three objects into the application canvas, connecting 
them sequentially, and setting some properties of the application. The first step, called Ask 
step, consists in the creation of an action for requesting information from the user. The 
second step, called Data step, represents the process of accessing and retrieving information 
from the backend database. The third step, called Tell step, corresponds to the action of 
providing the retrieved information to the user. Finally, during the fourth step, called Publish 
step, the designer creates the VoiceXML script and configures the platform in order to make 
the service available. Interestingly, in our platform we have developed a similar approach 
where most of the actions required to define a dialogue correspond to the first three steps 
described above (see section 4.5.2, page 103). 
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Figure B.5. Example of dialogue design using the Vocalocity App Center. (Source: 
Vocalocity Web page) 

VoiceObjects Desktop 77: This is a free and downloadable platform that allows the 
design, development, debugging, deployment, and administration of multimodal applications 
(allowing among other modalities video, text, and speech) for voice-enabled and mobile 
Web-based services using VoiceXML. The platform is available in two editions: 
VoiceObjects Desktop that must be installed on the client machine, and VoiceObjects 
Desktop for Web that is a light Web-based version of the previous one. Both interfaces have 
the same core functionality and most of the project settings can be share between both 
editions.  

A singular feature of this platform is that the dialogue flow is designed using a tree-
based form-filling object modelling, in contrast to most of the dialogue platforms, including 
ours, that use state-based dialogue modelling. In this case, the dialogue flow is built using a 
hierarchical structure of objects and nested objects (see Figure B.6.). Objects are available 
through the GUI in a sidebar in the main window or using a quick-search window, which can 
be dragged-and-dropped into any place of the dialogue flow or even in some of the 
configuration windows of other objects. The workspace can be divided into different layers 
including system layers and user-built layers, contributing this way to simplify the 
visualization of the dialogue flow. The platform allows two operational modes: network and 
stand-alone. The former allows role-based team collaboration, and supports Concurrent 
Versions System (CVS) capabilities, and configurable audit trails. The latter is used for 
offline development and debugging. 

In relation with accelerations and interesting features included in this platform, we can 
mention the Storyboard Manager, which is a special tool helps the designer to migrate from 
proprietary IVR systems to new VoiceXML-based platforms or to the VoiceObjects platform. 
Besides, the Storyboard Manager is also used to automatically export the list of the prompts 
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(audio, TTS, or video) used in the application, to create libraries of dialogues, and for 
importing VoiceXML code, among others. The platform also includes a phone simulator that 
can be used to test, debug, and check out VoiceXML files. Moreover, the phone simulator 
can be used to make demonstrations of voice and portable Web applications. Call tracing and 
logging/reporting are also supported, including information about recognition results, 
timestamps, and processing time. Other tools included in the platform allow the creation of 
prompt recordings and the automatic documentation of the project.  

 

Figure B.6. Appearance of the main work area of the VoiceObjects Desktop. (Source: 
VoiceObjects Web page) 

Finally, the platform incorporates a runtime version of the VoiceObjects Server that 
enables the deployment and management of the service, and includes a complete library of 
platform drivers to support different IVR and USSD (Unstructured Supplementary Service 
Data for GSM phones) platforms. The server includes a monitoring environment, provides a 
connection framework for integration with the backend system (allowing both server-side 
scripting and J2EE code execution), and offers support for rollbacks, application tracing, the 
creation and dynamic generation of video application for 3G phones, among others. 

 

B.2 Web-Based Development Platforms 

 

BeVocal Café 78: Recently acquired by Nuance, this site allows designers to use all the 
capabilities of Nuance modules and tools. The site offers a big number of VoiceXML sample 
applications that can be used as an initial point for the creation of basic and advanced 
services, including backend integration, dynamic VoiceXML applications using Apache, Perl 
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or Visual Basic scripts, etc., and for learning about the main platform features. Designers can 
test the services using an international phone number or a VoIP number. Several Web-based 
tools are also available in order to develop, test, and publish the voice service. The most 
important ones are: 

• VoiceXML checker: allows the designer to verify the syntactic correctness of the 
VoiceXML files used in the service. 

• Vocal Player and Log Browser: The former allows replaying all calls made to the 
application and viewing their log entries; the latter displays information about 
errors, recognitions, Web access, variable traces, timestamps, call control, events, 
etc. These tools are useful for usability testing and for tuning speech recognition 
grammars since they provide feedback about confusing dialogues and in which 
dialogues the user spent more time. 

• Vocal Debugger and Vocal Scripter: The former allows the designer to step 
through the VoiceXML code and view the state of VoiceXML variables during a 
call. The latter uses a text or "chat mode" channel to allow the designer to test the 
application flow  in an interactive mode (i.e. the designer type in responses to 
VoiceXML text prompts in real time) or in batch mode (i.e. the designer uses a 
URL or text file containing inputs for running the VoiceXML service) 

• Grammar Compiler: lets the designer to submit a grammar file and compile it 
offline in order to reduce overhead and significant delays during the execution of 
the service. The precompiled grammar can be referenced in the VoiceXML 
application using a key provided after the compilation. 

• Port Estimator: is a statistical-based tool that provides an estimation of the 
number of telephony ports that the service will require in order to lose not users 
calls. 

 

Tellme Studio 79:  This site allows developing, maintaining, documentation, and 
testing speech-enabled services in two different ways: using the Web-based portal or an 
optional standalone application called Tellme Voice Studio. 

In relation to the Web site, it can be divided into two main sections: MyStudio and 
MyExtensions. MyStudio features different online tools including VoiceXML and Grammar 
scratchpads (see Figure B.7.a), which are used to write manually VoiceXML and grammar 
files respectively, and a syntax checker to validate the syntax of VoiceXML and grammar 
files. The VoiceXML terminal allows debugging the service using a text interface allowing 
the designer to interact with the service without making repeated calls, or using the speech 
interface. Moreover, the platform includes a grammar phrase checker and generator for 
testing speech grammars, as well as a DTMF generator for creating special grammars where 
each word is mapped to the letters of the English alphabet map that appears in the touch-tone 
keys on any standard telephone keypad. Besides, the designer can record prompts by phone 
and use the generated audio files in the VoiceXML application. In addition, several 
VoiceXML code and audio libraries examples, an audio conversion tool, and the possibility 

                                                 

 
79 http://studio.tellme.com/  

http://studio.tellme.com/�


Appendix B  

221 

of testing the application using a toll-free number or free SIP calls through a VoIP telephone 
are also available.  

 
(a) 

  
(b) 

 
(c) 

Figure B.7. Appearance of different TellMe Studio tools. (Source: TellMe Studio Web site 
and TellMe Voice Studio user guide) 

 

An interesting feature included in the platform, is the possibility of using an external 
Web application server to host some VoiceXML and grammars files of the service, instead of 
using the scratchpads to write, upload, and host all the files using the Tellme studio servers. 
This way some limitations of the Tellme platform for creating dynamic VoiceXML 
applications can be overcome. In any case, using the scratchpad or the Application URL, the 
system automatically validates the files every time the designer uploads the 
grammar/VoiceXML files or set the URL address.  

