

UNIVERSIDAD POLITÉCNICA DE MADRID

ESCUELA TÉCNICA SUPERIOR
DE INGENIEROS DE TELECOMUNICACIÓN

Speed Up Strategies for the Creation of
Multimodal and Multilingual

Dialogue Systems

TESIS DOCTORAL

LUIS FERNANDO D’HARO
Ingeniero Electrónico

2009

09

2009

L

U
IS

 F
E

R
N

A
N

D
O

 D
’H

A
R

O

 T

E
SI

S
D

O
C

T
O

R
A

L

DEPARTAMENTO DE INGENIERÍA ELECTRÓNICA
ESCUELA TÉCNICA SUPERIOR DE INGENIEROS

DE TELECOMUNICACIÓN

Speed Up Strategies for the Creation of
Multimodal and Multilingual

Dialogue Systems

Autor
LUIS FERNANDO D’HARO

Ingeniero Electrónico

Director
RICARDO DE CÓRDOBA

Doctor Ingeniero de Telecomunicación

2009

Tribunal nombrado por el Sr. Rector Magfco. de la Universidad Politécnica de Madrid, el
día...............de.............................de 2009...

Presidente:

Vocal:

Vocal:

Vocal:

Secretario:

Suplente:

Suplente:

Realizado el acto de defensa y lectura de la Tesis el día.......... de........................ de 2009 en
la E.T.S.I. de Telecomunicación.

Calificación:…………………………………………………………….

EL PRESIDENTE LOS VOCALES

EL SECRETARIO

“Commit your way to Jehovah, trust also
in Him, and He will do it”

Psalm 37:5

“Encomienda a Jehová tu camino,
Confía en Él, y Él hará”

Salmos 37:5

"Bear in mind that the wonderful things
you learn in your schools are the work of many

generations, produced by enthusiastic effort
and infinite labour in every country of the

world. All this is put into your hands as your
inheritance in order that you may receive it,

honour it, add to it, and one day faithfully hand
it to your children. Thus do we mortals achieve
immortality in the permanent things which we

create in common"

Albert Einstein

“Pensad que las cosas maravillosas que
aprendéis en vuestras escuelas son el trabajo
de muchas generaciones, logrado con mucho

esfuerzo y mucha fatiga en todos los países
del mundo. Las ponemos en vuestras manos

como herencia, para que las respetéis,
desarrolléis y fielmente las entreguéis a

vuestros hijos. Así es cómo nosotros, los
mortales, nos hacemos inmortales,

transmitiendo el trabajo hecho por todos”

Albert Einstein

I

ABSTRACT
Nowadays, most of the commercial and research call center applications are created

using sophisticated and complete development platforms that allow the specification of all the
details related to the design, deploying, and debugging of such services. In spite of all the
features and utilities included in them, most of them propose the same kind of accelerations
and present limitations when designing simultaneously the same service for different
modalities and kinds of users.

In this thesis, we propose different innovative, dynamic, and intelligent acceleration
strategies that allow the prediction of the information required to complete the different
aspects of the design. In our proposal, the accelerations are based on using the data model
structure and database contents, as well as cumulative information obtained from the previous
and sequential steps in the design. Thanks to these accelerations, the design is reduced, most
of the times, to simple confirmations from the designer to the “proposals” that the platform
automatically provides.

In detail, we propose the semi-automatic generation of different kinds of proposals that
can be used to complete the application flow, the actions that make up each dialogue, or to
solve specific modality problems such as user confirmations and the presentation of the lists
of results retrieved after querying the backend database. Additionally, we propose the
creation of different assistants that contribute to accelerate the process of creating speech
grammars and the definition of the functions used to access the database. The results that we
have obtained in objective and subjective evaluations have shown the viability, relevance,
and functionality of the platform and the proposed accelerations presented in this thesis.

On the other hand, the wide variability of the final users of the service raises different
challenges such as the possibility of correctly identify the language to be used to interact with
the users, as well as the possibility of providing the same service using different modalities
according to the user preferences or needs or to the current conditions of the dialogue.

In relation with the improvements applied to the language identification module, we
have implemented a new technique based on using a discriminative ranking of n-grams that
allow the incorporation of contextual longer-span information into the language models used
by the system. The proposed technique has been evaluated in the identification of spoken
sentences in English and Spanish obtaining better language recognition rates than a PPRLM
based system, probably because the technique copes better with the classical problem of
obtaining reliable estimates with a reduced training set, so we can use higher order language
models.

Finally, we have incorporated several improvements into an automatic speech-to-sign
language machine translation system that extends the multimodal capabilities of the platform,
so we can offer the same service, developed with the design platform, to deaf people. In this
case, the translation system is used to automatically translate system prompts into an
animated sequence played by a 3-D avatar. In this thesis, we propose an innovative
adaptation technique that improves the quality of the translated sentences in situations when
there is not enough training data to obtain reliable language models used by the translation
system. The adaptation is done at the count level, using the Maximum A-Posteriori (MAP)
technique. We use in this case the original occurrence counts of the n-grams that appear in
the target language and the frequency counts of the equivalent n-grams in the source language
retrieved from the Web and previously “translated” into counts in the target language using
an independently trained phrase-base translation model.

II

RESUMEN

Hoy por hoy, la mayoría de los sistemas comerciales y de investigación de atención
telefónica se realizan mediante el uso de sofisticadas y completas plataformas que permiten
especificar todos los detalles relacionados con el diseño, ejecución, y depuración de tales
servicios. Pese a todas las funcionalidades y utilidades incluidas para acelerar el diseño y
permitir servicios avanzados a los usuarios, la mayoría de ellas proponen el mismo tipo de
aceleraciones y presentan limitaciones al desarrollo simultáneo del servicio para múltiples
modalidades y perfiles de usuario.

En esta tesis se proponen diferentes estrategias de aceleración innovadoras, dinámicas e
inteligentes que permiten predecir la información necesaria requerida para completar los
diferentes aspectos del diseño, usando para ello información de la estructura del modelo de
datos y del contenido de la base de datos del servicio, así como de la información acumulada
a lo largo de todos los pasos ya realizados durante el diseño. Gracias a estas aceleraciones, la
mayor parte del diseño del diálogo se reduce a confirmaciones por parte del diseñador de las
“ofertas” que le hace la plataforma.

En concreto, se propone la generación semi-automática de diversos tipos de propuestas
que pueden ser utilizadas para completar el flujo de la aplicación, las acciones que componen
cada diálogo, o para solucionar problemas específicos de cada modalidad tales como la
confirmación de datos al usuario y la presentación de las listas de resultados devueltos
después de hacer una consulta a la base de datos del servicio. Así mismo, se propone la
creación de diferentes asistentes que permiten acelerar la creación de las gramáticas usadas
por el sistema de reconocimiento y la definición de las funciones de acceso a la base de datos.
Los resultados obtenidos en sendas evaluaciones objetiva y subjetiva han permitido
demostrar la viabilidad, relevancia y funcionalidad de estas aceleraciones y de la plataforma
presentada.

Por otro parte, la amplia variedad de usuarios finales del servicio plantea diversos retos
tales como la capacidad de identificar adecuadamente el idioma con el cual dirigirse a los
usuarios, así como la posibilidad de proporcionar el servicio utilizando una u otra modalidad
según las preferencias/necesidades de los usuarios o las condiciones actuales del diálogo.

En relación con las mejoras aplicadas al módulo de reconocimiento de idioma se ha
implementado una nueva técnica para la incorporación de información contextual de más
largo alcance en los modelos de lenguaje utilizados por el sistema basada en un ranking de n-
gramas discriminativos. La técnica propuesta ha sido evaluada en la identificación de frases
habladas en inglés y castellano obteniendo mejores tasas de reconocimiento que un sistema
basado en PPRLM que usa modelos de lenguaje tradicionales gracias a la reducción del
problema de falta de datos para el entrenamiento de los modelos de lenguaje de orden
elevado lo que permite la utilización de modelos de mayor orden.

Finalmente, se han incorporado diversas mejoras a un módulo de traducción automática
de voz a lengua de signos que permite ampliar las capacidades multimodales de la plataforma
al permitir la prestación del mismo servicio, desarrollado con la plataforma de diálogo, a
personas con discapacidad auditiva, permitiendo la traducción de los prompts del sistema en
una secuencia animada reproducida por un avatar. En esta tesis se propone una técnica de
adaptación innovadora que permite mejorar la calidad de las frases traducidas en situaciones
en las que no hay suficientes datos para entrenar adecuadamente el modelo de lenguaje usado
por el sistema de traducción. La adaptación se realiza a nivel de cuentas, mediante la técnica
de Maximum-A-Posteriori (MAP), usando las cuentas de los n-gramas originales en el

III

idioma destino y las cuentas de ocurrencia de los n-gramas equivalentes en el idioma origen
consultadas en la Web previamente y “traducidas” posteriormente a cuentas en el idioma
destino usando un modelo de traducción basado en frases.

IV

ACKNOWLEDGMENTS

When we think in a thesis, we are not just talking about a document that is written at
the end of several years of research, thousands of experiments, and many nights with
insomnia. But, and above all, it is a road that without the support and orientation of many
persons, it would not be possible to start and, even worse, to finish. For this reason, and with
the limitation of using just some few words, I want to express my gratitude to all those people
that had contributed to finish successfully this stage of my life.

In first place, if there is somebody to whom I have a duty for all that I am, all that I
have been, and all that I will be, is to my Heavenly Father, to Jesus my Saviour, and to the
Holy Spirit my Comforter. To You be the Glory, the Honour, and all my gratitude. Thanks,
because your love and wisdom expressed in the tiny atom, in every star in the immensurable
cosmos, and in every instant of my life make me possible to feel that this world, this thesis,
and my whole life, is the unquestionable result of Their constant direction and protection.

In second place, I want to thank my family, my wife Ana Lucía, my little son Samuel
Fernando, my fathers Luis and Yolanda, and my sisters Angélica and Viviana. Thanks for
your support, love, and happiness that every day you give to me, and for trusting in me.
Thanks, because each minute we shared together have given me the strength to keep on the
way and to be a better person. Thanks for teaching me and helping me to build the values
that, like the stars on the sky, have made me possible to navigate for the life.

I want to thank all the members of the Speech Technology Group. I have not words to
thank you for all the things you have made for me. Thanks for allowing me to come to this
country to make my dream true, for guiding me and advising me at every step in my research,
and for giving me the opportunity of growing professionally and personally. Thanks for you
confidence, patient and friendship. I also want to thank Javier Morante, Ignacio Ibarz, Rosalía
Ramos, and José Ramón Jiménez for their contribution in the development of the
accelerations presented in this thesis, as well as to all the members of the GEMINI project for
making possible the creation of the platform used in this thesis.

I want to make a special mention and thank to my advisor. Rick, thanks for all you have
done for me. Thanks for being not just an excellent advisor, directing every detail in my
research, but because you have became like a brother to me. Thanks for listening to me and
advising me so many times. Thanks for every challenge and opportunity you have given me.
God bless you and continue guiding your life.

Finally, I cannot forget the big group of friends that have been always close to comfort
me with a pray, an advice, opening the doors of their homes and hearts, or offering to me
something as simple, but very important, as a smile. A special mention to Willy, Alfredo, and
Samuel. Thanks guys for teaching me the meaning of the true friendship, and for sharing that
goal that united us: to be AIBAS® for ever.

V

AGRADECIMIENTOS

Una tesis no es sólo un libro que se escribe al final de varios años de investigación,
multitud de experimentos y varias noches sin dormir sino, y por sobretodo, es un camino a
recorrer en el que sin el apoyo y la orientación de muchas personas no sería posible iniciar y
mucho menos terminar. Es por eso que quiero, aunque sea con estas pocas palabras, dar mi
agradecimiento a todos aquellos que han contribuido de una u otra forma a que pueda
culminar con éxito esta etapa de mi vida.

En primer lugar, si hay alguien a quien debo todo lo que tengo, todo lo que soy, y todo
lo que llegaré a ser, es a mi Padre Celestial, a Jesús mi Salvador, y al Espíritu Santo mi
Consolador. A ellos sea la Honra y la Gloria, y todo mi agradecimiento, porque su amor y
sabiduría manifestada en cada diminuto átomo, en cada estrella del inmensurable cosmos, y
en cada instante de mi vida me hacen sentir que este mundo, este camino, y mi vida entera, es
el indiscutible resultado de su constante dirección y protección.

En segundo lugar quiero agradecer a mi familia: a mi esposa Ana Lucía, mi pequeño
hijo Samuel Fernando, mis padres Luis y Yolanda, y a mis hermanas Angélica y Viviana.
Gracias por todo el apoyo que me han dado, por el amor y felicidad que cada día me dan y
por creer en mí. Gracias porque todos y cada uno de los minutos que he compartido con
ustedes me han hecho ser mejor, y me han dado fuerzas para continuar. Gracias por
enseñarme y ayudarme a construir los valores que, a modo de estrellas, me han permitido
navegar por la vida.

También quiero agradecer a todos los miembros del Grupo de Tecnología del Habla.
No tengo palabras para agradecerles todo lo que han hecho por mí. Gracias por permitirme
venir a este país a cumplir un sueño, por guiarme y aconsejarme en cada paso de la
investigación y por darme la oportunidad de crecer profesional y personalmente. Gracias por
su confianza, paciencia y amistad. También agradezco a Javier Morante, Ignacio Ibarz,
Rosalía Ramos y José Ramón Jiménez por su contribución en el desarrollo de los asistentes,
así como a todos los miembros del proyecto GEMINI por haber hecho posible la creación de
la plataforma usada en esta tesis.

Mención aparte, quiero expresar mi gratitud al director de esta tesis. Rick, gracias por
todo lo que has hecho por mí. Gracias por haber sido no sólo un excelente tutor al dirigirme
en cada detalle de esta investigación, sino porque has llegado a ser como un hermano para mí.
Gracias por escucharme y aconsejarme tantas veces. Gracias por todos los retos y
oportunidades que me has dado. Que Dios te bendiga y siga guiando tu vida.

Finalmente, no puedo dejar de recordar a todo ese grupo grande de amigos que siempre
han estado allí para apoyarme con una oración, con un consejo, abriéndome las puertas de sus
hogares y sus corazones, o incluso compartiendo conmigo algo tan sencillo, pero tan
importante, como es una sonrisa. Mención especial quiero dar a Willy, Alfredo y Samuel.
Gracias chicos por enseñarme el valor de la verdadera amistad y por poder compartir con
ustedes ese ideal que nos une de ser AIBAS® por siempre.

VI

INDEX

ABSTRACT .. I

RESUMEN... II

ACKNOWLEDGMENTS .. IV

AGRADECIMIENTOS .. V

INDEX .. VI

INDEX OF FIGURES .. X

INDEX OF TABLES ... XIV

1 INTRODUCTION ... 1
1.1 Motivation .. 1
1.2 Objectives ... 3

1.2.1 Design platform .. 3
1.2.2 Language Identification System ... 3
1.2.3 Machine Translation .. 4
1.2.4 Relevant Definitions ... 4

1.3 Organization ... 5

2 STATE-OF-THE-ART ... 7
2.1 Development Platforms and Acceleration Strategies for Designing Multimodal

Dialogue Systems ... 7
2.1.1 Commercial Platforms ... 8
2.1.2 Academic and Research Platforms ... 16
2.1.3 Research Platforms that Provide an Assisted Dialogue Design 19
2.1.4 Weaknesses of Commercial and Academic Platforms.. 24

2.2 Language Modelling ... 24
2.2.1 Statistical Language Models .. 25
2.2.2 Context-Free-Grammars (CFG´s) ... 35

2.3 Language Identification (LID) ... 36
2.3.1 Description of the PPRLM Technique: Advantages and Disadvantages 39

2.4 Machine Translation ... 41
2.4.1 Current Approaches for Machine Translation ... 41
2.4.2 Word-based and Phrase-based Translation ... 45
2.4.3 Current Metrics for the Automatic Evaluation of Machine Translation Quality ... 47
2.4.4 Speech to Sign Language Translation .. 50

3 PLATFORM ARCHITECTURE .. 57
3.1 GDialogXML: Internal Descriptive Language for the Generated Models 58
3.2 FrameWork Layer .. 59

3.2.1 Application Description Assistant (ADA) ... 59
3.2.2 Data Model Assistant (DMA) ... 60
3.2.3 Data Connector Modelling Assistant (DCMA) .. 61

3.3 Retrieval Layer ... 62
3.3.1 State Flow Modelling Assistant (SFMA) .. 62
3.3.2 Retrieval Modelling Assistant (RMA) ... 63

3.4 Dialogues Layer .. 64

VII

3.4.1 User Modelling Assistant (UMA) ... 65
3.4.2 Modality Extension Retrieval Assistant for Speech (MERA-Speech) 65
3.4.3 Modality and Language Extension Assistant (MEA) ... 66
3.4.4 Dialogue Model Linker (DML) .. 69
3.4.5 Script Generators ... 69
3.4.6 Auxiliary Assistants .. 71

3.5 Runtime System .. 74
3.5.1 Speech Recognizer and Synthesizer ... 74
3.5.2 Animated Agent Used by the Sign Language Translation System 75
3.5.3 Distributed Platform and VoiceXML Interpreter (OpenVXI) 77
3.5.4 Portability and Use of Standards ... 82

3.6 Scope and Limitations .. 83

4 SPEED UP STRATEGIES APPLIED IN THE DIALOGUE DESIGN 85
4.1 Heuristics .. 86
4.2 Strategies Applied to the Data Model Assistant (DMA) .. 88

4.2.1 Semi-automatic Classes Proposals .. 89
4.2.2 Common Accelerations ... 90

4.3 Strategies Applied to the Data Connector Model Assistant (DCMA) 91
4.3.1 Definition of Relations between the Function Arguments and the Data Model 91
4.3.2 Automatic Generation of SQL Queries .. 93

4.4 Strategies Applied to the State Flow Model Assistant (SFMA) 94
4.4.1 Functionalities Included in the Graphical User Interface 94
4.4.2 Automatic State Proposals for Defining the Dialogue Flow 97
4.4.3 Automatic Unification of Slots for Mixed-Initiative Dialogues 99

4.5 Strategies Applied to the Retrieval Model Assistant (RMA) 101
4.5.1 Automatically Proposed Dialogues .. 101
4.5.2 Automatic Generation of Action Proposals in Each State 103
4.5.3 Automated Passing of Arguments between Actions ... 105
4.5.4 Mixed-Initiative and Over-Answering .. 106
4.5.5 Other Functionalities ... 109

4.6 Strategies Applied to the Modality Extension Retrieval Assistant for Speech
(MERA-Speech) ... 109

4.6.1 Presentation of Object Lists ... 110
4.6.2 Confirmation Handling .. 113

4.7 Strategies Applied to Other Assistants ... 115
4.7.1 Modality and Language Extension Assistant (MEA) ... 116

4.8 Conclusions .. 122

5 EVALUATION OF THE ACCELERATION TECHNIQUES 125
5.1 Subjective Evaluation ... 125

5.1.1 Experimental setup ... 125
5.1.2 Evaluation results ... 127

5.2 Objective Evaluation .. 132
5.2.1 Experimental setup ... 132
5.2.2 Description of the evaluated tasks and results ... 135
5.2.3 Subjective survey .. 144

5.3 Conclusions .. 147

6 DEVELOPMENTS AND IMPROVEMENTS APPLIED TO THE RUNTIME
SYSTEM .. 149

Speed Up Strategies for the Creation of Multimodal and Multilingual Dialogue Systems

VIII

6.1 Language Identification System ... 150
6.1.1 System Description ... 150
6.1.2 Proposed Technique: n-gram Frequency Ranking .. 154
6.1.3 Incorporation of additional information .. 163
6.1.4 Conclusions .. 169

6.2 Automatic Translation of Dialogue Prompts into the Sign Language 170
6.2.1 Runtime System for the Speech-to-Sign Language Translation System 171
6.2.2 Bilingual Corpus .. 172
6.2.3 Speech Recognition Results .. 174
6.2.4 Statistical Machine Translation System ... 174
6.2.5 Proposed Adaptation Technique .. 177
6.2.6 Language Model Experiments .. 181
6.2.7 Machine Translation Experiments ... 181
6.2.8 Conclusions .. 183

7 CONCLUSIONS AND FUTURE WORK .. 185
7.1 CONCLUSIONS .. 185

7.1.1 Dialogue Platform .. 185
7.1.2 LID System ... 187
7.1.3 Machine Translation System .. 187

7.2 FUTURE WORK ... 188
7.2.1 Dialogue Platform .. 188
7.2.2 LID System ... 190
7.2.3 Machine Translation System .. 190

BIBLIOGRAPHY .. 193

APPENDIX A. LIST OF ABBREVIATIONS ... 209

APPENDIX B. ADDITIONAL INFORMATION ABOUT CURRENT
COMMERCIAL AND WEB-BASED PLATFORMS ... 211
B.1 Commercial Platforms .. 211
B.2 Web-Based Development Platforms .. 219

APPENDIX C. TEMPLATES FOR THE CREATION OF AUTOMATIC
DIALOGUES IN THE MERA-SPEECH ASSISTANT .. 225
C.1 Template for the Presentation of Lists of Objects .. 225
C.2 One Slot Confirmation ... 229
C.3 Mixed-Initiative Confirmation ... 230
C.4 One Slot Plus Over-Answering Confirmation .. 232
C.5 Mixed-Initiative Plus Over-Answering Confirmation .. 235
C.6 Simple Confirmation and Basic Dialogues .. 237

APPENDIX D. QUESTIONNAIRE FOR EVALUATING THE APPLICATION
GENERATION PLATFORM .. 239
D.1 Specific Questions by Assistant ... 239

D.1.1 Questions regarding the assistant: ... 239
D.2 General Questions about the AGP .. 240

D.2.1 Advantages of using the AGP ... 240
D.2.2 Do you learn quickly how to make applications with the AGP? 241
D.2.3 How do you rate the overall appearance of the AGP (consistent, transparent, and

intuitive)? .. 242

IX

D.2.4 Do you find the various assistants of the AGP are well integrated? 242
D.2.5 Do you think non-experts could use the AGP efficiently? 242
D.2.6 Would you use this system in the future or recommend it to develop speech/Web

applications? .. 242
D.2.7 If yes, how much would you be willing to pay for its use? 242

APPENDIX E. DETAILED RESULTS OF THE OBJECTIVE EVALUATION OF
THE PLATFORM .. 243

X

INDEX OF FIGURES

Figure 2.1. Appearance of some tools provided by the IBM WebSphere Toolkit. (Source:
IBM WebSphere home page) ... 10

Figure 2.2. Example of creation of a Speech Grammar using the Microsoft Speech
Application SDK .. 15

Figure 2.3.CSLU’s RAD Toolkit: a) Example of the main canvas, available objects, and
dialogue states definition. b) Example of possibilities using the included animated agent:
Baldi. (Source: CSLU Toolkit home page) .. 16

Figure 2.4. Detailed graphical presentations of a dialogue model using DialogDesigner
(Source: DialogDesigner Web page) ... 17

Figure 2.5. Diagram of a PPRLM LID system (Source: [Zissman, 1996]) 39

Figure 2.6. The Vauquois triangle (Source: [Jurafsky and Martin, 2008]) 42

Figure 2.7. Translation process based on Bayes decision rule .. 44

Figure 2.8. Example of SignWriting notation for the Spanish sign: Book (Source: [Parkhurst
and Parkhurst, 2007]) ... 55

Figure 2.9. Example of HamNoSys notation and its representation using the avatar. 55

Figure 3.1. Platform architecture ... 57

Figure 3.2. Graphical details of a class and its attributes, and code fragment generated for the
Transaction class. ... 60

Figure 3.3. Form used to define the prototype of a database access function 61

Figure 3.4. GDialogXML code generated by the SFMA. .. 62

Figure 3.5. Code generated by the RMA for the bank transfer example. 64

Figure 3.6. Example of the definition of a TTS prompt using SSML tags. 67

Figure 3.7. GDialogXML code generated by the MEA for the speech modality. 68

Figure 3.8. Process for creating a dialogue in GDialogXML using the Diagen assistant 73

Figure 3.9. Offline and Online process for creating and using sign language prompts 75

Figure 3.10. Example of process to design and play a sign with VGuido. 76

Figure 3.11. Distributed architecture for the runtime system .. 79

Figure 3.12. Procedure to retrieve information from the database using the runtime system . 80

Figure 3.13. Example of a SRGS grammar file used by the NLU module in the run-time
system .. 81

Figure 4.1. Form fill-in window that allows the creation of custom classes (from the database
and classes from the current model) in the DMA. ... 90

Figure 4.2. Example of the automatic creation of a referenced class 91

Figure 4.3. GDialogXML code generated by the DCMA for the bank transfer. 92

Figure 4.4. Form fill-in window for the automatic creation and testing of SQL queries for
database access functions. .. 93

XI

Figure 4.5. Appearance of the SFMA main window ... 95

Figure 4.6. Process for the creation of a 1:N transitions in the SFMA 96

Figure 4.7. Pop-up window with states proposals from classes defined in the data model
structure (DMA)... 97

Figure 4.8. Example of a proposed state from a defined database access function. The
GDialogXML code corresponds with the definition of the function in the DCMA. 98

Figure 4.9 Configuration window for creating or editing rules for automatic detection of
directed or mixed-initiative dialogues ... 99

Figure 4.10. Example and GDialogXML code for two slots automatically unified for mixed-
initiative ... 100

Figure 4.11. Auxiliary screen of the RMA and popup window for dialogue configuration. . 102

Figure 4.12. Example with automatic dialogues and database access function proposals 104

Figure 4.13. Form fill-in windows that automate the process of passing arguments between
actions .. 105

Figure 4.14. Example of the GDialogXML syntax for a mixed-initiative dialogue created in
the RMA... 107

Figure 4.15. Example of the creation of a mixed-initiative dialogue 108

Figure 4.16. GDialogXML code for a dialogue to ask for a single slot and define another one
as optional using over-answering ... 108

Figure 4.17. Tooltips functionality for a quick description of all internal actions 109

Figure 4.18. Example of the assistant window for configuring a DSay dialogue for the
presentation of objects lists (case 3). ... 111

Figure 4.19. Assistant window for copying prompts ... 116

Figure 4.20. Examples of wording and prompt library files. ... 117

Figure 4.21. Additional languages prompts setting window. .. 118

Figure 4.22. Example of the definition of a grammar rule using the Language Modelling
Toolkit .. 119

Figure 4.23. Example of full generation of possible sentences from a JSGF file 120

Figure 4.24. Assistant for the creation of stochastic language models 121

Figure 5.1. Final distribution of experience status for the evaluation participants of the
subjective test ... 126

Figure 5.2. Evaluation results for the question about how quick the participants learnt to use
the platform assistants .. 128

Figure 5.3. Evaluation results for the question about how easy and intuitive were the platform
assistants .. 128

Figure 5.4. Evaluation results for the question about how sufficient was the functionality of
each platform assistant ... 129

Figure 5.5. Evaluation results for the question about how consistent, transparent, and intuitive
the users rated each platform assistant ... 129

Speed Up Strategies for the Creation of Multimodal and Multilingual Dialogue Systems

XII

Figure 5.6. Average results of the subjective evaluation for general questions about the
assistants .. 130

Figure 5.7. Interface used to start the evaluation of the different assistants in the AGP and
using the Diagen assistant .. 133

Figure 5.8. Interface to record the mouse and keyboard events during the evaluation 135

Figure 5.9. Chart with the improvements obtained when evaluating the Data Model Assistant
for the creation of a class structure with database dependency ... 136

Figure 5.10. Chart with the improvements obtained when evaluating the Data Model
Assistant for the creation of a mixed class ... 137

Figure 5.11. Chart with the improvements obtained when evaluating the Data Connector
Model Assistant for the definition of the prototype of a database function 137

Figure 5.12. Chart with the improvements obtained when evaluating the State Flow Model
Assistant for the creation of a state with one slot .. 138

Figure 5.13. Chart with the improvements obtained when evaluating the State Flow Model
Assistant for the creation of a state with mixed initiative slots and one transition 139

Figure 5.14. Chart with the improvements obtained when evaluating the State Flow Model
Assistant for connecting two states .. 139

Figure 5.15. Proposed flow for the evaluation of a menu-based dialogue in the RMA 140

Figure 5.16. Chart with the improvements obtained when evaluating the Retrieval Model
Assistant for creating a menu-based dialogue ... 140

Figure 5.17. Proposed flow for evaluating a dialogue with aver-answering and conditional
actions .. 141

Figure 5.18. Chart with the improvements obtained when evaluating the Retrieval Model
Assistant for creating a dialogue with over-answering and a conditional structure 142

Figure 5.19. Proposed flow for a dialogue with mixed-initiative and the creation of a global
variable ... 143

Figure 5.20. Chart with the average improvement by assistant considering all tasks 144

Figure 5.21. Chart with the results of the subjective evaluation for general questions about the
assistants .. 145

Figure 6.1. PPRLM scores used for the LID system ... 151

Figure 6.2. Example and calculation of distance score using a ranking of n-grams as proposed
by [Cavnar and Trenkle, 1994] .. 155

Figure 6.3. Example of the modification of a ranking template using the “golf score” 156

Figure 6.4. LID error rate results varying the ranking size and using the ‘golf’ ranking 156

Figure 6.5. Accumulative LID error rates reductions over the original ranking technique ... 162

Figure 6.6. Example of the procedure to create the vector with the acoustic score for each
phoneme ... 164

Figure 6.7. LID error rate results and confidence intervals considering the PPRLMNG,
PPRLMRANK, and the fusion of both systems .. 169

Figure 6.8. Spoken Language to Sign Language translation system 171

XIII

Figure 6.9. Example of an alignment template and phrase alignments for a Spanish to Spanish
Sign Language sentence pair ... 175

Figure 6.10. Flow diagram of the proposed adaptation technique ... 178

Figure B.1. Audium Builder main window. (Source: [Scholz, 2006]) 212

Figure B.2. Avaya Dialogue Designer. (Source: Avaya product brochure available at the
corporate website) .. 213

Figure B.3. Example of dialogue design using the OpenVXML toolkit. (Source: OpenVXML
Web page) .. 215

Figure B.4. Example of wizards included in the OptimTalk Professional Edition Toolkit.
(Source: OptimTalk Desktop Suite Web page) ... 216

Figure B.5. Example of dialogue design using the Vocalocity App Center. (Source:
Vocalocity Web page) .. 218

Figure B.6. Appearance of the main work area of the VoiceObjects Desktop. (Source:
VoiceObjects Web page) ... 219

Figure B.7. Appearance of different TellMe Studio tools. (Source: TellMe Studio Web site
and TellMe Voice Studio user guide) .. 221

Figure B.8. Examples of Voxeo Evolution Web-based tools. (Source: Voxeo Studio Web
page) ... 223

Speed Up Strategies for the Creation of Multimodal and Multilingual Dialogue Systems

XIV

INDEX OF TABLES

Table 4.1. Confusion matrix for automatic field types detection comparing the human
classification (real type) and the proposed type by the system (RE type) 87

Table 4.2. Confusion matrix comparing the human classification (real type) and the driver
classification (driver type) ... 88

Table 5.1. Distribution of the evaluation participants for the subjective test 126

Table 5.2. Subjective evaluation of the platform ... 131

Table 5.3. Subjective evaluation results for specific questions about the accelerations 146

Table 6.1. Differential score vector ... 153

Table 6.2. LID error rate results for PPRLMNG ... 153

Table 6.3. Example of an n-gram specific count-based ranking for English. 157

Table 6.4. Ranking size for the different n-grams and languages ... 158

Table 6.5. LID error rate results with n-gram specific ranking ... 158

Table 6.6. Comparison of feature discrimination between PPRLMNG and PPRLMRANK 159

Table 6.7. Average feature discrimination (several formulas) .. 160

Table 6.8. Comparison of feature discrimination between PPRLMNG and discriminative
PPRLMRANK ... 161

Table 6.9. LID error rate results for PPRLMNG versus discriminative PPRLMRANK 162

Table 6.10. LID error rate results for including incrementally long-span information 162

Table 6.11. Comparison of LID error rate results for including the sentence acoustic score to
the PPRLMNG and the discriminative PPRLMRANK systems ... 163

Table 6.12. LID error rate results for individual feature vectors ... 166

Table 6.13. LID error rate results for feature vector combinations 166

Table 6.14. LID error rate results using the Multi-Gaussian classifier 168

Table 6.15. Corpus statistics summary .. 173

Table 6.16. Speech recognition results. ... 174

Table 6.17. Example of n-grams in the phrase translation table .. 180

Table 6.18. Perplexity (PPL) results using the corresponding LM .. 181

Table 6.19. Average Machine translation results for the test set (Exp 1-3) 182

Table C.1. Proposed actions for the automatic filling of one slot and over-answering DGet
dialogues in the MERA-Speech assistant .. 232

Table C.2. Proposed actions for the automatic filling of mixed-initiative and over-answering
DGet dialogues in the MERA-Speech assistant ... 235

Table E.1. Quantitative measures obtained during the objective evaluation 243

Table E.2. Results for general questions about the assistants in the AGP during the subjective
evaluation ... 246

1

11 IINNTTRROODDUUCCTTIIOONN

1.1 Motivation

The growing interest from companies in using new information technologies as a
means to getting closer to the final users has led to the quick growth and improvement of
automatic dialogue systems for database search tasks. In these systems, users interact with an
automatic system to retrieve or exchange information that is available in a backend database.
In this way, it is possible to provide services such as reservations [San-Segundo et al,
2001a][López-Cozar and Granell, 2004][Lamel et al, 2000][Levin et al, 2000], customer care
[Strik et al, 1997], information retrieval [Zue et al, 2000][Seneff and Polifroni, 2000],
interactive voice response systems, etc. 24 hours a day 7 days a week.