On the other hand, MyExtensions allow designers to make demonstrations of the 
service to potential clients or to provide restricted access to groups of alpha/beta test users 
without providing them personal information as the Developer ID and PIN obtained after 
registering at the Tellme Web site. By default, both the ID and PIN are required to access the 
service through the phone, but they are also used to edit the service. This way it is possible to 
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analyze, document, and test the service under different conditions. Another available tool is 
Mumble; it lets the designer to test external procedures (API), generate documentation of the 
service through call flow diagrams, identify call flow coverage, obtain test metrics, and to 
specify a pool of different tests to check the behaviour of the service for different conditions 
such as nomatch, noinput, http errors, etc. 

The Tellme Voice Studio can be downloaded from the Web site without any cost. The 
application is based on Microsoft's Visual Studio Domain Specific Language (DSL) toolkit, 
and, in a similar way as the Web-based environment, it can be used to design, maintain, 
develop, and document the voice application. The toolkit includes a graphical IDE with a 
toolbar of configurable modules (such as userinput, record, datafetch, transfer, subdialogs, 
presentation, decisions, etc) for creating the call flow specifying the states, transitions, and 
error handling procedures that make it up. The program includes tools to record audio 
prompts, to validate VoiceXML files, to create speech grammars, and for publishing the 
service. 

Figure B.7.a shows the appearance of the Web-based interface of the scratchpad used to 
create and edit VoiceXML files. Figure B.7.b shows the assistant for creating prompts using 
static, concatenated or co-articulated audio files. Figure B.7.c shows the assistant for defining 
user input (menu or single slot), besides some error handling features (nomatch and noinput). 

Voxeo Evolution 80: This Web portal provides several free development tools and 
advanced runtime modules to create a variety of speech and DTMF based services which can 
be called from or call out to any phone device. The site includes several free resources such 
as tutorials for VoiceXML, CCXML and CallXML languages, pre-recorded audio files in 
English for typical dialogues (e.g. names of airports, states, and airplane companies, months, 
numbers, weekdays, etc.), VoiceXML grammars, and sample applications. Besides, the site 
offers technical support 7 days/24 hours, a free direct-dial developer phone number avoiding 
advertisements or requesting awkward pin codes, this way accelerating the debugging of the 
service. Besides, the platform also offers the possibility of creating the service in several 
languages through the incorporation of different ASR and TTS engines from different 
vendors. The platform also features voice recognition, audio play and record, DTMF entry, 
and Voice over IP (VoIP) access.  

In addition, the platform supports the CCXML standard protocol allowing call routing, 
call recording, visualization of logs (see Figure B.8.c), transfer, inbound and outbound calls, 
and conferencing capabilities (for 2 to 30 participants). Besides, it is possible to define 
different failover URLs and phone numbers allowing the Voxeo platform to ensure that any 
user’s call will be processed or transferred in case the primary, secondary, or tertiary Web 
server are not responding or working properly.  

The platform includes a Web-based application tool called Evolution Designer, also 
available as a PC-based standalone application, for developing the service. The Evolution 
Designer GUI (see Figure B.8.a) allows developers to create and edit the call flow through 
different wizards and configurable modules called “steps”, which allow the creation of 
prompts, forms for multiple-choice questions, call recording, call transfers, time-based 
routing, data integration including support for Web-service access to external databases using 
PHP, Java/JSP, and SQLite, and to configure Voxeo speech recognition and synthesis 
engines, among others. The GUI allows the definition of custom rules to handle different user 
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and system errors such as re-prompting if the user does not say anything or the selected 
option is not available. The platform allows designers to track all the prompts used in the 
application (see Figure B.8.b) and the possibility of downloading the list of prompts as a 
spreadsheet file in order to record them later or to check them with the client. The Evolution 
Designer also supports the creation of query-based reports including information about calls 
and detailed steps used in the deployed application. These reports can be sent later in text, 
XML, HTML, or CSV (comma-separated values) format. 

 

 
(a) 

 
(b) 

 
(c) 

Figure B.8. Examples of Voxeo Evolution Web-based tools. (Source: Voxeo Studio Web 
page) 

 

Finally, the site offers support for an open research meta-project called 
RocketSource 81, which provide open source code to three different and common spoken 
dialogue applications: a speech-driven voicemail application, a phone and Web-based 
conference manager, and an auto attendant system to connect callers with any person or 
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department in an enterprise. The main motivation of these applications is to provide a starting 
point for novice developers, as well as examples of use of advanced features included in the 
platform. 

VoiceGenie 82: supported by Genesys, this site allows designers to host and access trial 
or demo versions of the final application using the GenieHosting service. The site offers, 
basically, the same services and features provided by the Voxeo Community. An important 
feature is that the site supports integration with several ASR and Text-To-Speech engines 
provided by different vendors such as Nuance, SpeechWorks, IBM, Speechify, AT&T, etc. 
The platform allows designers to select the language and gender of the TTS voice, as well as 
the ASR and TTS engines to be used when providing the service. Then, these settings are 
saved using different VoiceXML tags and attributes and applied when the service is loaded 
by the runtime platform. Besides, the service can be tested using two different phone 
numbers. Depending on the selected number, some properties of the platform will be 
available or not. The portal provides different tools for validating VoiceXML files, creation 
of grammar files, recording by phone of short prompts, call logs, and conversion of 
VoiceXML files among IVR platforms, etc. 

Finally, the site also offers a free trial version of a PC-based application called 
GenieBuilder, which provides an intuitive graphical tool to create, test, and deliver the 
application. This software extends some of the functionalities offered by the Web-based site 
such as: a larger built-in library of reusable dialogue modules, support for collaborative and 
role-based development, built-in ASR and TTS engines, and support for JDBC, ODBC, 
Oracle, Microsoft SQL Server, DB2, and Informix database connections. 
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AAPPPPEENNDDIIXX  CC..  TTEEMMPPLLAATTEESS  FFOORR  TTHHEE  
CCRREEAATTIIOONN  OOFF  AAUUTTOOMMAATTIICC  DDIIAALLOOGGUUEESS  IINN  
TTHHEE  MMEERRAA--SSPPEEEECCHH  AASSSSIISSTTAANNTT  

 

This appendix shows the templates used to generate, in the GDialogXML syntax, the 
dialogue flow for the confirmation handling and presentation of lists of results in the MERA-
Speech assistant. In order to simplify the reading we use a pseudo code approximation. 
Although we have tried to make the pseudo code clear and independent of the GDialogXML 
syntax, the complete specification is available at the Gemini Web page 83 for further reading. 
The following terms appear throughout this appendix, and refer to specific terminology used 
in the templates described in this section. 