One of the main difficulties of these systems is the process of designing them in a fast
and flexible way, so that the time needed by the designer to design the service, and the time
that it will take to the user to obtain the desired information in the real-time system can be
both reduced. In addition, given the different characteristics and requisites of the final users,
the service is expected to be available for several languages [Turunen et al, 2004][Uebler,
2001] and input/output modalities such as speech, Web, interactive maps, gestures, tactile
screens, animated agents, etc.([Almeida et al, 2002][Gustafson et al, 2000][Oviatt et al,
2000]) for allowing users from different nationalities and physical abilities to have access to
the service. Besides, it is expected that the same design can be reused for new languages and
modalities with minimum modifications and without requiring too much expert knowledge.

Fortunately, the increasing demand of automatic dialogue systems have resulted in
several companies and academic institutions working in the development of fully integrated
platforms that necessarily have to provide the maximum number of features to the designer
and the final users, a high level of portability, standardization and scalability in order to
minimize design time and costs. Moreover, these platforms have to enable the rapid
development, maintenance, and deployment of automatic dialogue services, as well as to be
flexible enough to allow the creation of a wide range of services and to be adapted to the
special characteristics of each one. In general, these platforms are made up of different and
independent modules allowing collaborative role-based development, so that different teams
of developers can work on the same project at the same time. Through these modules, the
designer can specify for instance: the application flow, grammars and system’s prompts,
actions for error handling, integration with backend databases, etc. Besides, they also include
debugging and edition modules to improve the service (for instance loggers, call/flow
analyzers, grammars and vocabularies generators, etc.), built-in components such as dialogue
libraries, grammars, and prompts for common situations (e.g. for requesting a phone number,
an address, names, etc.), etc. Finally, the usability of such platforms is increased thanks to a
clear and fully integrated graphical user interface, as well as to built-in libraries and dialogue
components that accelerate the design and simplifies to reuse previous knowledge.

However, in spite of all the advantages provided by current platforms, it is surprising to
observe that, in general, all of them share the same kind of accelerations to the design. For
instance, most of the accelerations offered by these platforms rely on the possibility of using
configurable built-in libraries or dialogues modules for common situations. Unfortunately,
they lack of some kind of accelerations based on basic business intelligence and data mining

Speed Up Strategies for the Creation of Multimodal and Multilingual Dialogue Systems

2

methodologies applied to the contents of the task database and from the data model structure
(i.e. the set of object-oriented classes and attributes that model the database tables and fields
and their relationships). To cope with this, our objective is to use these dynamic and
intelligent acceleration strategies so that we can, among other things, predict the necessary
information required to complete the definition of a dialogue state, accelerate the
specification of the application flow and the definition of the database access functions, and
help designers with built-in solutions for presenting lists of objects (generated after executing
a database query) for the speech modality, not forcing designers to define this information
from scratch. Additionally, most of these platforms do not offer the possibility of creating the
same service for users with disabilities, e.g. deaf users, or present reduced capabilities for
designing the same service for different modalities at the same time.

Taking into account the limitations of the best commercial platforms and the limited
number of research projects for creating, accelerating, and improving such design platforms,
and based on the results and experience obtained in previous projects [Cordoba et al,
2001][Lehtinen et al, 2000], we undertook the European Project GEMINI1 (Generic
Environment for Multilingual Interactive Natural Interfaces) developed from 2002 to 2004.
The result was a complete, flexible, and highly automated development platform that consists
of a set of tools and agents that guide the design process and allow the definition of the
different levels of knowledge needed to complete and run state-of-the-art speech and Web-
based services. Then, after finishing the project, we decided to continue working on the
development platform in order to propose new accelerations strategies and improving the
capabilities of the final version generated during the project.

In this thesis, we will describe in detail the main strategies applied to the different
assistants that make up the platform in order to speed up the design process, as the possibility
of handling mixed-initiative and over-answering dialogues using the same framework.
Detailed procedures to handle the presentation of lists of objects and confirmation handling
for the speech modality will be presented too. Features like user modelling, speaker
verification, language identification can also be included easily through runtime modules
included in the platform, although several accelerations to these assistants and modules are
left for future work. On the other hand, the generation of the runtime scripts of the dialogue
using standard languages like VoiceXML and xHTML kept the platform open for further
development and to the possibility of extending its capabilities with third party tools and
technology. However, and even most important, our work also allowed us to contribute to the
development of these standard languages and to overcome some of its limitations. Another
important result of the GEMINI project was a newly designed abstract dialogue description
language called GDialogXML, to which we have also contributed during this thesis. Finally,
we carried out an objective and subjective evaluation that demonstrated the user and
designer-friendliness and robustness of the platform, as well as the fulfilment of all the
objectives initially planned, together with a proposal for improvements and plans for the
platform.

On the other hand, the wide range of final users of the service creates diverse
challenges such as the capability of the system to properly identify the language to be used to
communicate with the users, or the possibility of providing the service using different
modalities according to the user preferences or needs, or to the state of the dialogue. In
general, this kind of functionalities are not totally considered in most of the current platforms

1 http://www-gth.die.upm.es/projects/gemini/

http://www-gth.die.upm.es/projects/gemini/�

Chapter 1: Introduction

3

although they are, in real world applications, essential for the correct execution of the service
and to provide a better user experience.

In this thesis, we will describe the improvements made to a language identification
system through the integration of an interesting technique based on long-span language
models and to an automatic speech-to-sign-language translation system through an innovative
adaptation technique that improves the quality of the translated sentences. In the former case,
we will describe the creation and use of a discriminative ranking of phone-based n-grams that
allows the LID system to use higher-order models and reduces frequent problems that appear
in the estimation of most statistical-based language models. In the latter case, we will explain
the process of accelerating and improving the translations of the written/spoken prompts of a
given service into an animated representation in the sign language for deaf people. In this
case, our main contribution is the adaptation of the language models used to increase the
quality of the translated sentences when there is not enough training data to obtain a reliable
statistical-based language model. Finally, we will also show the evaluation results of both
techniques.

1.2 Objectives
The most important objectives of this thesis are focused on the study and integration of

innovative strategies applied to simplify and speed up the design process in a unified
environment with multimodal and multilingual capabilities, as well as the development and
improvements on the different modules that make up the runtime system. In detail, we will
pursue de following goals:

1.2.1 Design platform

The main objective in relation with the design platform is to propose different
acceleration strategies to the main assistants of the development platform, through the
incorporation of heuristic information extracted from the backend database and the data
model structure, and by sharing information among assistants. This objective involves the
fulfilment of the following sub-objectives:

• To propose accelerations that can help in reducing the overhead produced by
performing repetitive or common procedures in the design. In this case, we propose
to accelerate the passing of arguments between actions, the definition of
prompts/grammars, the semi-automatic generation of SQL statements to access the
backend database, and the definition of the system behaviour for error handling in
the speech modality.

• To evaluate the different proposed accelerations and acceptability of the platform
through a subjective and objective evaluation. In this case, the evaluations have to
demonstrate the contribution of the proposed accelerations to reduce the design time
and to simplify the design process, as well as to demonstrate the designer-friendless
of the proposed platform and assistants.

1.2.2 Language Identification System

In this case, the objectives we will pursue will be the following ones:

Speed Up Strategies for the Creation of Multimodal and Multilingual Dialogue Systems

4

• To study of the incorporation of a long-span language model as phonotactic
constraints for a language identification system based on PPRLM, which reduces
the problem of having a reduced training set to obtain reliable high-order language
models.

• To study the integration of long-span, acoustic, and duration information as input
features for a Gaussian classifier, evaluating the contribution and discriminative
power of each one.

1.2.3 Machine Translation

Regarding the automatic machine translation system, we propose the following sub-
objectives:

• To include a new modality to the runtime platform extending the functionalities
of the platform allowing that the same service can be provided to a handicapped
user.

• To study the viability of a new language model adaptation methodology that can
be used to improve the quality of the sentences generated by a machine translation
system.

1.2.4 Relevant Definitions

Throughout this thesis, we are going to use some terms that do not necessarily have the
same meaning as the ones used in common literature or that do not present a general accepted
definition. To clarify them and avoid confusions we want to define them here from the
perspective of our platform.

• Designer and user: The term designer will refer to the person that uses the
platform to build the service, and user will refer to the final client of the developed
service.

• Mixed-initiative and over-answering: It is well known that the concept of
mixed-initiative includes over-answering, as mixed-initiative is a generic term used
to refer to a flexible interaction between the user and the system to get together to
reach a common final solution [Allen et al, 1999]. However, we preferred to
differentiate them to maintain the consistence with the specifications and
implementation of the VoiceXML2 standard. In this sense, we will use the term
mixed-initiative to indicate the system’s ability to ask simultaneously for two or
more compulsory data from the user, and, if the user’s answer is incomplete—or the
recognizer fails—new subdialogues are started to obtain the missing data. With
over-answering, we indicate the user’s ability to provide additional data—not
compulsory at that state—to the system.

2 http://www.w3.org/TR/voicexml20/

http://www.w3.org/TR/voicexml20/�

Chapter 1: Introduction

5

• Multiple modalities: The common usage of the term multimodality in dialogue
applications refers to the ability to support the communication with the user through
several channels to obtain and provide information [Nigay and Coutaz, 1993]. The
most widely used modalities are voice, gestures, mouse, images, or writing, which
can be combined simultaneously or otherwise during the dialogue. In our platform,
we have focused on applying this term from the designer point of view, referring to
the platform’s ability to generate the service for two modalities in a unified and
simultaneous way: Web and voice. Right now, these modalities work apart from
each other instead of being combined (synchronized) in the real-time system.

• Dialogue and state and action: From the terminology established by the W3C
for an event-driven model of dialogue interaction3, we can find the following
definitions:

o Dialogue: “a model of interactive behaviour underlying the interpretation
of the markup language. The model consists of states, variables, events,
event handlers, inputs and outputs”

o State: “the basic interactional unit defined in the markup language . . . A
state can specify variables, event handlers, outputs, and inputs”.

In spite of the differences in these definitions, throughout the thesis we will use both
terms with very little difference, as they will refer, from the perspective of a finite
state machine, to each interaction with the user—or a set of them—needed to fulfil a
service task. Nevertheless, the term dialogue will be more associated to the interaction
with the user, whereas state will mostly refer to a set of interactions and other
additional actions, such as a database access.

• Action: This term will refer to each procedure needed to complete a state or a
dialogue, for example calls to other dialogues, arithmetic, or string operations,
programming constructs, variable assignments, etc.

• Slot: This term will refer to each piece of compulsory information that the system
has to ask the user in order to offer the service.

• Acceleration: This term will refer to any methodology implemented into the
different assistants of the platform in order to reduce the design time and to make
easy the definition of the different dialogues, actions, and elements required to
design and run the service.

1.3 Organization

The thesis is organized as follows. Chapter 2 is divided into four sections. The first one
presents the state-of-the-art on development of dialogue applications, including descriptions
of several commercial and academic platforms, as well as different kinds of acceleration
strategies included in them for designing the service. The second section describes the state-
of-the-art on language modelling, including information about the most common strategies to
train and improve the statistical-based language models. The third section describes the state-

3 http://www.w3.org/TR/voice-dialogue-reqs/

http://www.w3.org/TR/voice-dialogue-reqs/�

Speed Up Strategies for the Creation of Multimodal and Multilingual Dialogue Systems

6

of-the-art on language identification techniques with special emphasis on the PPRLM system.
Finally, the fourth section describes the state-of-the-art on machine translation systems; In
this case, several strategies are described, with emphasis on the statistical approaches. This
section also provides a brief description of the phrase-based translation approach and current
metrics for the evaluation of machine translation systems. Finally, an overview on important
aspects and research about speech-to-sign language translation are also presented.

 Chapter 3 describes the overall architecture of the development platform proposed in
this thesis, including detailed information about the assistants that make it up, the runtime
system, the internal XML language used to share information among the assistants and create
the service, as well as a description of the platform scope and main limitations.

Chapter 4 describes the main acceleration strategies applied to the different assistants in
the platform. In chapter 5, we will show the results of an objective and subjective evaluation
of the whole platform, the assistants, and the proposed acceleration strategies.

Chapter 6 shows the development and improvements applied to the runtime system in
order to allow the multimodality and multilinguality capabilities of the platform. The first
improvement consists of the creation and incorporation of a new long-span language model
based on using a N-gram frequency ranking, as well as the study of combining the proposed
technique with additional information, mainly acoustical and durations, to a state-of-the-art
language identification system based on the PPRLM technique and using as final backend a
Gaussian classifier. The second improvement is the creation of a new online adaptation
technique that improves the quality of the translated sentences of an automatic machine
translation system that translates system prompts into an animated representation in the
Spanish sign language in order to provide the service to users with hearing disabilities.

Chapter 7 presents a list of future improvements to the platform and the main
conclusions, followed by the complete bibliography used in the thesis. Appendix A provides
a small list of abbreviations used in the thesis. Appendix B provides detailed information
about the characteristics and accelerations included in several commercial and Web-based
development tools. Appendix C describes the templates used in the assistant that creates the
flow for the presentation of lists of objects after retrieving information from the backend
database and for handling user confirmations. Appendix D describes the questionnaire used
for the subjective evaluation. Finally, Appendix E includes detailed tables with the results of
the objective and subjective evaluation done to the development platform and the
accelerations described in this thesis.

7

22 SSTTAATTEE--OOFF--TTHHEE--AARRTT

This chapter describes the platforms, tools, algorithms, and methodologies we have
studied and used to accomplish the objectives of the thesis. The chapter is divided into four
sections representing the different topics tackled in this dissertation.

The first section presents detailed information about current commercial and non-
commercial platforms that allow the design, debugging, and execution of automatic dialogue
services. Information about different kind of methodologies used for accelerating the design
process is also presented.

The second section describes the main algorithms and methodologies for training,
adapting, and improving language models. From the perspective of the present thesis, this
information is relevant since they establish the foundations to explain the techniques we have
applied to improve the language models used by the language identification system (LID) and
the automatic translation system. The former is used to detect the language to be used by the
system to communicate with the user, and the latter is used to translate system prompts (i.e.
text or speech messages presented to the final user) into an animated representation in the
sign language in order to allow deaf users to use the developed service.

The third section shows the most important algorithms and research lines for language
identification. Among the reported algorithms, the Parallel Phone Recognition followed by
Language Modelling (PPRLM) is the most successful and widespread technique. For that
reason, and because it was used as our baseline system, we will describe it in more detail.

Finally, the last section presents the main methodologies and algorithms used for
training, evaluating, and using statistical machine translation systems. The section makes
emphasis on current research systems for translating text/speech into Sign Language, and in
the phrase-based translation methodology used by most research systems.

2.1 Development Platforms and Acceleration Strategies for
Designing Multimodal Dialogue Systems

This section describes the most important platforms and tools that were studied and
compared with our design platform. In this study, a distinction between systems developed
for research and for commercial purposes was done. This classification is important because,
in general, platforms developed for commercial purposes present a clear and elegant interface
that reflects the big effort companies usually make in this respect. In addition, these platforms
make use of several standards in order to provide flexibility and to simplify sharing files
across platforms. However, their big disadvantage is that most of them just allow the creation
of services for one or two modalities such as speech and Dual-Tone Multi-Frequency
(DTMF), but do not provide support for other modalities such as animated agents, Web,
touch screens, remote controls, etc. On the other hand, non-commercial platforms do not
provide many of these characteristics but present more capabilities for integrating different
modalities and languages at the expense of making the design process slower and difficult to
mimic for other systems. In addition, this distinction is also important because if not taken

Speed Up Strategies for the Creation of Multimodal and Multilingual Dialogue Systems

8

into account it would be a difficult task to compare and to extract conclusions from all these
platforms.

The following sub-sections provide a brief description of the main features included in
most of the commercial and research platforms. Since the number of modalities, language
specification formats, and architectures is too high, we have focused in platforms that allow
the creation of VoiceXML-based applications and speech grammars. For further information,
about these and other development tools, environments, and modalities, please check the
Web address mentioned for each one, or refer to [López-Cozar and Araki, 2005] and
[McTear, 2004].

2.1.1 Commercial Platforms

In order to summarize the main efforts done by most of the current commercial
platforms to accelerate the design of multimodal and multilingual dialogue applications, we
can say that they include state-of-the-art modules such as speech recognizers, high quality
speech synthesizers, language and speaker identification capabilities, and several other high-
level tools, that allow the creation of very complex and advanced dialogue services. In
addition, these platforms support the creation of the service using widespread standard
languages and protocols such as VoiceXML, SALT [Wang, 2002], X+V4, J2EE, xHTML,
Voice Browser Call Control XML (CCXML)5, etc, to guarantee the integration between
different vendors and platforms. Besides, these platforms are often supported by advanced
hardware modules, which can be used with minimum programming effort and adapted easily
to the runtime system. These platforms also include a high number of predefined libraries for
typical dialogue states such as requesting card or social security numbers. In addition, they
incorporate assistants for debugging, logging, and simulate the service. Finally, they present a
very friendly graphical user interface that simplifies the development of very complex
dialogues.

Below, we provide an overview of the main features and accelerations included in three
of the most widely known commercial platforms. In this case, we describe the IBM
Websphere, Nuance, and SpeechDraw development platforms. In Appendix B we have
included detailed information regarding other platforms such as the ones offered by Audium,
Avaya, Genesys, Envox, Vocalocity, VoiceObjects, among others.

IBM Webshpere Voice Platform6: This platform is a complete commercial
application for developing, setting up, and debugging VoiceXML and CCXML applications.
The platform requires the installation of several packages in order to design and run the
service, for instance IBM WebSphere Application Server, IBM Rational Application
Developer (RAD), IBM WebSphere Voice Server, and IBM WebSphere Voice Toolkit7.

The IBM Application Server allows the system administration of the WebSphere Voice
Server. The IBM RAD is an integrated development environment (IDE) for designing,
testing, and deploying Web or speech services, with support for backend database
connections, among others. The development of dynamic VoiceXML applications is
accelerated using the J2EE platform and through two basic wizards for creating JSP/Servlets:

4 http://www.voicexml.org/specs/multimodal/x+v/12/
5 http://www.w3.org/TR/ccxml/
6 http://www-01.ibm.com/software/voice/
7 We want to thank IBM for letting us use their platform for evaluation purposes

http://www.voicexml.org/specs/multimodal/x+v/12/�
http://www.w3.org/TR/ccxml/�
http://www-01.ibm.com/software/voice/�

Chapter 2: State-of-the-art

9

one for Database Web pages and another for Java Bean Web Pages. In addition, the IBM
Voice Server provides the middleware to allow the service to be accessed from a telephone,
cell phone, or Web browser. The Voice Server includes software for speech recognition and
Text-To-Speech in several languages, as well as other development tools to support
applications written in VoiceXML. The platform supports the dynamic modification of the
TTS using the SSML (Speech Synthesis Markup Language) specification and Speaker
Verification features.

In addition, the IBM Voice Toolkit includes several tools to build, debug, and deploy
the dialogue flow through an intuitive graphical environment. The Voice Toolkit allows the
creation and testing of grammars, pronunciation dictionaries, and natural language
understanding models (NLU). In addition, the toolkit makes possible to generate reports and
obtain service metrics based on the analysis of the call flow.

In detail, the IBM Voice Toolkit provides the following tools and features:

• The Communication Flow Builder that makes possible to simulate and debug the
service using the graphical environment, or using a SIP-phone and a MRCP server.
The graphical interface allows traditional debugging features such as breakpoints,
step-by-step walkthrough, variable inspection, and modification of any variable on
the fly as the program is debugged.

• The Visual Grammar Builder is a MRCP-based tool that allows the creation and
testing of JSGF, BNF or XML-based grammars and pronunciation lexicons using
the IBM WebSphere Voice Server. This tool can also be used to detect words that
cannot be recognized within the grammar, to convert between grammar formats, or
to generate all the sentences that it is possible to recognize given a grammar file
(similar to the assistant described in section 4.7.1.3, page 120). It is also useful to
test grammar files using text/speech based utterances, providing debugging
information such as semantic interpretation results, n-best matches, and confidence
scores. Finally, it also includes a tool for CCXML edition, validation, formatting,
and preferences management.

• The Prompt Manager tool allows the organization, edition, and recording of audio
files.

• The Voice Trace Analyzer allows the analysis of log files from the Voice Server.

• The toolkit includes tools for the development of Natural Language
Understanding (NLU) models. In this case, this tool supports the creation of
different types of statistical models and grammars in SRGS (Speech Recognition
Grammar Specification) format, the classification of the data used to train the
models, and the possibility of allowing multiple developers to work in parallel with
the same training data. The toolkit allows setting up a DB2 database for the
development of the NLU models. This feature is used to import/export XML-
formatted data into/out-of the database, as well as the possibility of making searches
in the database and navigating through the results, the possibility to reclassify large
training data, and the validation of NLU models.

• Finally, the toolkit includes pre-written and working code, called Reusable
Dialogue Components (RDC), which can be copied, edited, and incorporated into
the VoiceXML file through a configuration wizard that helps in selecting and
customizing these RDC. The use of these components is highly recommended since
they reduce development time and contribute to the learning process. Among the

Speed Up Strategies for the Creation of Multimodal and Multilingual Dialogue Systems

10

RDCs included are spelling, browsable selection list, confirmation, currency, date
info, postal code, telephone number, URL, airports, stocks, time or date range,
billing application, shopping cart shipping information, etc. These libraries include
predefined prompt messages, error-handling actions, suggestions to spell an input or
discard it, SRGS grammars, and predefined help information, which can be used
with/without modifications. Two types of RDC components are allowed:
Subdialogues and Templates. Subdialogues allow the designer to create dialogues
that request a single slot to the final user (e.g. the name of a person), whereas
templates are predefined dialogues where several slots are requested to the user
(e.g. the name, the address, the zip code, etc.).

(a)

(b)

(c)

Figure 2.1. Appearance of some tools provided by the IBM WebSphere Toolkit. (Source:
IBM WebSphere home page)

Chapter 2: State-of-the-art

11

Figure 2.1 shows a) the appearance of the Communication Flow Builder, included in
the Voice Toolkit, which is used to develop the dialogue flow represented as a flowchart
diagram, with nodes, transition and decision points. b) a pop-up window for including
pronunciations using International Phonetic Alphabet (IPA) symbols. c) the built-in
VoiceXML and Call Control Extensible Markup Language (CCXML) editor, which features
a context-sensitive auto-completion, colour coding, drop-down menus, and validation
capabilities, for allowing fine-tuning of the applications.

Nuance Voice Platform8: Compared to other commercial platforms, this is one of the
most complete development environments currently available. In addition to the big number
of features included in the platform, it also includes some of the most advanced speech
recognition, text-to-speech synthesiser, and speaker identification engines available at the
market. The platform provides an off-the-shelf solution to design, deploy, and monitor the
service. The Nuance Voice Platform consists of four main components: Nuance Conversation
Server, Nuance Management Station, Nuance Application Environment, and Nuance CTI
Gateway9.

The Conversation Server enables the caller to interact with the application using a built-
in VoiceXML browser, the Nuance speech recognition, text-to-speech, and verification
engines. These engines run as services and can be started, stopped, and monitored separately.

The Management Station allows the designer to remotely manage, analyze, and tune the
service, as well as to check the status of the servers that run the service, through a centralized
Web-based graphical interface.

The Nuance CTI (Computer Telephony Integration) Gateway provides a Web-based
interface that allows the integration and control of the Nuance platform with third-party CTI
servers, from leading vendors such as Cisco, Avaya, or Genesys. The CTI Gateway includes
different plug-ins to translate API requests into commands supported by the server.

Finally, the Application Environment provides the graphical user interface for the
development and deployment of the voice service. It consists of two applications: Nuance V-
Server and Nuance V-Builder. The former allows the integration with backend databases and
CTI servers, controls the execution of transition rules that allow an application to switch
between dialogue states, and acts as gateway interface with the Management Station in order
to monitor and control the service. On the other hand, the V-Builder is managed and executed
at runtime using the V-Server, and it is used to create the VoiceXML application graphically.
To do so, the V-Builder allows the creation of the application flow using a palette of objects
and specifying their properties. After creating the flow, the V-Builder automatically generates
the underlying VoiceXML code, without requiring the developer to know VoiceXML. This is
also the aim of our assistants. In addition, it includes a complete set of tools for project
management, document edition, grammars and prompts edition, application debugging,
prompt playback, and a large number of ready-to-use grammar libraries to accelerate the
design.

As previously stated, Nuance Inc. is the owner of some of the most advanced
commercial engines for speech recognition, synthesis, language identification, and
verification, the platform takes advantages of the main key features allowed for them, in
order to improve the quality of the service and increasing the user satisfaction in the

8 http://www.nuance.com
9 We want to thank Nuance for letting us use their platform for evaluation purposes

http://www.nuance.com/�

Speed Up Strategies for the Creation of Multimodal and Multilingual Dialogue Systems

12

interaction. Among the most relevant features included by these modules we can mention the
following ones:

• The automatic detection of start and end of speech with echo cancellation to
improve barge-in and recording of messages.

• The recognition of Hot-Words (i.e. word or phrase spotting), which are useful to
improve the barge-in feature because the prompt is not stopped until a successful
recognition occurs (i.e. prompts are not stopped due to noises or sentences with
non-sense).

• The incorporation of Skip-lists, i.e. an array of previous bad recognised
words/sentences, is used to avoid the system to confirm a previous misrecognized
word or sentence with an inadequate format.

• Call-logs allow the creation of customizable reports of the service, including
information about task completion, latency, dialogue status and returning values,
CPU load, speed of the speech recognition, baseline recognition, accuracy, etc.,
which can be used to improve and tune the service.

• Context-files are XML documents that allow an expert to tune the VoiceXML
service without requiring a complex knowledge of the specification. These files are
used to set confidence values, timeouts, n-best properties, etc. specific to each
dialogue state.

• Voice-enrolled grammars allow the creation of a grammar file and pronunciation
dictionary using the ASR engine. This way, the process of adding sentences to the
grammar or words to the vocabulary is accelerated.

The V-Builder also includes more than 100 different pre-built and ready-to-use
grammars, as well as a grammar debugging tool that is useful to determine the grammar
coverage, interpretation results, ambiguity (i.e. with multiple interpretations), detection of
words with unknown pronunciations or misspelling, and the verification that the grammar
does not accept the recognition of unwanted sentences. Finally, V-Builder includes a set of
pre-defined java-classes called SpeechObjects that provide reusable dialogues to accelerate
the design. A typical SpeechObject includes pre-recorded prompts, error management, and
default confirmation handling, as well as some default actions such as playing a prompt,
recognizing speaker input, interpreting and processing the recognition result, and returning a
result. These actions and default properties are configurable by the designer according to the
requirements of the service.

Speechdraw10: It is another interesting IDE that can be used for developing from basic
up to very complex dialogue applications such as “How may I help you”. The responsible of
the platform development claims that it is a zero programming interface, i.e. designers are not
required to be experts on VoiceXML at all. The platform allows, among others, the creation
of mixed-initiative speech applications, the design of speech recognition grammars, the
automatic generation of documentation reports including detailed information about the flow,
prompts, and grammars. The platform automatically checks the application looking for
design errors, and points out where the errors appear and suggests solutions for them. In
addition, the platform provides mechanisms to enable different designer profiles (i.e. flow

10 http://www.speechvillage.com/home/

http://www.speechvillage.com/home/�

Chapter 2: State-of-the-art

13

design, grammar and backend design) to work on the same project, this way the development
is centralized and the mismatch between designer teams is minimized.

On the other hand, the platform allows database emulation simply entering data into
precompiled tables and defining the parameters that must be sent and returned when
communicating with the backend. In this way, the platform avoids access delays and a strong
interdependence between the designer interface and the integration layer when debugging the
application. The platform incorporates a graphical flow editor that consists of two layers:
application logic and error recovery logic. Using the application logic the designer specifies
the dialogue flow with its corresponding states, actions, and transitions. On the other hand, in
the error recovery layer the designer specifies the actions and prompts that control the system
behaviour against the different kind of errors that could appear when interacting with the user
or providing the service. An important acceleration included in this assistant is that the error
recovery is automatically drawn using pre-defined rules specified by the designer. Another
contribution of the platform is the use of sub-diagramming in order to reduce and keep
readable the dialogue flow view readable when developing very complex services.

Finally, the platform incorporates an interesting acceleration for the design of prompts
and grammars. In this case, the platform uses a pane that shows all the prompts and pre-
recording messages reflecting the call flow structure. Through this pane, the designer can edit
and visualize the prompts without wasting time going through the different states and actions
of the dialogue. In addition, the pane also provides access to syntax checking, grammar and
pronunciation development, debugging and grammar compilation, parsing of input sentences,
and the visualization of keys and values of semantic tags.

2.1.1.1 Web-based development tools and portals
In addition to the previously described platforms, currently there are different Web

portals that provide similar functionalities as the ones offered by the PC-based interfaces,
allowing in addition access to different kinds of resources, documentation, and development
tools. According to [Beasley et al, 2001], these portals present several advantages over the
PC-based simulator environments provided by most of the toolkits described in the previous
section. For instance, Web-based environments are comprehensive and relatively easy to use,
and allow starting the development of the service inexpensively without setting up
complicated platforms or complex simulated VoiceXML networks. Another advantage of
Web portals is that they allow developers to deploy the VoiceXML code using a Web server
and accessing the service through a voice service provider (VSP). This way, the service can
be tested without requiring any investment on proprietary hardware, and using the same
interface as the real users, allowing the designer to detect network latency and other interface
issues that are not possible to detect when using simulated environments. Finally, most of the
Web-based environments are supported by leading companies that allow these portals to offer
sophisticated and state-of-the-art modules such as speech synthesizers, recognizers, speaker
or language identification modules, etc., which can be used to improve the quality of the
service without requiring companies to buy them. The main disadvantages are that these
portals restrict the control over the platform and the creation of dynamic VoiceXML
applications, reduce the possibility of obtaining knowledge about how the VoiceXML
interpreter and gateway work, and make difficult the transition and sharing of information
between the Web-based applications and PC-based applications.