• StopFilling: Tag used to stop the recognizer and finish the current dialogue. 

• DoFilling: Tag used to repeat the query and load the current dialogue again. 

• isVarSet: Tag to indicate a function that detects if a variable has been filled or 
not. 

• fConfidence: Variable used to save the value of the confidence of a selected slot. 
The value is returned by the real-time function ConfidenceOfField. 

• Unset: Tag used to indicate that the content of a variable is cleared, the variable 
is not destroyed. 

• sNextDialog: Variable to save the name of the dialogue where to jump to when 
the system needs to return to a previous dialogue from inside of a non-returning 
dialogue. 

• sPreviousDialog: Name of the last DGet dialogue called before the current one. 
We use this name in order to jump to this dialogue if there was a correction in an 
implicit confirmation procedure. The name is automatically detected. 

• xGenericFilling: It makes reference to a template, created in the RMA (see 
sections 3.3.2 and 4.5.4, pages 63 and 106), that provides the behaviour when two 
or more slots need to be retrieved. Basically, the template attempts to fill in all the 
slots at the same time, but if this is not possible, or some of them have not been 
filled, the template attempts to fill in each slot one by one using automatic dialogues 
for each one. 

 

C.1 Template for the Presentation of Lists of Objects 

This is the template used for defining the internal actions and flow for the dialogues 
used for the presentation of lists of objects. The template considers four cases considering the 
number of items retrieved from the database: zero, one, in a range, and too many items. The 
process for filling this template also includes the creation of several automatic dialogues such 
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as dialogues for providing complete or partial attributes for the object, for requesting the 
number of items to show, to ask the user the item he/she wants to obtain more info about, to 
inform the user there are no more items to show or that the database query does not return 
any result, etc. 

//The dialogue returns, through the sNextDialog variable, the name of 
the dialogue where to jump to 

sNextDialog DSayOfList(Input_List) 
{ 
//Variables' initialization 
int iSizeList = sizeof(Input_List); 

int iMax_Num_Items_DB = <xMaxDBResultsItems>;//The value is loaded in 
the real-time system using this Call in a similar way as the 
Confidence_Level (Remember that this value is User Level and Dialogue 
dependent) 

int iMax_Num_Items_Each_Time = <xMaxDBPresentableItems>; 
int iMax_Num_Items = 0;//The number of items that the user wants to 

listen to. 
int InnerCounter = 0;//Counter for Case 3 
int OuterCounter = 0;//Counter for Case 3 
int iItem = 0; 
String sMaxNumItems; 
ObjRefr_Item_I; //It is an Object_Refr with the same type of the List 
 
Unset(sNextDialog); //sNextDialog is a global variable defined in the 

output file of the RMA 
if(iSizeList == NULL || iSizeList == 0) //Case 1 
{ 
 Call DSayNotificationNoItems; //It's an automatic dialogue, the 

designer can change its name 

Unset(Slot1, Slot2, Slot3 ....);//Slots that must be unset in order 
to repeat the flow 

sNextDialog = DFirstDialog or Another_Dialogue;//Name of the dialogue 
to continue the flow or to repeat the query 

} 
else if (iSizeList == 1) //Case 2 
{ 
 if(TypeOf(Input_List) == Object) 
 { 
  Assign ObjRefr_Item_I = Input_List [0]; //We select the only item 

of the list 
  Call DSAY_ATTRS_ FOR_LIST (ObjRefr_Item_I); //It's a configurable 

DSay dialogue to show complete or partial attributes for the selected item 
in the list  

 } 
 else 
 { 
  Call DSAY_LIST ( Input_List [0]);  
 } 
} 
else if(1 < iSizeList <= iMax_Num_Items_DB ) //Case 3 
{ 
 if(bSayNumberOfItems == true) //It's an option for the designer in 

order to notify the user how many items exist in the List, and ask him/her 
how many items does s/he wants to listen to. If the checkbox is selected 
the following code is generated. 

 { 
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  Call DSayNumberOfItemsOfList (iSizeList + 1); //Automatic DSay 
dialogue to notify the number of items in the List  

  sMaxNumItems = DGetObtainMaxNumItems(); //No. of items the user 
wants to listen to 

  iMax_Num_Items = GetIntFromRepr(sMaxNumItems) - 1;//Convert from 
string to integer 

  if(iSizeList  < iMax_Num_Items)//If the value is greater than the 
size of the list then change its value to the size of the list 

   iMax_Num_Items = iSizeList;  
 } 
 else 
 { 
  iMax_Num_Items = iSizeList; //The user has to listen to all the 

items in the list 
 } 
  
 while (OuterCounter < iMax_Num_Items ) 
 { 
  for (InnerCounter = 0;  InnerCounter < iMax_Num_Items_Each_Time 

&& OuterCounter < iMax_Num_Items; InnerCounte++, OuterCounter ++) 
  { 
   if(TypeOf(Input_List) == Object) 
   { 
    Call DSay_Basic_Info ( Input_List[OuterCounter], InnerCounter 

+ 1);//It's an automatic dialogue to show info about the current item of 
the list in the loop.  

   } 
   else 
   { 
    //It's an automatic dialogue to show information about the 

current item of the list in the loop. We pass each attribute individually 
    Call DSay_Basic_Info (Input_List[OuterCounter].Attr1, 

List[OuterCounter].Attr2, …, InnerCounter + 1); 
   } 
  }//for 
  //Now we need to know if the user wants to continue listening 

other in the list 
  sAnswer = DGet_ItemIndex(); 
  
  if(sAnswer == Continue) 
  { 
   //Do one iteration more 
  } 
  //We need to change the counters and to perform a new iteration) 
  else if(sAnswer == Repeat)  
  { 
    OuterCounter  = OuterCounter - iMax_Num_Items_Each_Time; 
  } 
  else if(sAnswer == RepeatAll) 
  { 
   OuterCounter = 0; //Reset the counter and perform new 

iterations 
  } 
  else if(sAnswer == Exit) 
  { 
   OuterCounter = iMax_Num_Items + 1; 
  } 
  //If the item of the list is not an object (it is only made up of 

atomic types such as: Strings, Integer, Float, Boolean, etc.) we cannot 
show more detailed info (previous info has been shown in DSayBasicInfo 
dialogue) so we jump this step 
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  if(TypeOf(Input_List) != Object) 
  {  
   //The user wants to obtain more information about one the 

items. 
   iItem = GetIntFromRepr(sAnswer) – 1;  
   if(OuterCounter < iItem) 
   { 
    DSay_WrongItemIndex (); 
    OuterCounter = OuterCounter - iMax_Num_Items_Each_Time; 
   } 
   else 
   {  
    if(bSayDetailedInfo == true)//It’s a checkbox in the 

assistant 
    { 
     Assign ObjRefr_Item_I = Input_List[iItem]; 
     Call DSay_FullInfo_OF_LIST(ObjRefr_Item_I);//It's the same 

as for Case 2 
     if(bCallDialog == true) //Optional step in the assistant 

to jump to another dialogue 
     { 
      sNextDialog = DSelectedDialog; 
     } 
     OuterCounter = iMax_Num_Items + 1;//We exit the while and 

jump to the next if condition (i.e., OuterCounter == iMax_Num_Items) 
    } 
   } 
  }//if 
 }//While 
  