In general, designers can use the Web-based platform after applying for a developer
account, which is most of the times free or inexpensive, and can be done through the Web
site. Additional services or support for more complex applications will require a professional

Speed Up Strategies for the Creation of Multimodal and Multilingual Dialogue Systems

14

or enterprise account, which can be obtained after paying an additional fee that, in any case,
is low in comparison to the price of the licenses for using PC-based platforms. In the first
versions of these systems, after the service is created and deployed, it could be accessed
through conventional Public Switched Telephone Network (PSTN) lines using a toll-free
number and providing an ID of the service. Unfortunately, this kind of access limited the
possibility of providing advanced multimedia services and turned out to be frustrating for
developers living in other countries (since international calls are not free). In order to reduce
these problems, most Web sites offer now the possibility of accessing the service using a SIP
(Session Initiation Protocol) phone number and a VoIP (Voice over IP) phone. Currently
there are many hard (e.g. 3Com, Avaya, Siemens, etc 11.) and soft phones (e.g. sipXphone,
SightSpeed, SJPhone, etc 12.), which can be used to make calls using an Internet connection.
However, the most common and cheapest solution is to use soft phones since they are simple
computer programs that do not require dedicated hardware and are easily downloadable from
many internet sites. An advantage of using these soft phones is that they add new features to
standard telephony like video and wideband audio, providing new services and allowing
interactions with the final users using other modalities. In this thesis, when it was required,
we used X-Lite 13 for testing the runtime platform. Appendix B includes detailed information
about the most important Web portals (e.g., Bevocal Café, TellMe Studio, Voxeo Evolution,
VoiceGenie) and their main features. For further information, please refer to the
corresponding Web page or read [López-Cozar and Araki, 2005] [Beasley et al, 2001].

2.1.1.2 Grammar development
One of the most important aspects of a well-designed and user-friendly speech-enabled

service is the capability of the dialogue manager of being able to understand and correctly
parse the unlimited range of users’ utterances for a given system prompt or request. In order
to do this, the dialogue manager uses static or dynamic speech grammars which are
responsible of modelling the set of possible and valid recognized sentences, as well as the
semantic interpretation (i.e. the values to be returned by the grammars) of the user responses.
It is important to highlight that an incomplete or bad-designed speech grammar will make the
system fails in the process of understanding the user and completing the dialogue goal.

Given the complexity of developing speech grammars, the most of the above-
mentioned commercial platforms include assistants for debugging and testing grammars, as
well as built-in grammars for common situations (e.g. for requesting card numbers, phone
numbers, dates, currencies, airports, cities, social security numbers, etc.). Below we provide
some examples of the more sophisticated wizards or specialized development tools for
creating speech grammars.

Grammar Studio 14: This tool provides a complete GUI for creating and debugging
complex speech grammars through a clear and easy to use workspace layout, even for
designers with little knowledge on speech grammars and format languages. The toolkit uses
grammar icons and connecting lines in order to create a visual representation of the grammar.
The graphical representation is automatically parsed in order to create the final definition of
the grammar file in SRGS format. Besides, the toolkit includes the possibility of importing or
exporting partial or complete grammar files. Finally, the designer can also write directly the

11 http://www.voip-info.org/wiki-VOIP+Phones
12 http://en.wikipedia.org/wiki/List_of_SIP_software
13 http://www.counterpath.com/
14 http://www.voicewebsolutions.net/grammar_speech_tools.html

http://www.voip-info.org/wiki-VOIP+Phones�
http://en.wikipedia.org/wiki/List_of_SIP_software�
http://www.counterpath.com/�
http://www.voicewebsolutions.net/grammar_speech_tools.html�

Chapter 2: State-of-the-art

15

grammar in SRGS format and the system will automatically converted it into its graphical
representation. The platform accelerates the process of writing the grammars using auto-
complete capabilities and auto-tagging in order to avoid typing errors. The main window can
be split into two main sections, one for the graphical definition of the grammar, and another
one for the written representation of the grammar defined in the graphical view.

Microsoft Speech Grammar Editor (Visual Studio) 15: This tool is included in the
freeware Microsoft Speech Application SDK, which can be downloaded from the Microsoft
Web site. The tool uses a basic graphical interface (see Figure 2.2) with drag-and-drop
capabilities, allowing the creation of lists of words, references to other rules or grammar
libraries, groups of words, creation of semantic tags, wildcard rules, etc. The toolkit also
features a grammar checker and a sentence tester for debugging the grammar.

Semantic Grammar Studio (SGStudio): Reported by [Wang and Acero, 2006], they
present an innovative Microsoft tool that allows the rapid creation of grammars through a
supervised algorithm with examples provided by the designer. Besides, the tool allows the
definition of rules that can be applied for different situations accelerating, in this way, the
design and taking advantage of previous knowledge (i.e. previously generated grammars).

Visual JSGF 16: This tool is included in the Matrubhasha platform that provides a text-
to-speech and speech recognition system for Indian languages. The main features included in
this tool are a point-and-click interface, automatic grammar and sentence generation, reusable
templates, and an assistant for the creation of pronunciation dictionaries for the speech
recognition and TTS engines. The toolkit allows the designer to define and save groups of
words, i.e. optional words in a grammar rule, and import them later as templates in other
grammars. Finally, the designer uses the graphical interface for creating the grammar rules
through a hybrid combination of words and group of words, and setting the respective
connection between them.

Figure 2.2. Example of creation of a Speech Grammar using the Microsoft Speech
Application SDK

15 http://msdn.microsoft.com/
16 http://www.ncb.ernet.in/matrubhasha/visualjsgf.shtml

http://msdn.microsoft.com/�
http://www.ncb.ernet.in/matrubhasha/visualjsgf.shtml�

Speed Up Strategies for the Creation of Multimodal and Multilingual Dialogue Systems

16

2.1.2 Academic and Research Platforms

In contrast to most of the commercial platforms, academic and research platforms allow
designers to create more complex dialogue interactions providing features not included by
any standard description language. They also allow the creation of more complex multimodal
dialogues, some are freely available as open source, and their functionalities can be extended
using proprietary or third party modules.

The following are noteworthy examples of tools developed in academic environments:

(a)

(b)

Figure 2.3.CSLU’s RAD Toolkit: a) Example of the main canvas, available objects, and
dialogue states definition. b) Example of possibilities using the included animated agent:

Baldi. (Source: CSLU Toolkit home page)

Chapter 2: State-of-the-art

17

CSLU’s RAD Toolkit 17: Created at the Center of Spoken Language Understanding
(CSLU) at Oregon Graduate Institute [McTear, 1999][Cole, 1999], it allows the development
of multimodal system initiative dialogues (combining voice, DTMF, interactive images,
graphs, text, and animated agents), using a representation based on state-transition networks
[McTear, 1998] that describe the different functions and actions in the dialogue. The states
and transitions of the dialogue flow are created using a toolbar with objects from where they
can be dragged and dropped into the canvas and connected with arrows to other objects. The
toolkit reduces the size of the information displayed in the canvas using sub-dialogues, which
group repetitive or common actions.

In addition, the toolkit includes an embedded speech recognition system that can be
configured in different ways; for instance, it is possible to define task-dependent or
independent models for recognizing alphanumeric or digit strings, to use continuous or
isolated models, or to use a recognizer based on Hidden Markov Models (HMMs) or on
Artificial Neural Networks (ANNs). At the same time, the toolkit incorporates a free Text-
To-Speech (TTS) engine based on Festival 18, and a module called Baldi Sync that it is used
to align speech files or synthesised sentences with the face/lips movements of the animated
agent. Another tool, called CU Animate [Ma et al, 2002], allows selecting the animated agent
to use in the application, and configure facial expressions such as blink frequency, head
movements, colours, emotions, eyebrows, etc. of the animated agent. The tool controls and
renders the animated agents in real-time. Finally, the toolkit includes an interface to run
Tcl/Tk scripts that can be used to perform better dialogue analysis or grammar development,
as well as to allow a higher interaction of the platform with backend databases and internet
resources, among others. Figure 2.3 provides an example of the toolkit environment and
capabilities of the animated agent.

Figure 2.4. Detailed graphical presentations of a dialogue model using DialogDesigner
(Source: DialogDesigner Web page)

17 http://cslu.cse.ogi.edu/toolkit/
18 http://www.cstr.ed.ac.uk/projects/festival/

http://cslu.cse.ogi.edu/toolkit/�
http://www.cstr.ed.ac.uk/projects/festival/�

Speed Up Strategies for the Creation of Multimodal and Multilingual Dialogue Systems

18

DialogDesigner 19: [Dybkjær and Dybkjær, 2005] present a tool for designing and
evaluating dialogue models. The platform allows the definition of the dialogue flow through a
single window where the designer can specify states, groups of states, transitions between
states, conditions, prompts and grammars (see Figure 2.4). The platform also includes
functionalities for running a Wizard of Oz simulation through a text-based interface, the
possibility of providing detailed information about the dialogue flow using the graphical view
options, and the possibility of converting the flow into a set of linked HTML pages that the
designer can also use to debug the service.

DialogStudio: Described in detail in [Jung et al, 2008], it is a recent platform for
developing data-driven spoken dialogue systems that integrates several tools that cover the
different steps of a dialogue design, i.e. from preparing data to testing the service. One of the
main objectives of the platform is to provide a complete set of functionalities for preparing
the input files to be used by the speech recognizer, language understanding, and dialogue
manager modules. The platform also provides an annotation environment for tagging
semantic and knowledge information, as well as dialogue examples; in this case, the platform
uses a meta-model language that allows the quick definition and adaptation of semantic and
dialogue structures to domain specific knowledge. Other included accelerations are the
possibility of creating and adding new words into the ASR’s dictionary and language models,
and the generation of new sentences from other domains with similar semantic structure.
Finally, the platform provides an average time reduction of 30% when compared with other
dialogue platforms on the creation and annotation of three different domains, i.e. an
electronic program guide, an immigration simulation, and weather information domains.

EVITA-RAD: Reported by [Chen, 2004], it is a Web interface tool for building
VoiceXML applications using a set of predefined system modules. These modules
correspond to dynamic Web pages consisting of forms, checkboxes, or drop down menus that
the designers use to define different actions such as dialogue states (including mixed-
initiative capabilities), database queries and updates, variable confirmations, and call
transfers. Besides, the tool also includes other assistants for developing grammars,
vocabularies, prompts, and other VoiceXML actions.

GULAN: Reported by [Gustafson et al, 1998], it is a research platform used to build
multimodal dialogue services using speech and interactive maps. The platform has been
successfully used for creating a yellow pages system to make searches for different services
in Stockholm. The dialogue flow is defined using a tree representation whose nodes model
the structure, focus, and actions that are executed inside each dialogue state.

SpeechBuilder: Described in [Glass and Weinstein, 2001], this platform has been
developed at the Spoken Language Systems Group from the Massachusetts Institute of
Technology (MIT). In this application, the design is made through a Web interface that
allows, using an action definition language based on examples, the specification of the
relevant semantic concepts and actions that are allowed in the application. Then, the
generated dialogue model is executed using available modules from the Galaxy architecture
[Polifroni et al, 2000]. The communication and parameter passing between the Web site and
the runtime platform is achieved using the HTTP protocol and a predefined CGI script
(similar to the one we have implemented in our runtime platform).

19 http://spokendialogue.dk/DialogDesigner/DialogDesigner.html

http://spokendialogue.dk/DialogDesigner/DialogDesigner.html�

Chapter 2: State-of-the-art

19

Trindikit 20: Initially described in [Larsson and Traum, 2000], it was developed and
improved during the projects TRINDI 21, SIRIDUS 22, and TALK 23. This toolkit allows the
creation and evaluation of the dialogue manager and information states. Designers can create
a complete dialogue application through the definition of the information states (i.e. dialogue
history), dialogue actions, update rules, dialogue grammars, inference engines, and planners.
The toolkit proposes a general system architecture and allows experimenting with different
algorithms, rules, and implementations of information states for the dialogue manager; it also
includes a GUI for inspecting information states, speech recognition and synthesis modules, a
debugger module, and ready-made module interfaces to databases, input/output devices,
interpretation, generation, etc.

VoiceComposer: described in detail in [Li and Lin, 2006], it is a development tool that
allows the visual programming of the dialogue flow. The platform architecture consists of
five main modules: a dialogue flow editor, a dialogue component builder, a database
integrator, a script generator, and a service simulator. These modules let the designer build
the dialogue flow using built-in dialogue components (i.e. predefined templates for different
kind of VoiceXML functionalities and actions), simulate the application, and the
specification and evaluation of SQL commands to be used to communicate with the backend
database. In addition, the dialogue component builder allows the designer to edit or create
new dialogue components allowing the possibility of creating global variables and events, to
execute a sequence of form or menu elements, or to create returning dialogues. The paper
reports that the toolkit has been used in a research project for converting part of a Web site
for life education into a voice-enabled Web service.

2.1.3 Research Platforms that Provide an Assisted Dialogue Design

As it has been described, surprisingly most of the above-mentioned commercial and
academic platforms do not include any kind of acceleration based on the contents and
structure of the backend database, which can provide important information to accelerate the
design when developing the dialogue service. However, in the literature we can find some
examples of how this information is used to accelerate the design of the dialogue flow and
other aspects of the design. This section describes the most relevant systems and strategies
included in them. It is important to mention that most of these strategies are based on using
predefined templates for different kind of dialogues and situations, or on using the contents of
the database.

In [Denecke, 2002], a complete three-layer architecture for rapid prototyping of
dialogue applications is presented. In the first layer, language and domain-independent
algorithms are provided to describe the dialogue objectives, discourse history, and the
semantic representation of the speech recognizer output. In the second layer, the interaction
mechanism between user and system is described (e.g., variables used by the recognizer,
database access variables and methods, dialogue states, etc.) Finally, the third layer contains
the dialogue controller that uses the information from the other two layers and interacts with
the final user. This system is similar to our proposal in some aspects, as the handling of
concepts to facilitate multilingual interaction, the use of special variables related to the

20 http://www.ling.gu.se/projekt/trindi/trindikit/
21 http://www.ling.gu.se/projekt/trindi/
22 http://www.ling.gu.se/projekt/siridus/
23 http://www.talk-project.org/

http://www.ling.gu.se/projekt/trindi/trindikit/�
http://www.ling.gu.se/projekt/trindi/�
http://www.ling.gu.se/projekt/siridus/�
http://www.talk-project.org/�

Speed Up Strategies for the Creation of Multimodal and Multilingual Dialogue Systems

20

system and dialogue status, and the use of automatic preconfigured templates for each
dialogue state. Nevertheless, as the author admits, the built-in templates fail when not all the
states of the dialogue can be covered. In our system, we have tried to avoid this problem by
using more flexible and general templates, although less automatic.

Another platform that follows a very similar approach to the platform developed in this
thesis is the Agenda system (now called RavenClaw) from Carnegie Mellon University
(CMU) described in [Rudnicky and Xu, 1999] and [Bohus and Rudnicky, 2003]. For
instance, both platforms are similar in that the designer can create the service using a
hierarchical representation of the task and its subcomponents, facilitating maintenance and
scalability, and that each state is described using a set of forms with information regarding its
restrictions and optional slots.

In [Polifroni et al, 2003] a rapid development environment for creating spoken dialogue
applications using online content is described. The development process is started extracting
knowledge from various Web applications and composing a dynamic database from it. Then,
the dialogue flow is determined at runtime depending on the contents of such database. In this
platform, they propose a methodology for creating automatic clusters that group and organize
numeric data into symbolic data. For instance, the symbolic concept of
cheap/medium/expensive in the domain of a hotel reservation is automatically created
according to the information in the database (i.e. hotel rates vary depending on the city).
Then, at runtime, the system summarizes the partial retrieved information and creates the
prompts to present to the users, determining also the order in which they appear, based on the
most useful set of attributes to narrow down the current data subset. Although this algorithm
is very interesting, it is more limited than ours since we also use the database structure, not
only its contents, to extract knowledge for the design process. Because of this, the design is
more domain-independent, as it is more feasible to find data structures that are similar
between several services and, therefore, can be applied in several applications. Besides, there
are databases whose contents cannot be easily used for research purposes for security reasons
as in banking or medical databases where confidential information exists. Another important
difference is that the speech dialogue applications generated by our platform will be
implemented in VoiceXML, which allows the generated dialogues to be executed with any
VoiceXML interpreter. However, the idea of using the database content when it is available
was also explored in this thesis.

In [Pargellis et al, 2004] a complete platform to build voice-enabled applications is
described. The dialogue structure can be modified using a set of templates adapted to the final
user of the system, as well as several resources and service features. As in the proposal of this
thesis, the platform automates the generation of the final script in VoiceXML, the grammars
and prompts, and the application flow; nevertheless, their proposal differs from ours in that
the automation efforts, in a similar way as in [Polifroni et al, 2003], are more focused on the
dynamic contents of the database than on its structure, so it could be more domain dependent.

[Tsai, 2006] presents a multimodal dialogue system that allows users to access the final
service using a voice or visual interface. In this way, the users can use traditional telephony
devices (e.g. phones or cell phones) and VoIP-based phones, and at the same time use any
Web browser to interact with the application. The paper describes a proprietary mark-up
language that is used to allow the interaction between the VoIP and the Web platform, as well
as detailed information about the modules that generate and interpret the dialogue scripts, and
the runtime platform used to access the service through the different devices and modalities.
Finally, the paper describes some demo services created using the platform, as well as

Chapter 2: State-of-the-art

21

evaluation results of the speech recognizer considering the user level (i.e. novice and expert)
and the number of attempts required to be successfully recognized.

[Polifroni and Walker, 2006] describes an interesting technique that allows the dynamic
creation of system prompts based on partial retrieved database results and the automatic
selection of the most relevant information to request to the user in order to restrict future
retrieved results. Besides, they propose to use data mining techniques in order to dynamically
create system messages with summarized information. The technique is a two-steps
procedure: the first step consists of calculating the entropy, or information gain, of the data in
focus at each turn in the dialogue (i.e. retrieved database results using partial information
provided by the user according to the current dialogue history). The second step consists on
using a decision tree induction for inferring association rules among the database attributes
using the entropy calculated in the previous step. From the inferred association rules, the
system selects an appropriate set of them in order to create the intentional summary messages
and data-specific queries for the current dialogue state. A preliminary evaluation showed that
users prefer this system when they are unfamiliar with the knowledge contained in the
database, but if they are familiar with the data then they prefer direct dialogues (i.e.
traditional system’s initiative dialogue systems).

In [Chung, 2004], the database contents is used together with a simulation system in
order to generate thousands of unique dialogues that can be used to train the speech
recognizer and understanding module, and to diagnose the system behaviour against
problematic user’s interactions or unimaginable user’s answers, etc. In [Wang and Acero,
2006] the database contents are used to accelerate the creation of grammars for the speech
recognition and spoken language understanding modules. In this case, the system uses the
database to generate a large number of artificial sentences that are integrated into semantic
frames in order to create customized grammars for different scenarios.

[Feng et al, 2003] propose a very different approach. In this case, they do not extract
information from a backend database but they apply data mining techniques to the contents of
corporate websites for automatically creating spoken and text-based dialogue applications for
custom care. The process is carried out through a Website analyzer that exploits the contents
and structure of the site in order to generate structured and semi-structured task data. Then,
the generated data is classified according to some predefined information units (e.g. menu,
question-answer, topic-explanation, etc.). With this information, the dialogue manager, at
runtime system, will identify the focus or expectation of the user’s question and will provide
a concise answer. Although the dialogue flow is not defined using any GUI application, it is
interesting to observe that important knowledge for the different modules of a dialogue
system can also be extracted from well-designed contents.

It is important to highlight the growing interest in using XML-based languages in order
to exchange input/output data between different modules and to allow the specification of
multimodal dialogue systems [Flippo et al, 2003][Katsurada et al, 2002] and [Araki and
Tachibana, 2006]. Examples of this kind of languages are VoiceXML, SALT, XISL
[Katsurada et al, 2003], or X+V, etc., which offer portability and flexibility, they also allow
the quick definition of the dialogue flow, interaction between modalities, management of
system and user errors for complete voice-enabled services [Komatani et al, 2003][Bennett et
al, 2002]. Considering also that the selected description language can contribute to make
independent the generated service from the execution platform, and the big number of tools
for parsing and checking tag based languages, we decided to create our own language (called
GDialogXML) to allow the internal communication between platform assistants, and to use
the standard VoiceXML and xHTML as output scripts for the runtime system.

Speed Up Strategies for the Creation of Multimodal and Multilingual Dialogue Systems

22

In relation to multimodal systems, we should especially mention the work in [Johnston
et al, 2002], where a multimodal architecture for a dialogue system based on finite states is
described. This architecture allows synchronous multimodal input/output data allowing users
to use speech and/or gestures/images with a pen on a PDA. The authors make emphasis on
the methodology used to guarantee the multimodal interaction, the features provided for each
modality, and the architecture that supports the multimodality. In a recent improvement over
this previous work, [Johnston et al, 2007] extend the proposed architecture to a new domain,
i.e. multimodal access to contents in the home environment, including new interesting
modalities such as handwriting, remote control, and dynamic combination of these modalities
and speech. Even though our present system does not provide this kind of interaction right
now, future work will be oriented towards the creation of a similar mechanism using a
multimodal specification language like X+V, SALT [Wang, 2002], XISL [Katsurada et al,
2003], or MILM [Araki and Tachibana, 2006].

Another interesting application is presented in [López-Cozar et al, 2005]. In this case,
they describe a multimodal dialogue system, based on the X+V language specification, that
helps professors and students in some common academic activities such as obtaining
information about available books for a specific subject at the library or turning-on/off lights
at professor’s office. The system also uses user and ubiquitous information for adapting its
behaviour and capabilities. Besides, the application handles explicit confirmation and mixed-
initiative interaction.

[Katsurada et al, 2002] describe a modality-independent system architecture. The
architecture is divided into three main modules: the document server module, the dialogue
manager, and the front-end module. The first one handles the scripts of the service, the
second one controls the dialogue flow, and the third one the user’s input and output. An
interesting contribution of this paper is that the applications are written in a XML-based
modality-independent language called XISL. This language provides all the required
information for controlling different user inputs and system actions, output messages to the
user, arithmetic operations, flow control, etc. Finally, the language also includes tags for
allowing a basic synchronization of the different modalities.

We also need to mention the SmartKom 24 project. Described in detail in [Wahlster
(Ed.), 2006], the main result of this project was the creation of a robust multimodal dialogue
system that supported symmetric multimodality (i.e. the system allows all input modes, e.g.
gesture, speech, and facial expressions, to be also available for output) and mixed-initiative
dialogues. The platform includes an embodied anthropomorphic conversational agent called
Smartakus, which features coordinated speech, facial expression, and emotional gestures
allowing face-to-face dialogue interactions between the system and final users. One of the
main research problems tackled in this project was the integration and mutual disambiguation
of all the symmetrical modes, including also the resolution of back-channelling, cross-modal
references, multimodal anaphora resolution, turn-taking, meta-communicative interaction,
and other discourse phenomena such as ellipsis and deixis resolution/generation. In addition,
the dialogue manager exploits predefined models of the user, task, context, domain, and
modalities to adapt the service and provide better interactions. The SmartKom architecture
also supports multiple parallel recognizers such as emotional prosody, boundary prosody and
speech recognition, which can help, for instance, to detect user’s emotions or to check if the
information provided by the system fulfils the expectations of the user or not.

24 http://www.smartkom.org/

http://www.smartkom.org/�

Chapter 2: State-of-the-art

23

Among the main contributions of the SmartKom project was the complete specification
of a XML-based language called M3L (Multimodal Markup Language) designed for the
exchange and representation of the multimodal content. The big advantage of this
specification is that it covers all data interfaces, avoiding using several different languages
formats for each component of the platform. For instance, the word hypothesis graph, gesture
hypothesis graph, media fusion results, hypothesis about facial expressions, information
about segmentation, synchronization, confidences, etc., were all encoded using M3L.
Besides, the specification was decomposed into about 40 different schemas in order to
provide a thematic organization of the language that makes it manageable and to allow
verifications during information exchange. Finally, this language also allows the definition of
the appearance and contents of the information that has to be provided to the final user
according to different parameters such as user preferences, current scenario, language, and
output device. Then a set of XSLT stylesheets transform the M3L files into the format
required specifically by each output device. In some ways, this language can be compared to
the GDialogXML (see section 3.1, page 58) language used by our platform, although M3L
goes beyond in that it is extended to the runtime system, and not only to the design of the
service.

Another contribution of this project was the proposal of a distributed run-time
architecture called MULTIPLATFORM (Multiple Language Target Integration Platform for
Modules). This architecture differs from the widely used Galaxy Communicator Architecture
[Polifroni et al, 2000] in that there is not a central hub in order to avoid any information
bottleneck and to allow more complex interactions between servers. Although this new
architecture supports more complicated multimodal dialogue architectures, we decided to use
a similar architecture as Galaxy because it is simple, the complexity of our system is lower,
and because the messages between our modules were less complicated.

Finally, regarding tools that can be used to debug and evaluate the application off-line,
we should mention the SUEDE platform [Klemmer et al, 2000]. This application offers a
graphical interface to design, test, and analyze a dialogue system using the Wizard of Oz
(WOZ) technique. The objective is to provide the designer a controlled environment for
running an electronic WOZ. SUEDE allows designers to test system prompts and user
responses, simulate speech recognition errors, timeouts, barge-in prompts, analyze logs,
review responses across participants, etc. This way, the toolkit allows an easy evaluation and
improvement of a dialogue system without requiring a complete runtime system.

[Dybkjær and Dybkjær, 2006] also describe a debugging tool for the DialogDesigner
environment (see section 2.1.2, page 16). In this case, the debugger allows testing the
dialogue model by selecting transitions and listening to the activated prompts. The simulation
is logged which allows its posterior analysis. Most commercial applications and Web portals
provide similar debugging tools. In our case, we have tried to minimize some of these design
problems using automatic and configurable templates for the treatment of common system
errors.

[Ito et al, 2006] present an interesting user simulator tool based on VoiceXML files that
can be used to evaluate the behaviour of the designed service. The application uses
synthesized voice in order to evaluate the dialogue flow without requiring real users.
Although this system is able to predict human-machine interactions, the program has to be
improved to accept out-of-task behaviours or out-of-vocabulary utterances. In our current
system we have not implemented this kind of assistant, but because we generate VoiceXML
files we could take advantage of this program or similar ones provided by third parties.

Speed Up Strategies for the Creation of Multimodal and Multilingual Dialogue Systems

24

2.1.4 Weaknesses of Commercial and Academic Platforms

In spite of all the features included in most commercial platforms, a large drawback
they present is that the runtime platform depends on the underlying technology (speech
recognizer, text to speech systems, dialogue managers, etc.) therefore the behaviour of the
service may vary across different platforms. In addition, it is difficult to integrate proprietary
modules, most of the assistants do not take advantage of the contents of the database or data
model structure, and they do not offer any proposal for completing or defining the service or
common modalities issues. Finally, they may present difficulties in integrating new
modalities, creating the service in multiple languages, adapting the service according to
predefined user profiles, or for obtaining the same functionalities using the same platform but
on different operative systems.

Regarding academic and research platforms, although most of them are easy to use,
they may show serious limitations such as a low portability level as they are tied to specific
running platforms being difficult to integrate them with other systems and/or architectures.
Besides, they require the designer to know several programming languages and non-standard
formats reducing this way their usability. In addition, they may present limitations when
trying to implement dialogue strategies that take into account the user level and different
modalities, or when simultaneously building the application for several languages.

Despite all the advantages and accelerations included in the commercial and academic
platforms, most of them do not provide any kind of acceleration based on using data mining
techniques applied to the contents of the task database and using information from the data
model structure. In this thesis, we have solved this limitation incorporating successfully
heuristic information into the different assistants and allowing these assistants to collaborate
between each other in several ways, as they collect the information already provided in the
first stages of the design to improve and accelerate the design in the last stages. This way, the
platform assistants classify which fields of the database could be relevant for the design,
generate different kinds of automatic proposals according to the design step, reduce the
information displayed to the designer, and accelerate different procedures required to define
the service.

In addition, during the design of our platform we also provided solutions to other
limitations of the commercial and academic platforms mentioned above. For instance, the
platform was structured into three layers allowing a separation between the general and high-
level definition of the dialogue flow and the specific details imposed by each modality,
language, and user profile. Besides, we also made a big effort for making independent the
platform from the operating system and the runtime platform by using several standard
languages such as VoiceXML, JSGF, SSML, xHTML, etc. In addition, we have incorporated
several tools and assistants that provide access to new kind of user interactions such as
animated agents, automatic machine translation, and language identification.

2.2 Language Modelling
Nowadays, language modelling is a general term that refers to the attempt of capturing

the properties of a given language as accurate as possible in order to improve the
performance of a wide range of natural language processing applications such as speech
recognition, information retrieval, machine translation, language identification, Part-Of-
Speech tagging, text-to-speech, parsing, spelling correction, document classification,

Chapter 2: State-of-the-art

25

handwritten recognition, etc. Depending on the application a different definition and purpose
is given to the language models. For instance, in speech recognition a language model (LM)
is mainly used to predict the next word in a speech sequence or to define the set of allowed
sentences that a user can use when communicating with the system in order to be successfully
recognized. In machine translation, LMs are used for choosing among different candidate
hypothesis or to generate a score that measures the quality of a translated sentence.

In general, there are two different kind of grammars widely used in most spoken
dialogue applications: a) stochastic grammars, and b) Context Free Grammars (CFG). The
former is appropriate for recognizing free-style speech and in applications where it is
important to avoid writing complex grammar rules. Besides, it is the preferred one for
research purposes. On the other hand, the latter is useful for applications with a restricted
phraseology such in most automatic dialogue services. Besides, this kind of grammars
provides good results when there is not enough training data to obtain reliable statistical-
based models.

In this thesis, three different applications and types of language models were used. The
first one is used in one of the assistants included in the development platform, allowing both
the creation of CFG grammars in JSGF format and word-based language models to be used
by the runtime platform to recognize user utterances and return semantic information to the
dialogue manager. The second one was used for language identification, allowing the correct
identification of the language uttered by a user. In this case, the proposed statistical phone-
based language model provides local and long-span information that is integrated into the
front-end feature vector used for a Gaussian Mixture Model classifier. The third one is a
statistical word-based language model that has been adapted and used to improve the quality
of a machine translation system that translates previously defined system prompts into a sign
language representation in order to provide speech-based dialogue services to deaf people.

In this section, stochastic and finite-state grammar approaches will be studied in detail,
explaining, in each case, its advantages and disadvantages, and the most common strategies
to improve their performance. However, taking into account that the most important
contributions of this thesis have been obtained using statistical language models for the LID
and machine translation systems, in this section we will emphasize this kind of grammars,
describing in detail the main solutions to the problem of insufficient training data and the
management of long-span information.

2.2.1 Statistical Language Models

As mentioned above, statistical-based language models (SLM) are the most widely
used kind of grammars in most natural language applications. In simple terms, a SLM is a
probability distribution P(s) over all possible strings S (or documents, spoken utterances,
phone sequences, or any other linguistic unit, etc.) that tries to reflect how frequently a string
s occurs as a sentence. In general, it is common to decompose the probability distribution into
a product of conditional probabilities using Eq. 2.1. Here, wi is the ith word in the sentence,
and hi is the history.

∏
=

==
n

i
iin hwPwwPSP

1
1)|()...()(

Eq. 2.1

Speed Up Strategies for the Creation of Multimodal and Multilingual Dialogue Systems

26

Several SLM techniques have been proposed [Rosenfeld, 2000], but the most widely
used are the n-gram models. In this kind of models, the next word is predicted using only the
n-1 more recent words in the history (i.e. Markov assumption) using Eq. 2.2.

)...|()|(11 −+−≈ iniiii wwwPhwP

Eq. 2.2

N-gram conditional probabilities are trained using Maximum Likelihood Estimations
(MLE), i.e. the ratio between the observed frequency of occurrence for a given n-gram
divided by the observed frequency of occurrence of the n-1 gram in the training corpus using
Eq. 2.3.

),...,(

),,...,(
)...|(

11

11
11

−+−

−+−
−+− =

ini

iini
inii wwCount

wwwCount
wwwP

Eq. 2.3

The great advantage of n-gram based LMs lays in that they are easy to train, provide
good results very quickly, they are robust (when there is enough text data for training), they
are widely accepted, and there is a big number of software and algorithms to train and test
them [Rosenfeld, 2000][Goodman, 2001][Bellegarda, 2004]. However, they present three
main disadvantages that reduce its predicting and adaptability capabilities:

1. In theory, it is possible, and desirable, to use a long n-gram order model since they
will use a larger context that increases the prediction power. However, in practice, the
value of the order is a trade off between the generalization and stability of the
estimations of the model. In addition, the size of the training corpus is an important
factor to choose the order of the model. The biggest the corpus the highest the order.
Unfortunately, even with a big corpus most of the n-grams will occur just once or
twice or will not occur at all. In these cases, the ML estimation will result in that those
n-grams will obtain a high, but poorly estimated, probability or, even worse, a zero
probability when they do not occur at all. In order to avoid these problems, several
smoothing and interpolation techniques have been proposed in the literature. Some of
these solutions will be presented in section 2.2.1.1.