 //If we arrive here is because the user has not selected any item, 

so it is like case 1.The default values are the same for case 1, but the 
designer can change them 

 if(OuterCounter == iMax_Num_Items) 
 { 
  Call DSayNotificationNoItems;  
  Unset (Slot1, Slot2, Slot3 ....);//The designer chooses the slots 

that must be unset in order to repeat the flow 
  If(NextDialog != “”) //If the designer has selected a dialogue 

where to jump… 
  { 
   sNextDialog = DFirstDialog or Another_Dialogue; 
  } 
 }   
} 
else if(iSizeList > iMax_Num_Items) //Case 4 
{ 
 Call DSayTooManyItems; //It's an automatic dialogue to notify the 

user about the high number of returned items (The designer can change the 
name of the dialogue) 

  
 /*The designer chooses the slots that are relevant for the whole 

query in order to check if they are filled or not. 
 If all the relevant slots for the query are set, then we need unset 

some of them in order to obtain new values to restrict the query */ 
 if(Slot_A is VarSet? && Slot_B is VarSet? && Slot_C is VarSet?, 

....) 
 { 
  //If all slots are filled we unset some of them depending on 

designer selection. 
  unset(Slot_A, Slot_B, Slot_C,...)  
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  //Jump to the dialogue that will fill them again (probably the 
first one) 

  sNextDialog = DSelectedDialogA; //It's a non-returning dialogue 
 } 
 else 
 { // If all the relevant slots are not filled we can continue with 

the dialogue flow to ask for the unfilled ones in order to generate a more 
restrictive query.  

  sNextDialog = DSelectedDialogB;//Dialogue to jump to in order to 
fill the unfilled slots 

 } 
}  
} 

 

C.2 One Slot Confirmation 

This is the template used to generate the flow for handling the confirmation of a single 
slot. In the code, Slot1 is the slot that the system has to confirm. 

sNextDialog DGetConfirmationHandlingOneSlot (Slot1) 
{ 
//Variable's declaration 
float fConfidence = 0.0; 
String sAnswerYesOrNo = ""; 
String sNextDialog = ""; //By default is empty 
//In the xFilling section there must be the RecognizerCall  
//Reaction 
Unset(sNextDialog); //All the dialogues unset this global variable by 

default 
if(isVarSet (Slot1)) //The slot has been filled 
{ 
 fConfidence = ConfidenceOfField(Slot1);   
 //This confirmation is allowed only when the previous dialogue has 

ImplicitConfirmation 
 if(Slot1 EqualStrings "Correct")//Inspect if the recognition result 

corresponds to the “Correct” command in case the system is using an 
implicit confirmation prompt 

 { 
  if(fConfidence > implicit)//Go back to the previous dialogue to 

ask the user again 
  { 
   Unset(Previous_Slot); 
   Unset(Slot1); 
   sNextDialog = Previous_Dialogue; //The Previous_Dialogue is 

automatically set for the assistant. 
   StopFilling; 
  } 
  Else //We are not sure about the “correct” command repeat again 

the question 
  { 
   DSayNoMatch(); 
   Unset(Slot1); 
   DoFilling; 
  }  
 }   
 if(0 <= fConfidence < explicit) //NoMatch 
 { 
  DSayNoMatch();//Repeat the question 
  UnSet(Slot1); 
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  DoFilling;//Do one iteration more 
 } 
 else if(Explicit <= fConfidence < Implicit)//Explicit Confirmation  
 { 
  sAnswerYesOrNo = Call DGetYesOrNo(Slot1);//Ask for the current 

slot in this dialogue 
  if(sAnswerYesOrNo EqualStrings "No") 
  { 
   //The system asks again 
   UnSet(Slot1); 
   DoFilling; 
  } 
  else//The user answers "yes", so the recognition result is 

correct 
  {   
   StopFilling;      
  } 
 } 
 else if(Implicit <= fConfidence < none)// Implicit Confirmation 
 { 
  Call DSayImplicit_FOR_DGetConfirmationHandlingOneSlot(Slot1); 
  StopFilling; 
 } 
 else if(none <= fConfidence <= 1.0)//Without confirmation 
 {      
  StopFilling;  
 }       
}//If IsVarSet 
else ////The slot has not been filled, we need to fill it 
{ 
 DoFilling; 
} 

} 

C.3 Mixed-Initiative Confirmation 

 

This is the template for the verification of two or more slots (Mixed Initiative). For 
simplicity, in the code the system only needs to confirm two slots, although the real template 
supports two or more slots. This dialogue does not have Implicit Confirmation. 

 
Dialogue DGetConfirmationHandlingMixedInitiative (Slot1, Slot2) 
{ 
 //Variable's declaration 
 float fConfidence = 0.0; 
 String sAnswerYesOrNo; 
 String sNextDialog = ""; //By default is empty 
 
 //In the xFilling section there must be the RecognizerCall  
 
 //Reaction 
 Unset(sNextDialog); //All the dialogues unset this global variable 

by default 
 if(isVarSet (Slot1) && isVarSet (Slot2))//All the slots must be 

filled . If not, we fill them one by one following the xGeneric template 
 { 
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  fConfidence = ConfidenceOfField(Slot1);//We assume that the 
recognizer returns one global confidence value for the recognition, not one 
for each slot, so it is not important which slot we use here 

 
  //This confirmation is allowed only when the previous DGet 

dialogue has ImplicitConfirmation 
  if(Slot1 EqualStrings "Correct")//Inspect if the recognition 

result corresponds to the “Correct” command in case the system is using an 
implicit confirmation prompt 

  { 
   if(fConfidence > implicit) 
   { 
    Unset(Previous_Slot); 
    Unset(Slot1); 
    Unset(Slot2); 
    //The Previous_Dialogue is automatically set for the 

assistant. 
    sNextDialog = Previous_Dialogue; 
    StopFilling; 
   } 
   else 
   { 
    DSayNoMatch(); 
    Unset(Slot1); 
    Unset(Slot2); 
    DoFilling; 
   }   
  }  
  
  if(0 <= fConfidence < explicit) //NoMatch 
  { 
   DSayNoMatch();  
   UnSet(Slot1); 
   UnSet(Slot2); 
   StopFilling;//Ask each slot individually using the xGeneric 

Template 
  }//If_NoMatch 
  else if(Explicit <= fConfidence < none)//Explicit and Implicit: 

We merge the Explicit and Implicit Confirmation 
  { 
   sAnswerYesOrNo = Call DGetYesOrNo_FOR_ 