2. As stated above, the n-gram based models assume some kind of independence among
different portions of the same document predicting the next word based only on a
reduced context given by the n-1 more recent words in the history. This simplification
is useful to keep the model trainable; however, it does not provide a long span neither
semantic information. The direct consequence is that the model does not take full
advantage of the dynamic characteristics of the domain or from the dialogue history.
Moreover, since the n-grams just model the local information of the sentences, it is
possible that the model assigns a high probability to sentences that do not have a
correct syntax. In order to solve these problems, it is common to interpolate word n-
gram models with dynamic models (e.g. cache, trigger pairs) or with topic specific
models. Besides, in order to provide syntactic and semantic information the preferred
solutions is to use other kind of models as POS (Part-Of-Speech), class based n-
grams, hybrid grammars such probabilistic Context Free Grammars (see section 2.2.2,
page 35), or to rescore n-best lists results with semantic parsers. Sections 2.2.1.2 and
2.2.1.3 (pages 30 and 31) will provide more information about solutions for this
problem.

Chapter 2: State-of-the-art

27

3. The remarked dependency of n-gram based models to the domain of the training data.
For instance, [Rosenfeld, 2000] and [Rosenfeld, 1996] report that a model trained
with 2 million words from the same domain as the testing data is better, in terms of
perplexity and Word Error Rate (WER), than another model trained with 140 million
words from a different domain. Although this problem is well known, most of the
times it is not possible to have such kind of large in-domain training data, especially
for new domains or minority languages. A proposed solution is to generate
automatically new sentences using templates learnt or defined from the in-domain
data that capture the phraseology used in the available training data. Then the new
sentences are filtered and included in the corpus in order to re-estimate the model.
Another possibility is to adapt the poorly estimated model with more reliable models
trained with texts from other domains or retrieving online sentences closer to the in-
domain data. In sections 2.2.1.4 and 2.2.1.5 (pages 33 and 34), we will provide more
details about the proposed solutions for this problem.

Finally, in order to evaluate the performance of n-gram based models several metrics
have been proposed [Chen et al, 1998]. However, the preferred one is the perplexity. In the
context of language modelling, the perplexity gives a rough idea of the average number of
different possible words that can follow a given context and how much information is
provided by the grammar. This metric is interesting since it can be used to compare different
language models, to measure the complexity of a speech recognition task, or to estimate how
well a language model is to match a given corpus. Perplexity is often calculated using Eq.
2.4. Here, P(xi) is the probability assigned by the language model to the sequence of words in
the test set, and N is the number of words in the test set.

∑
=

−
N

i
ixP

N 1
2)(log1

2
Eq. 2.4

Although perplexity is easy to calculate and provides a simple mechanism for
evaluating different language models, it is often combined with other metrics in order to
measure its effect on the application where the language models are applied. Typically, the
quality of a language model is measured by its effect on the error rate (e.g. word error rate,
language identification rate, translation rate, etc.). Unfortunately, error rates are difficult to
calculate, are commonly non-linear, and do not correlate completely with the results provided
by the perplexity. Several attempts to find correlations between perplexity and error rates
[Klakow and Peters, 2002], or to find better correlated and easier to optimize metrics have
met with limited success [Chen et al, 1998]. However, according to [Rosenfeld, 2000] there is
a rule of thumb to estimate the effect of the improvements on perplexity over the error rate.
For instance, a reduction of 5% in perplexity is not significant in practice. A 10%-20%
improvement is usually, but not always, translated into some improvement in performance.
More than 30% is quite significant but it is too difficult to obtain.

In the following sub-sections, we will explain in more detail some of the proposed
solutions to the problems that affect n-gram models. For more information please consult
[Jurafsky and Martin, 2008], [Manning and Schütze, 1999], and [Rosenfeld, 2000].

Speed Up Strategies for the Creation of Multimodal and Multilingual Dialogue Systems

28

2.2.1.1 Smoothing techniques
As mentioned above, one of the weaknesses of the n-gram based models is that they

underestimate the probability of words that do not occur in the training corpus, assigning
them a zero or low probability. In order to avoid this problem, it is possible to re-estimate
these zero and low-probability n-grams using smoothing techniques. The smoothing is based
on saving a probability mass, discounted from more frequent or better-estimated events, to be
distributed among all low frequency events. The most frequent types of smoothing techniques
are Witten-Bell, Good-Turing, and Kneser-Ney.

Briefly, Witten-Bell, [Witten and Bell, 1991], introduces the concept of using
information regarding the counts of n-grams seen just once for estimating the counts of n-
grams that do not appear in the training; this is a relevant contribution since several
smoothing methods rely on using the same concept. In this method, see Eq. 2.5, the existing
counts are modified by a factor that depends on the number of n-gram tokens, C(hi), and the
different n-gram types or contexts, T(hi), seen in the training text for the given n-1-gram
context. The idea is that words that tend to occur in a smaller number of contexts will
contribute with a lower probability mass than words that appear in more contexts. On the
other hand, the probability of unseen events is calculated distributing the discounted
probability mass considering the number of n-gram tokens, C(hi), the different n-gram types,
T(hi), and the number of n-gram tokens that do not occur at all in the training text, Z(hi).










>
+

=
+=

0)|(,
)()(

)(

0)|(,
))()()((

)(

)|(*
ii

ii

ii

ii
iii

i

hwcif
hThc

whc

hwcif
hThchZ

hT

hiwip

Eq. 2.5

In Good-Turing, [Good, 1953], the smoothed counts, c* in Eq. 2.6, are estimated using
the concept of frequency of frequency (i.e. the sum of different n-grams, with the same order,
that occur c times). Here, the smoothed count is estimated using the original count, c, plus
one multiplied by the division between the number of n-grams that occurred c+1 times, Nc+1,
by the number of n-grams that occur c times, Nc. Therefore, the smoothed counts for n-grams
with zero counts are estimated by dividing the number of n-grams that occurred once by the
number of n-grams that never occurred. [Katz, 1987] was the first one on applying this
equation to the smoothing of n-gram based grammars, introducing at the same time the
concept of applying the smoothing only to n-grams whose frequency of frequency is lower
than a given threshold, generally from one to seven, since for more frequent n-grams the
probability estimation can be considered as reliable.

c

c

N
Ncc 1)1(* ++=

Eq. 2.6

Finally, in Kneser-Ney smoothing, [Kneser and Ney, 1995], the probabilities for all
non-zero n-grams are discounted with a constant amount δ (see Eq. 2.7). For all zero n-grams,
the probability is calculated taking into account the number of different contexts in which a
word occurs. A modified version of this technique is also proposed in [Chen and Goodman,
1998] where different values for the discounting parameter are used instead of a single
constant parameter. [Goodman, 2001] presents detailed information for each technique
besides an extensive comparison between these and other proposed techniques.

Chapter 2: State-of-the-art

29





 >

−
=

OtherwisewPh

whCif
hiC
whC

hwP
iKNi

ii
ii

iiKN
)()(

0)(
)(

)0,)(max(
)|(

α

δ

Eq. 2.7

An interesting characteristic shared by all these smoothing methods is that they are
frequently combined using two well-known techniques: back-off and deleted interpolation.
Both also contribute to solve the problem of zero frequency n-grams. In this case, when a
particular n-gram does not exist it is possible to estimate its probability by using lower order
n-grams (which tend to be better estimate than the very sparse high-order models).





 >−

=
−+−−+−

+−−+−−+−

−+−

elsewwwPww

kwwNifwwwPd
wwwP

iniibackoffini

iniiniiwinwi

iniibackoff
)|()(

)()|()1(
)|(

1211

11111

11







α

Where ∑

∑

>

−
+−

>

−
+−

−+−

+−

+−

−

−

=

0)(:

1
2

0)(:

1
1

11

1

1

)|(1

)|(1
)...(

i
nii

i
nii

wcw

i
nii

wcw

i
nii

ini wwP

wwP
wwα

Eq. 2.8

A back-off n-gram model is a nonlinear method proposed by [Katz, 1987]. According
to Eq. 2.8, in the Back-off technique, the probability of an existing n-gram is calculated using
the Maximum Likelihood Estimation (MLE, computed directly by dividing counts) or
through a recursive utilisation of lower level conditional distributions if it does not exists. In
this way, when a given n-gram is not available (i.e. its count is zero or below a given
threshold in the training text) its probability is calculated using the occurrence count of a
lower order model (n-1 gram) instead. In this equation, α(wi-n+1 .. wi-1) is a normalization
factor, called back-off weight, that is calculated offline and represents how much probability
mass has to be distributed from the high order model into the n-1 gram model. In addition,
the equation shows that the MLE estimates are discounted with a certain amount, d, that is
distributed among the unseen n-grams whose probability is calculated using the back-off.

The other technique is the deleted interpolation or Jelinek-Mercer smoothing [Jelinek
and Mercer, 1980]. Here, the probability for a given n-gram is obtained using a linear
interpolation of high-order models with lower-order distributions (see Eq. 2.9). Where the λ
values are calculated using held-out data and the final model in the recursion correspond to a
uniform model. In this case, the probability of the n-gram relies always on the probabilities
given by the high order and low order models, even if there is zero evidence for the high-
order model. In [Goodman, 2001] the conclusion is that this kind of models performs better
on small training sets. For this reason, in this thesis we used this smoothing algorithm in the
experiments for speech-to-sign language translation (section 6.2.3, page 174).

)|()1()|()|(1
2

1
1

1
1 1

1
1

1

−
+−

−
+−

−
+− −

−
+−

−
+−−

−+= i
niiw

i
niiw

i
nii wwpwwpwwp

MJi
ni

i
niMJ

λλ

Eq. 2.9

Finally, in addition to the techniques described above, in the literature we can find other
strategies that also try to reduce the effect of low frequency n-grams. Among them, we can

Speed Up Strategies for the Creation of Multimodal and Multilingual Dialogue Systems

30

mention variable length n-grams [Kneser, 1996], or skip-gram [Ney et al, 1994]. In variable
length n-grams the number of words in the context is not fixed but depends on the context
itself. The algorithm implements a pruning strategy where n-grams that have a small impact
on the model are discarded. Then, using the remaining set of n-grams the smoothing
parameters are recalculated. The main idea here is to provide a better distribution of
discounted mass among the remaining n-grams. Skip-gram models are based on the intuition
that when using high-order n-grams the probability of having seen the exact context is low,
however the chance of having seen a similar context (i.e. most of the words occurring) can be
high. In this method, several combinations of skipping words can be done whose probabilities
are linearly interpolated with the full n-gram probability. Finally, a completely different
approach for fighting the data sparseness is to calculate n-gram probabilities in a continuous
space using neural networks. In order to do it, [Schwenk, 2007] proposes a linear
interpolation between a traditional n-gram model with the probability given by a neural
network trained with highly efficient algorithms.

2.2.1.2 Long span and syntactic information
One of the simplest ways to include some sort of semantic information in a language

model is the so-called class-based language models. In this kind of models, statistically
related words or phrases are clustered together in classes in order to train a new n-gram
model with the indexes of the classes. The big advantage of these models is its robustness
against infrequent events and its generalization capability about words used in contexts that
have not appeared explicitly in the training data. The reason is that several words, some more
frequent than others, can belong to the same class and each one contributes to the estimation
of the final probability (see Eq. 2.10). Besides, they allow the system to dynamically modify
the vocabulary without retraining or recompiling the entire language model.

In general, the classes can be created by hand using linguistic information [Jelinek,
1990](i.e. Part-Of-Speech models) or automatically inferred. The former is the preferred for
narrow discourse domains or when the size of the training data is not big. The latter is
preferred for unconstrained tasks and when the size of the training corpus allows the creation
of reliable models. Several automatic and iterative algorithms have been proposed. The most
frequent ones are the agglomerative hierarchical clustering (bottom-up) proposed in [Brown
et al, 1992] or the divisive algorithm (top-down) proposed in [Kneser and Ney, 1993]. In both
algorithms, the clustering process is measured using the information gain distance and the
process is stopped when the desired number of clusters is reached or the information gain is
below a given threshold.

)))..C(wC(w |)P(C(w))C(w |P(w)..w w|(wP 1-i1n-iiii1-i1n-iiclass ++ =
Eq. 2.10

Eq. 2.10 shows one of the several alternative formulas used to calculate the word n-
gram probability using class-based LMs. In this case, the conditional probability of a word wi
given the history wi-n+1 ... wi+1 is calculated as the product of two factors: the probability of
the given word (wi) belonging to class C(wi) and the probability of the class given the
preceding classes.

In spite of its robustness, the main disadvantage is the loss in the ability to distinguish
between different histories, although a quick solution is to increase the order of the model at
the expense of increasing the number of infrequent events. In practice, this kind of models are
usually interpolated with a word n-gram model. Another important characteristic that affects
the performance of the model is the quality of the classes. When there is not enough training

Chapter 2: State-of-the-art

31

data, good results can be obtained using hand-made classes (i.e. linguistically motivated);
however, when the size of the corpus is increased, the automatically inferred classes perform
better because they are more dependent to the domain.

As mentioned above, the set of classes can be created by hand using POS tags (i.e.
verbs, nouns, adjectives, etc). Since the number of tags is reduced, in comparison with the
number of words in a traditional n-gram model, it is possible to train a high order n-gram
model where the words in the original text are replaced by its POS tags according to its
grammatical function given a recent history. However, the main disadvantage is that it is very
time consuming and expensive to manually parse a full corpus. A possible solution is to use
an automatic tagger, though it may introduce mistakes in the labelling process mainly due to
the reduced context used to predict the tag (it is common to use just the last two words in the
history), and from the fact that the tagger could have been trained with text from a different
domain. In spite of these problems, [Heeman, 1999] presents experiments where the POS
model produces better results when compared to an automatic class-based model or a back-
off model, because the probabilities are better estimated.

Finally, a more complex approach, called structured language modelling, is presented
in [Chelba and Jelinek, 2000]. In this approach, the hierarchical nature of the language is
taken into account through syntactic information at the sentence level. In this model, a
grammar parser is used in order to obtain the syntactic structure of the sentence. The reported
results show improvements on perplexity and WER (Word Error Rate) when the model is
interpolated with a word-based n-gram model. The big advantage of this kind of models is
that the generated sentences are more grammatically consistent. However, since the quality of
the results highly depends on the quality of the parser, this approach is restricted to well
known languages (i.e. languages with enough data to train the parser and with a properly
defined grammar).

2.2.1.3 Dynamic and topic dependent models
These models try to take advantage of the dynamic nature of the human language and

its highly heterogeneity, with varying topics, genres, and styles. In general, these kind of
dynamic models are linearly interpolated with a more robust static n-gram model in order to
obtain improvements. Additionally, the interpolation parameter could be modified according
to the most relevant topic for a given sentence or dialogue state.

The simplest technique is Cache Models [Kuhn, 1988]. In this technique, a dynamic
language model is created with the N most recent words in the history. Then it is interpolated
with a static language model trained with the entire corpus. The premise is that a word that
has appeared before has more probability to occur later on. [Jelinek et al, 1991] report
reductions on WER using this method. Additional improvements are reported in [Clarkson
and Robinson, 1997], where the contribution of each word to the cache probability decays
exponentially over time. In this way, words that are more recent contribute more to the cache
probability. A similar method, called trigger pairs, is presented in [Lau et al, 1993]. In this
model, the presence of a particular word in the history is tied to the appearance of another
one; therefore, the probability for that triggered word can be increased. However, results
presented in [Rosenfeld, 1996] show that in most of the cases, the inducted trigger pairs are
self-triggers that result only in a generalization of the cache model.