DGetConfirmationHandlingMixedInitiative (Slot1, Slot2); 
   if(sAnswerYesOrNo EqualStrings "No")//We try to confirm both 

slots at the same time 
   { 
    //The system asks again 
    Unset(Slot1); 
    Unset(Slot2); 
    //We stop the filling because in the xGenericFilling if the 

slots are unset then we try to fill them one by one 
    StopFilling; 
   } 
   else//The user answers "yes", so the recognition result is 

correct 
   { 
    StopFilling;      
   } 
  } 
  else if(none <= fConfidence <= 1.0)//Without confirmation 
  {       
   StopFilling;  
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  }  
 }//If IsVarSet 
 else /Fill them one by one 
 { 
  Unset(Slot1); 
  Unset(Slot2);   
  //We stop the filling because in the xGenericFilling if the slots 

are unset then we try to fill them one by one 
  StopFilling; 
 } 
} 
 

C.4 One Slot Plus Over-Answering Confirmation 

 

This is the template for the verification of one slot plus one slot for over-answering. 
This dialogue has implicit confirmation in only one case (Slot1 = Filled AND SlotOV = 
No_Filled). 

 

Slot1 SlotOV Action 

Filled Filled Try to confirm both slots at the same time:  We use NoMatch, 
Explicit and None 

Filled No_Filled We try to confirm the compulsory and forget the OV: We use 
NoMatch, Explicit, Implicit and None 

No_Filled Don't Care DoFilling 

Table C.1. Proposed actions for the automatic filling of one slot and over-answering DGet 
dialogues in the MERA-Speech assistant 

 
Dialogue DGetConfirmationHandlingOnePlusOV (Slot1, SlotOV) 
{ 
//Variable's declaration 
float fConfidence = 0.0; 
String sAnswerYesOrNo; 
String sNextDialog = ""; //By default is empty 
//In the xFilling section there must be the RecognizerCall   
//Reaction 
Unset(sNextDialog);   
if(isVarSet (Slot1) == true && isVarSet (SlotOV) == true)//All the 

slots must be confirmed at the same time  
{ 
 fConfidence = ConfidenceOfField(Slot1); //We assume that the 

recognizer returns one global confidence value for the recognition, not one 
for each slot, so it is not important which slot we use here 

  
 //This confirmation is allowed only when the previous DGet dialogue 

has ImplicitConfirmation 
 if(Slot1 EqualStrings "Correct")//Inspect if the recognition result 

corresponds to the “Correct” command in case the system is using an 
implicit confirmation prompt 

 { 
  if(fConfidence > implicit) 
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  { 
   Unset(Previous_Slot); 
   Unset(Slot1); 
   Unset(SlotOV); 
   sNextDialog = Previous_Dialogue; 
   StopFilling; 
  } 
  else 
  { 
   DSayNoMatch(); 
   Unset(Slot1); 
   Unset(SlotOV); 
   DoFilling; 
  }  
 }   
 if(0 <= fConfidence < explicit) //NoMatch 
 { 
  DSayNoMatch();  
  UnSet(SlotOV); 
  UnSet(Slot1); 
  DoFilling;//Repeat the question, Do one iteration more 
 
 }//If_NoMatch 
 else if(Explicit <= fConfidence < none)//Explicit and Implicit: We 

merge the Explicit and Implicit Confirmation 
 { 
  //Automatically generated dialogue in the MERA-Speech, the name 

can be changed by the designer 
  sAnswerYesOrNo = Call DGetYesOrNo_FOR_ 

DGetConfirmationHandlingOnePlusOV (Slot1, SlotOV);  
   
  if(sAnswerYesOrNo EqualStrings "No") 
  { 
   //The system asks again 
   UnSet(Slot1); 
   UnSet(SlotOV); 
   DoFilling; 
  } 
  else//The user answers "yes"  
  {         
   StopFilling;      
  } 
 }//If_ExplicitConfirmation     
 else if(none <= fConfidence <= 1.0) //No confirmation 
 {        
  StopFilling; 
 }        
}//If_IsVarSet   
else if(isVarSet(Slot1) == true && IsVarSet(SlotOV) == false)//We try 

to confirm the compulsary slot only and forget the OV 
{ 
 fConfidence = ConfidenceOfField(Slot1); //We assume that the 

recognizer returns one global confidence value for the recognition, not one 
for each slot, so it is not important which slot we use here 

  
 //This confirmation is allowed only when the previous DGet dialogue 

has ImplicitConfirmation 
 if(Slot1 == "Correct")//Inspect if the recognition result 

corresponds to the “Correct” command in case the system is using an 
implicit confirmation prompt 

 { 



Speed Up Strategies for the Creation of Multimodal and Multilingual Dialogue Systems 

 

234 

  if(fConfidence > implicit) 
  { 
   Unset(Previous_Slot); 
   Unset(Slot1); 
   sNextDialog = Previous_Dialogue; 
   StopFilling; 
  } 
  else 
  { 
   DSayNoMatch(); 
   Unset(Slot1); 
   DoFilling; 
  }  
 } 
  
 if(0 <= fConfidence < explicit) //NoMatch 
 { 
  DSayNoMatch(); //Pass the counter if there are different prompts 
  UnSet(Slot1); 
  DoFilling;//Repeat the question, Do one iteration more for the 

loop 
 }//If NoMatch 
 else if(Explicit <= fConfidence < Implicit)//Explicit Confirmation 
 { 
  sAnswerYesOrNo = Call DGetYesOrNo_FOR_ 

DGetConfirmationHandlingOneSlot (Slot1);  
   
  if(sAnswerYesOrNo EqualStrings "No") 
  { 
   //The system asks again 
   UnSet(Slot1); 
   DoFilling; 
  } 
  else//The user answers "yes"  
  {        
   StopFilling;      
  } 
 } 
 else if(Implicit <= fConfidence < none) //Implicit Confirmation  
 { 
  Call DSayImplicit_FOR_ DGetConfirmationHandlingOneSlot (Slot1); 
  StopFilling;    
 } 
 else if(none <= fConfidence <= 1.0)//Without confirmation 
 {         
  StopFilling;  
 } 
}   
else if(IsVarSet(Slot1) == false) //All the OV slots are unset 
{ 
 UnSetVar(SlotOV); 
 DoFilling;  
} 
else//Any other combination is unset 
{ 
 UnSet(Slot1); 
 UnSet(SlotOV); 
 DoFilling;  
}  

} 
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C.5 Mixed-Initiative Plus Over-Answering Confirmation 

 

This is the template for the verification of two or more slots (Mixed-initiative) plus one 
or more slots for OV. This dialogue does not allow implicit Confirmation in any case. For 
simplicity, we use only two slots for Mixed-initiative and one slot for Overanswering. 

 

Slot1 And Slot2 SlotOV Action 

Filled Filled Try to confirm all at the same time:  We use 
NoMatch, Explicit and None 

Filled No_Filled We try to confirm the compulsory slots and forget 
the OV slot; We use NoMatch, Explicit and None 

No_Filled Don't Care StopFilling, we use the xGenericFilling 

Table C.2. Proposed actions for the automatic filling of mixed-initiative and over-answering 
DGet dialogues in the MERA-Speech assistant 

 
Dialogue DGetConfirmationHandling_MI_OV(Slot1, Slot2, Slot_OV) 
{ 
//Variable's declaration 
float fConfidence = 0.0; 
String sAnswerYesOrNo; 
String sNextDialog = ""; //By default is empty 
//In the xFilling section there must be the RecognizerCall  
 
//Reaction 
 
Unset(sNextDialog);   
if(isVarSet (Slot1) == true && isVarSet (Slot2) == true && isVarSet 

(SlotOV) == true)//All the slots must be confirmed at the same time  
{ 
 fConfidence = ConfidenceOfField(Slot1); //We assume that the 

recognizer returns one global confidence value for the recognition, not one 
for each slot, so it is not important which slot we use here 

  
 //This confirmation is allowed only when the previous DGet dialogue 

has ImplicitConfirmation 
 if(Slot1 EqualStrings "Correct")//Inspect if the recognition result 

corresponds to the “Correct” command in case the system is using an 
implicit confirmation prompt 

 { 
  if(fConfidence > implicit) 
  { 
   Unset(Previous_Slot); 
   Unset(Slot1); 
   Unset(Slot2); 
   Unset(Slot_OV); 
   sNextDialog = Previous_Dialogue; //The Previous_Dialogue is 

automatically set for the assistant. 
   StopFilling; 
  } 
  else 
  { 
   DSayNoMatch(); 
   Unset(Slot1); 
   Unset(Slot2); 
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   Unset(Slot_OV); 
   DoFilling; 
  }  
 }   
  
 if(0 <= fConfidence < explicit) //NoMatch 
 { 
  DSayNoMatch();  
  UnSet(SlotOV); 
  UnSet(Slot1); 
  UnSet(Slot2); 
  StopFilling; 
 }//If NoMatch 
 else if(Explicit <= fConfidence < none)//Explicit and Implicit: We 

merge the Explicit and Implicit Confirmation 
 { 
  sAnswerYesOrNo = Call 

DGetYesOrNo_FOR_DGetConfirmationHandling_MI_OV (Slot1, Slot2, SlotOV);  
  if(sAnswerYesOrNo EqualStrings "No") 
  { 
   //The system asks again using the xGeneric Template 
   UnSet(Slot1); 
   Unset(Slot2); 
   UnSet(SlotOV); 
   StopFilling; 
 
  } 
  else//The user answers "yes"  
  {         
   StopFilling;      
  } 
 }//If ExplicitConfirmation     
 else if(none <= fConfidence <= 1.0) //No confirmation 
 {        
  StopFilling; 
 }        
}//If IsVarSet   
else if(isVarSet(Slot1) = = true AND isVarSet(Slot1) = = true AND 

IsVarSet(SlotOV) = = false)//We try to confirm the compulsory slots only 
and forget the OV 

{ 
 fConfidence = ConfidenceOfField(Slot1); //We assume that the 

recognizer returns one global confidence value for the recognition, not one 
for each slot, so it is not important which slot we use here 

  
 //This confirmation is allowed only when the previous DGet dialogue 

has ImplicitConfirmation 
 if(Slot1 == "Correct")//Inspect if the recognition result 

corresponds to the “Correct” command in case the system is using an 
implicit confirmation prompt 

 { 
  if(fConfidence > implicit) 
  { 
   Unset(Previous_Slot); 
   Unset(Slot1); 
   Unset(Slot2); 
   sNextDialog = Previous_Dialogue; //The Previous_Dialogue is 

automatically set for the assistant. 
   StopFilling; 
  } 
  else 
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  { 
   DSayNoMatch(); 
   Unset(Slot1); 
   Unset(Slot2); 
   DoFilling; 
  }  
 } 
  
 if(0 <= fConfidence < explicit) //NoMatch 
 { 
  DSayNoMatch(); //We pass it a counter to allow different prompts 
  UnSet(Slot1); 
  UnSet(Slot2); 
  StopFilling;//Repeat the question, Do one iteration more for the 

loop 
 }//If NoMatch 
 else if(Explicit <= fConfidence < None)//Explicit Confirmation 
 { 
  sAnswerYesOrNo = Call DGetYesOrNo_FOR_ 

DGetConfirmationHandlingMixedInitiative (Slot1, Slot2);  
   
  if(sAnswerYesOrNo EqualStrings "No") 
  { 
   //The system asks again 
   UnSet(Slot1); 
   UnSet(Slot2); 
   StopFilling; 
  } 
  else//The user answers "yes"  
  {        
   StopFilling;      
  } 
 } 
 else if(none <= fConfidence <= 1.0)//Without confirmation 
 {         
  StopFilling;  
 } 
}   
else 
{ 
 UnSet(Slot1); 
 UnSet(Slot2);   
 UnSet(SlotOV);   
 StopFilling;   
}  
} 
 

C.6 Simple Confirmation and Basic Dialogues 

This is the template for the verification of basic dialogues e.g., DGetYesOrNo. This 
dialogue does not have implicit confirmation. The arguments of the dialogue are only useful 
for the prompt of the dialogue. 

 
Dialogue DGetBasicOrSimple (Compulsory_Slot, Slots_OV) 
{ 
//LocalVars 
float fConfidence = 0.0; 
String sReturningConcept = "";  
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//If the dialogue does not exist in the output file of the RMA, we 
need to specify the InputFieldVar, ReturningVars 

//InputFieldVar 
sReturningConcept; 
//ReturningVar 
sReturningConcept; 
 
//Reaction 
if(isVarSet(sReturningConcept) = = true) 
{ 
 Unset(sNextDialog); 
 
 //If the dialogue is new in the output file of the MERA-Speech 
  fConfidence = ConfidenceOfField(sReturningConcept); 
 //Else, it exists in the output file of the RMA 
  fConfidence = ConfidenceOfField(Compulsory_Slot); 
 
 if (Implicit <= fConfidence <= 1.0) 
  StopFilling; 
 else 
  DoFilling;  
} 
else 
 DoFilling 
}  
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AAPPPPEENNDDIIXX  DD..  QQUUEESSTTIIOONNNNAAIIRREE  FFOORR  
EEVVAALLUUAATTIINNGG  TTHHEE  AAPPPPLLIICCAATTIIOONN  
GGEENNEERRAATTIIOONN  PPLLAATTFFOORRMM  

 

Age: _______________ yrs.  

Experience on dialogue development: _______________ yrs 

Developer Status:  Novice     Intermediate    Expert    

Mother Tongue:  German    Greek    Spanish      

 

D.1 Specific Questions by Assistant 
 

D.1.1 Questions regarding the assistant: 
 

1. How quickly did you learn to use the assistant? 

 

Not fast at all                  very fast 

1 2 3 4 5 6 7 8 9 10 

 

Comment: ___________________________________________ 

 

2. Is the assistant easy and intuitive to use? Do you know what to do at each step? 

 

Not easy at all                 very easy 

1 2 3 4 5 6 7 8 9 10 

 

Comment: ___________________________________________ 

 

3. Is the functionality sufficient? 

 

Not at all                    all of them 

1 2 3 4 5 6 7 8 9 10 

 

Comment: ___________________________________________ 
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4. How do you rate the appearance of the assistant (consistent, transparent, and 
intuitive)? 

  

Very poor                    very good 

1 2 3 4 5 6 7 8 9 10 

 

Comment: ___________________________________________ 

 

D.2 General Questions about the AGP 
D.2.1 Advantages of using the AGP 

 

1. The provision of data modelling and connecting to external data sources: 

 

not useful at all       very useful 

1 2 3 4 5 6 7 8 9 10 
 

2. The provision of application state flow modelling:   

 
not useful at all       very useful 

1 2 3 4 5 6 7 8 9 10 
 

3. Easy adaptability to other languages    

 

not useful at all       very useful 

1 2 3 4 5 6 7 8 9 10 

 

4. Easy adaptability to other modalities    

 

not useful at all       very useful 

1 2 3 4 5 6 7 8 9 10 

 

5. Ready-made error-handling (nomatch, noinput)  

 

not useful at all       very useful 

1 2 3 4 5 6 7 8 9 10 
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6. Speed up of development time as compared to writing VoiceXML/XHTML code by 
hand 

 

not useful at all       very useful 

1 2 3 4 5 6 7 8 9 10 

      

7. Provision of  user modelling   

 
not useful at all       very useful 

1 2 3 4 5 6 7 8 9 10 
 

8. Provision of mixed-initiative dialogue handling 

 

not useful at all       very useful 

1 2 3 4 5 6 7 8 9 10 

 

9. Provision of list handling [if applicable] 

 

not useful at all       very useful 

1 2 3 4 5 6 7 8 9 10 

 

10. Provision of over-answering [if applicable] 

 

not useful at all       very useful 

1 2 3 4 5 6 7 8 9 10 

 

11. Provision of easy connection to run-time modules (i.e. speaker recognition, language 
recognition): 

 

not useful at all       very useful 

1 2 3 4 5 6 7 8 9 10 

D.2.2 Do you learn quickly how to make applications with the AGP?        

yes   no  

Comment: _______________________________________________________ 
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D.2.3 How do you rate the overall appearance of the AGP (consistent, transparent, and 
intuitive)? 

  

Very poor         very good 

1 2 3 4 5 6 7 8 9 10 

 

Comment: ______________________________________________________ 

 

D.2.4 Do you find the various assistants of the AGP are well integrated? 

yes   no  

Comment: _______________________________________________________ 

 

D.2.5 Do you think non-experts could use the AGP efficiently? 

yes   no  

Comment: _______________________________________________________ 

 

D.2.6 Would you use this system in the future or recommend it to develop speech/Web 
applications?  

For any decision, please give a few reasons or name conditions if there are any.  

yes   no  

Comment: _______________________________________________________ 

 

D.2.7 If yes, how much would you be willing to pay for its use? 

 

Comment: _______________________________________________________ 

 
Thank you very much for your participation!  
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AAPPPPEENNDDIIXX  EE..  DDEETTAAIILLEEDD  RREESSUULLTTSS  OOFF  TTHHEE  OOBBJJEECCTTIIVVEE  EEVVAALLUUAATTIIOONN  
OOFF  TTHHEE  PPLLAATTFFOORRMM  

 

 

Table E.1. Quantitative measures obtained during the objective evaluation 

Task 
Av. Novices Av. Intermediates Av. Experts All Average 

AGP Diagen Impr. AGP Diagen Impr. AGP Diagen Impr. AGP Diagen Impr. 
DMA - Create DB-based Class             

Elapsed Time (in seconds) 55 122 54.9% 47 93 48.9% 22 85 74.0% 45 104 56.6% 
No. of Clicks 12 20 37.2% 11 9 -21.4% 8 17 55.9% 11 16 30.0% 

No. of Keystrokes 9 116 92.6% 7 117 93.8% 7 97 92.8% 8 112 93.1% 
No. of Keystroke Errors 0 5 100% 0 2 100.0% 0 2 100.0% 0 3 100% 
Average Improvement   69.8%   55.3%   80.7%   69.0% 

DMA - Create Mixed Class             
Elapsed Time (in seconds) 67 157 57.5% 70 118 40.6% 52 125 58.2% 65 137 52.8% 

No. of Clicks 13 27 50.5% 16 14 -14.3% 14 25 42.9% 14 22 34.8% 
No. of Keystrokes 8 152 94.6% 17 147 88.7% 15 158 90.8% 12 152 91.8% 

No. of Keystroke Errors 3 5 38.9% 1 3 77.8% 0 7 100.0% 1 5 68.3% 
Average Improvement   60.4%   48.2%   73.0%   61.9% 

DCMA - Create Database Function             
Elapsed Time (in seconds) 181 180 -0.8% 92 139 34.1% 65 137 52.7% 125 156 19.9% 

No. of Clicks 23 26 13.3% 19 11 -70.6% 14 19 24.3% 20 20 0 % 
No. of Keystrokes 73 237 69.4% 51 211 76.0% 63 227 72.2% 63 226 72.1% 

No. of Keystroke Errors 16 10 -71.1% 2 5 50.0% 2 4 62.5% 8 7 -25.0% 
Average Improvement   2.7%   22.4%   52.9%   16.6% 
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Task Av. Novices Av. Intermediates Av. Experts All Average 
AGP Diagen Impr. AGP Diagen Impr. AGP Diagen Impr. AGP Diagen Impr. 

SFMA – Create One Slot State             
Elapsed Time (in seconds) 36 92 61.4% 35 68 48.0% 24 56 56.8% 33 76 56.7% 

No. of Clicks 12 13 9.4% 11 11 0.0% 6 12 50.0% 10 12 15.3% 
No. of Keystrokes 25 80 69.5% 28 84 66.5% 26 71 64.1% 26 79 67.4% 

No. of Keystroke Errors 1 2 50.0% 2 3 44.4% 1 1 50.0% 1 2 50 % 
Average Improvement   47.6%   39.8%   55.2%   46.6% 

SFMA - Create State With Mixed-
Initiative Slots + Transition             

Elapsed Time (in seconds) 73 128 42.7% 54 91 40.9% 33 79 58.9% 58 105 44.9% 
No. of Clicks 21 23 6.6% 16 16 4.1% 16 21 23.8% 18 20 9.9% 

No. of Keystrokes 27 81 66.1% 26 88 70.9% 25 77 67.3% 26 82 68.1% 
No. of Keystroke Errors 2 3 10.0% 1 1 33.3% 0 4 100.0% 1 2 50.0% 
Average Improvement   31.4%   37.3%   62.5%   42% 

SFMA - Create Connection Between 
States             

Elapsed Time (in seconds) 7 87 91.6% 15 50 70.9% 8 44 81.8% 10 65 84.8% 
No. of Clicks 6 3 -83.3% 9 4 -136.4% 6 1 -400.0% 7 3 -132.0% 

No. of Keystrokes 0 36 100.0% 0 21 100.0% 0 15 100.0% 0 26 100.0% 
No. of Keystroke Errors 0 7 100.0% 0 1 100.0% 0 0 0.0% 0 3 100.0% 
Average Improvement   52.1%   33.6%   -54.5%   38.2% 

RMA - Create A Menu Dialogue             
Elapsed Time (in seconds) 100 759 86.8% 61 618 90.2% 55 470 88.3% 77 647 88.1% 

No. of Clicks 20 44 55.1% 18 35 49.5% 18 33 44.6% 19 38 51.4% 
No. of Keystrokes 47 344 86.4% 49 402 87.7% 48 454 89.4% 48 388 87.6% 

No. Of Keystroke Errors 1 95 99.5% 1 51 97.4% 0 14 100.0% 1 62 98.9% 
Average Improvement   82.0%   81.2%   80.6%   81.5% 
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Task Av. Novices Av. Intermediates Av. Experts All Average 
AGP Diagen Impr. AGP Diagen Impr. AGP Diagen Impr. AGP Diagen Impr. 

RMA - Create a Dialogue With OVR + 
Condition             

Elapsed Time (in seconds) 187 1,763 89.4% 107 1,421 92.5% 99 1,060 90.7% 140 1,493 90.6% 
No. of Clicks 35 92 62.0% 28 83 66.0% 31 80 61.9% 32 86 63.3% 

No. of Keystrokes 19 918 97.9% 18 1,079 98.4% 15 1,040 98.6% 18 998 98.2% 
No. of Keystroke Errors 0 164 99.8% 0 56 100.0% 0 35 100.0% 0 100 100 % 
Average Improvement   87.3%   89.2%   87.8%   88.0% 

RMA - Create a Dialogue With Mixed-
Initiative  

+ Local Variable 
            

Elapsed Time (in seconds) 126   69   68   94   
No. of Clicks 23   21   21   22   

No. of Keystrokes 8   6   8   7   
No. of Keystroke Errors 1   0   2   1   

MERA-Speech – Create a Dialogue To 
Present A List Of Objects             

Elapsed Time (in seconds) 109   89   52   89   
No. of Clicks 20   15   16   17   

No. of Keystrokes 0   0   0   0   
No. of Keystroke Errors 0   0   0   0   

MERA-Speech - Fill In All DGet 
Dialogues             

Elapsed Time (in seconds) 4   4   6   4   
No. of Clicks 3   2   3   3   

No. of Keystrokes 0   0   0   0   
No. of Keystroke Errors 0   0   0   0   
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Table E.2. Results for general questions about the assistants in the AGP during the subjective evaluation 

 

General Questions About Each Assistant Average  
Novice 

Average  
Intermediate 

Average  
Expert 

Average  
All 

How quickly did you learn to use the DMA? 
(Very Slow – Very Fast) 7.8 8.0 9 8.1 

How intuitive do you think is the DMA?  
(No Intuitive at all – Very Intuitive) 8.0 8.7 9.5 8.6 

Do you think that the functionality of the DMA is sufficient? (No at all – Totally) 8.8 7.7 8.5 8.3 
How do you rate the appearance of the DMA (consistent, transparent)?  

(Very Poor – Very Good) 8.0 8.7 8 8.2 

Average Score DMA 8.1 8.3 8.8 8.3 
How quickly did you learn to use the DCMA?  

(Very Slow – Very Fast) 7.8 8.3 9 8.2 

How intuitive do you think is the DCMA?  
(No Intuitive at all – Very Intuitive) 7.3 8.7 9.5 8.2 

Do you think that the functionality of the DCMA is sufficient? (No at all – Totally) 7.8 8.7 9.5 8.4 
How do you rate the appearance of the DCMA (consistent, transparent)?  

(Very Poor – Very Good) 7.3 8.7 9 8.1 

Average Score DCMA 7.5 8.6 9.3 8.3 
How quickly did you learn to use the SFMA?  

(Very Slow – Very Fast) 8.8 8.7 9 8.8 

How intuitive do you think is the SFMA? 
(No Intuitive at all – Very Intuitive) 9.3 8.7 9 9.0 

Do you think that the functionality of the SFMA is sufficient? (No at all – Totally) 9.5 8.3 10 9.2 
How do you rate the appearance of the SFMA (consistent, transparent)? 

(Very Poor – Very Good) 9.3 8.7 9 9.0 

Average Score SFMA 9.2 8.6 9.3 9.0 
 



Appendix E 

247 

 

General Questions About Each Assistant Average  
Novice 

Average  
Intermediate 

Average  
Expert 

Average  
All 

How quickly did you learn to use the RMA?  
(Very Slow – Very Fast) 8.3 7.3 8.5 8.0 

How intuitive do you think is the RMA?  
(No Intuitive at all – Very Intuitive) 9.3 8.0 9 8.8 

Do you think that the functionality of the RMA is sufficient? 
 (No at all – Totally) 9.5 8.0 9.5 9.0 

How do you rate the appearance of the RMA (consistent, transparent)?  
(Very Poor – Very Good) 9.0 8.3 9 8.8 

Average Score RMA 9.0 7.9 9.0 8.6 
How quickly did you learn to use the MERA-Speech?  

(Very Slow – Very Fast) 9.3 9.3 10 9.4 

How intuitive do you think is the MERA-Speech?  
(No Intuitive at all – Very Intuitive) 8.5 9.0 10 9.0 

Do you think that the functionality of the MERA-Speech is sufficient? (No at all 
– Totally) 8.8 9.0 9.5 9.0 

How do you rate the appearance of the MERA-Speech (consistent, transparent)? 
(Very Poor – Very Good) 8.8 8.3 8.5 8.6 

Average Score MERA-Speech 8.8 8.9 9.5 9.0 
How quickly did you learn to use the Diagen? 

(Very Slow – Very Fast) 5.5 4.3 7.5 5.6 

How intuitive do you think is the Diagen? 
(No Intuitive at all – Very Intuitive) 4.0 4.7 5.5 4.6 

Do you think that the functionality of the Diagen is sufficient? 
 (No at all – Totally) 3.3 5.3 3.5 4.0 

How do you rate the appeareance of the Diagen (consistent, transparent)? 
 (Very Poor – Very Good) 3.0 5.3 4 4.0 

Average Score Diagen 3.9 4.9 5.1 4.5 
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