Finally, another kind of dynamic model is described in [Iyer and Ostendorf, 1999].
Here, the training texts are partitioned automatically in clusters representing the different
topics in which the texts can be classified. Then, different LMs are created one for each
cluster and combined later on using different interpolation weights and formulas. For creating

Speed Up Strategies for the Creation of Multimodal and Multilingual Dialogue Systems

32

the clusters, they propose a similarity distance where the tf–idf weight (term frequency–
inverse document frequency) is used. The tf-idf evaluates the importance of a word to a
document given a collection of documents. The importance is proportional to the number of
times a word appears in a given document taken into account the total number of times it
appears in the whole corpus or collection of documents. The tf-idf is calculated as the product
of the tf and idf terms. Since in this thesis we also applied a similar concept for creating the
ranking of n-grams for the LID system (see section 6.1.2.4, page 159), below we will provide
more details regarding the tf-idf formulation.

The tf term is calculated using Eq. 2.11. In the equation, nij is the number of
occurrences of term i in document j, and the denominator is the total number of terms in
document j. In this equation, the normalization is useful to reduce the effect of very frequent
terms without considering the actual importance of those terms in the whole document; this is
especially relevant in longer documents.

∑
=

k
kj

ij
ij n

n
tf

Eq. 2.11

The idf term, see Eq. 2.12, provides a measure of the general importance of a term
across all documents. It is calculated applying the logarithm of the quotient of dividing the
total number of documents in a corpus by the number of documents containing a specific
term.

∑
∈∀

=

ii dtD

i
DocsNumidf

,
1

_log

Eq. 2.12

Another possibility for creating the clusters is based on using the concept of bag-of-
words, in which a text or document is represented as a disordered collection of words, i.e. the
order of the words or any grammar information is discarded. This model has been widely
used in several different tasks such as document classification and information retrieval. In
relation to language modelling, the most relevant algorithms that use this paradigm are: latent
semantic analysis clustering (LSA)[Bellegarda, 2000a][Deerwester et al, 1990], probabilistic
LSA (pLSA)[Hofmann, 1999], and Latent Dirichlet Allocation (LDA)[Blei et al, 2003]. In
LSA, for instance, hidden semantic relations between words can be obtained using a term-
document matrix (i.e. the occurrence of different and relevant terms along different
documents). LSA applies a singular value decomposition to find a low-rank approximation of
the term-document matrix. The goal of reducing the rank is to decrease synonymy, polysemy,
sparsity and noise, and to discover new dependencies among different terms and documents.
In [Bellegarda, 2000b], LSA is used for generating dynamic n-grams that are interpolated
with a conventional word-based n-gram model in order to improve a speech recognition
system. pLSA is the probabilistic version of LSA that provides a more intuitive model
together with slight improvements since it can be used directly on the speech recognition
system as it provides normalized probabilities. Finally, LDA is similar to pLSA except in that
the topic distribution is assumed to have a Dirichlet prior, instead of a uniform distribution.
This way, LDA is more robust than pLSA, and does not present problems of over-fitting and
it is able to generalize when used with unseen documents. It has been successfully applied,

Chapter 2: State-of-the-art

33

although with discrete reductions on perplexities and WER, to different kinds of tasks for
language modelling such as dynamic interpolation with traditional n-grams [Tam and
Schultz, 2005], for unsupervised adaptation as marginal constraints [Tam and Schultz, 2006],
and for clustering of topic sentences to train different language models [Heidel et al, 2007].
In this thesis, we have not applied any of these techniques leaving this task for future
developments and research.

2.2.1.4 Adaptation and interpolation
As mentioned in section 2.2.1 (page 25), one of the main problems when training n-

gram based LMs is to have enough training data to obtain reliable models, especially when
the order of the model is high. This fact is relevant since the model will fail due to the poor
estimation of unknown events and because there will be too many low frequent n-grams that
will obtain a high probability mass to distribute between them. This way, the probability of
the good n-grams, i.e. the most frequent and reliable ones, will be discounted and its
discriminative power and estimation will be diminished. In [Bellegarda, 2004] a complete
survey of adaptation techniques to overcome these problems is described. Below we describe
some of the most relevant methodologies.

In general, the idea is to build two LMs, one trained from the in-domain text and
another one from out-of-domain data or a background corpus (i.e. bigger than the in-domain
but probably less specific), and then to apply an adaptation formula that tries to modify
dynamically the well estimated background model using the information from the in-domain
model. This way, the probabilities of the new model will be more robust and better estimated.
One of the most common adaptation techniques are the linear or the log-linear interpolation
[Broman and Kurimo, 2005] that operate at the probabilities given by each model at sentence
level. Another solution, when the size of the adaptation/in-domain data is small, is to use the
estimations of the unigrams to adapt the probabilities given by the general model as a
marginal constraint. Examples of this technique are unigram rescaling [Gildea and Hofmann,
1999], fast-marginal adaptation [Kneser et al, 1997] or fill-up models [Besling and Meier,
1995]. A more complex, but promising technique for combining several sources of language
models is the Maximum Entropy framework [Rosenfeld, 1996]. This kind of framework has
been successfully applied for combining trigram, class-based, cache and trigger pairs models
with good results but requiring a lot of time to train.

[Galescu et al, 1998] report another strategy that uses texts from other domains by
using phrase templates. The idea is to find sentences with similar structure in both domains to
make the corresponding word replacements and take advantage of the knowledge present in
the original domain (i.e. new contexts, new vocabulary, more training data, etc.). In this
thesis, we did not use this strategy for improving the language models for the machine
translation system since the Spanish sign language has a different grammatical structure than
the written Spanish language, so it is difficult to use or to find any templates from a similar
domain.

Another kind of adaptation, widely reported in the literature, is the so called Maximum
A-Posteriori (MAP)[Federico, 1996]. In this technique, the adaptation is performed at the
counts level; the original n-gram counts of the in-domain model are modified by the n-gram
counts of a background corpus. The adaptation is made using Eq. 2.13.

)()(
)()(

)|(
q

O
q

I
qq

O
qq

I

qq hChC
whCwhC

hwp
⋅+⋅

⋅+⋅
=

βα
βα

Eq. 2.13

Speed Up Strategies for the Creation of Multimodal and Multilingual Dialogue Systems

34

Here, CI and CO are the frequency counts for the in domain and out-of-domain corpora
for history hq and n-gram hqwq respectively; α and β are weight factors, estimated empirically
on a development set to reduce the bias of the estimators and to provide more or less
importance to each corpus. [Bacchiani et al, 2006] report improvements on WER using a
combination of supervised and unsupervised adaptation of n-gram language models to a new
domain and with a small corpus using MAP. Their results show that using MAP it is possible
to obtain an absolute improvement of 7.7% (from a baseline WER of 28%) when using the
supervised adaptation, or 3.9% absolute improvement when using the unsupervised
adaptation. In addition, it is also possible to obtain new improvements using iterative
adaptations. In [Wang and Stolcke, 2007], supervised MAP and marginal adaptation [Kneser
et al, 1997] are successfully combined with unsupervised language models for transcription
of broadcast conversations. In this case, the proposed method is applied to adapt a 5-gram
language model providing reductions on character error rate (CER) up to 20.7% over the
baseline system, i.e. a static model, with a 22.4% CER, and over the traditional linear
interpolation that obtained a 21.5% reduction. Given the good results obtained with this
technique, we decided to use it to adapt the original language model used by the machine
translation system described in section 6.2 (page 170).

2.2.1.5 Gathering of new training data
Finally, as we have seen, most adaptation techniques, including MAP, require the

existence of a big background corpus to provide the general distribution of the n-grams in
other domains. However, considering that it is possible that such corpus is not available or is
not big enough to provide reliable estimations, a proposed solution is to artificially generate it
by using generic templates and applying then filtering algorithms [Bellegarda, 2004].
Another interesting solution, proposed in [Sarikaya et al, 2005] and [Zhu and Rosenfeld,
2001], is to dynamically collect new sentences from other domains or corpora using
information retrieval (IR) techniques, i.e. collecting texts from online resources or from other
existing databases. Then, the new sentences are incorporated, using a supervised or
unsupervised procedure, into the available texts of the original domain to be adapted.

On the other hand, the adaptation using online resources and IR techniques has been
previously used in different applications with successful and promising results. For instance,
it has been used to reduce the number of out-of-vocabulary words (OOV) [Bigi et al, 2004],
for rescoring a n-best list in a speech recognition system through the selective adaptation of
discriminative high-order n-grams occurring in the initial n-best list [Zhu and Rosenfeld,
2001], and to obtain frequencies for unseen n-grams [Keller and Lapata, 2003]. In this kind of
systems, two important topics of research are the creation of good queries [Zhao et al, 2004],
in order to reduce the number of times the system queries the Web, and the posterior filtering
of the retrieved texts since the inclusion of non-relevant text could affect negatively the
adaptation and therefore the recognition results [Yu et al, 2005].

The basic procedure is to create a list of specific n-grams (i.e. content-words, very
frequent words, or poorly estimated n-grams) that the system searches on the internet. Then,
from a limited number of Web pages returned by the search engine a Web crawler extracts all
the sentences in the retrieved URLs. In the next step, the system first cleans the retrieved
texts and extracts relevant sentences from them (e.g. those containing the terms used in the
query), which are then used to create or complement the background corpus. Although, this
method is relatively easy to implement and provides good results, the process of retrieving all
the text sentences introduces a considerable latency and too many unnecessary sentences and
words. In [Keller and Lapata, 2003] and [Zhu and Rosenfeld, 2001], these problems are
reduced using another approach: instead of retrieving full sentences from a Web page they

Chapter 2: State-of-the-art

35

retrieve the number of different Web pages where all the terms of the query (i.e. n-grams)
appear, i.e. frequency counts. The reported results confirm that the estimations using Web
frequency counts correlates well with estimations made using the crawling method. Even
more, the Web frequency method has proved to provide comparable or better results for
adaptation purposes on different tasks, even with different techniques (e.g. linear
interpolation or entropy models).

In this thesis, we have followed a similar approach, using the Web frequency counts
instead of retrieving full Web pages. However, we have implemented a new algorithm that
introduces some differences in relation to the ones reported in the literature: a) in the
mechanism for creating the list of n-grams to query the Web, b) in the process of converting
the Web frequency counts from the source language to the target language in a Machine
Translation system, and c) in the adaptation framework used (i.e. MAP) to modify the
background counts with the converted Web frequency counts.

2.2.2 Context-Free-Grammars (CFG´s)

A context free grammar is a mathematical model for modelling the structure of a
natural language using a lexicon of terminal (words) and non-terminal (high level tags
expressing generalizations) symbols, and a set of production or transition rules that defines
how the symbols of the lexicon can be grouped and ordered together. In this formalism,
sentences are generated starting from a non-terminal symbol and applying several times the
conversion rules until all the non-terminal symbols are finally converted into a sequence of
terminal symbols (words).

The main advantage of these grammars is that they are easy to create and maintain,
present a low perplexity, and generate grammatically correct sentences. The main
disadvantage is that they may restrict the final user to use, when addressing the system, only
the defined set of sentences of the training data. Any other sentence uttered by the user would
be misrecognized or not allowed; besides, these grammars are only useful when the
vocabulary size is reduced [Pereira and Riley, 1997]. Therefore, in order to obtain good
results with this kind of grammars a compromise between the size of the grammar and the
speed and accuracy of the system has to be taken. For instance, a big grammar may introduce
too many recognition errors, then degrading the system accuracy; on the other hand, a small
grammar will produce too many out-of-grammar recognitions, producing too restrictive or
non-natural interactions with the final users. On the other hand, in a conventional CFG all the
transitions have equal probability, however it is possible to include probabilistic information
to the transition rules in order to define some alternatives (the sequence of rule expansions) as
more probable than others. This way, it is possible to adapt the grammar to new domains or
to a particular dialogue state [Mohri, 2000].

Despite its drawbacks, CFGs are the most extended type of grammars for spoken
dialogue systems with system or mixed initiative capabilities. Besides, most of the current
development platforms allow the creation and debugging of this kind of grammars,
supporting several specification languages such as JSGF (Java Speech Grammar Format),
GSL (Nuance Grammar Specification Language), and SRGS (Speech Recognition Grammar
Specification), and including tools to convert grammar files from one format to others.

In relation with our development platform, during the GEMINI project an assistant was
created that allows the creation and edition of this kind of grammars for compatibility with
the VoiceXML specification (see section 3.4.6.2, page 72). This assistant supports JSGF and
XML-based formats. In addition, new assistants, developed in this thesis, allow the

Speed Up Strategies for the Creation of Multimodal and Multilingual Dialogue Systems

36

possibility of debugging JSGF grammar files and the automatic creation of stochastic
grammars from a JSGF file (see section 4.7.1.3, page 120). Finally, our runtime platform also
supports speech grammar files in SRGS and JSGF format (see section 3.5.3, page 77).

2.3 Language Identification (LID)

In order to allow the runtime platform to automatically detect the language to be used
by the system to communicate with the user, we have worked in improving a LID system.
Specifically, we have worked on a PPRLM-based system where we have introduced a new
kind of long-span language model described in detail in section 6.1 (page 150). In this
section, we want to present an overview of the most recent and widely used techniques for
LID, as well as the reasons to select the PPRLM technique. Afterwards, we will provide a
detailed description of this technique including also information about its strengths and
weaknesses.

Several techniques have been suggested in the last years for LID. Probably the most
extended technique is the Parallel Phone Recognition followed by Language Modelling
(PPRLM) [Zissman, 1996][Zissman and Berkling, 2001]. In PPRLM, the language is
classified based on statistical characteristics extracted from the sequence of recognized
allophones. The idea is to use N phone parallel recognisers followed by M language models,
one for each language to be identified, trained with the phoneme sequence obtained for each
recognizer during the training step. During the classification step, the unknown utterance is
transcribed using each of the N recognisers. Then a score is calculated for each of the N
transcription using the M language models. Finally, a backend classifier selects as target
language the one with the higher score.

Although PPRLM provides a high LID performance, it may require a heavy
computational demand that limits its use in real-time or low cost applications. An alternative
approach, and may be the most simple and popular technique, is the Gaussian Mixture Model
(GMM) [Zissman, 1996]. In this technique, a model of multiple Gaussians is trained for each
language using the cepstral and delta MFCC coefficients obtained from all the audio files
available for each language. During the recognition, the system calculates the cepstral and
delta coefficients for the unknown utterance, selecting as best hypothesis language the one
that maximises the log-likelihood between the new vector and each trained model. This
technique is interesting because the identification is performed very quickly, which is useful
for real-time systems, and because it does not require orthographic or phonetically labelled
corpus. However, for these reasons, it could not get the same accuracy rate obtained with
more complex techniques such as PPRLM.

[Torres-Carrasquillo et al, 2002a] present a variation to the GMM technique called
GMM-Tokenizer. In this case, the classifier output (i.e. the indexes of the GMM models) is
used to train a “language model”. This technique uses both acoustic information and
sequence information, so it seems to be suitable and has the same advantages as the GMM
alone: labelled data is unneeded and it is faster than the phone-based approaches. However,
this technique is not as good as PPRLM, but can outperform it if both techniques are
combined. Therefore, it offers complementary information to the task, but increasing the
CPU time due to PPRLM.

[Torres-Carrasquillo et al, 2002b] describes a variation on the GMM technique where
instead of using MFCC coefficients they use a technique proposed by [Bieledfeld, 1994]
called shifted delta cepstrum (SDC). In this technique, the final vector used as input to the

Chapter 2: State-of-the-art

37

GMM classifier at time t is given by a concatenation of k blocks of size N, with a time
advance and delay d, and a p time shift between consecutive blocks. Eq. 2.14 shows the
formula used to calculate the value for the ith block at time t in function of the values for p
and d. [Torres-Carrasquillo et al, 2002b] describe experiments where using these coefficients
a GMM based LID system provides similar results than a PPRLM based system with the
advantage of not requiring any orthographically or phonetically transcribed speech data and
with a greatly reduced computational cost required for real-time systems. [Yin et al, 2006]
also propose using SDC as a mean to introduce prosodic information such as intensity and
pitch with very good results. In our current system, we have not incorporated these
coefficients yet but we propose it as future work.

)()()(diPtcdiPtctc −+−++=∆

Eq. 2.14

[Navratil, 2001] presents an interesting variation to PPRLM contributing with different
ways to combine the information of the allophone sequence with language dependent
acoustic models. In this system, the language model score is provided through a linear
interpolation between an n-gram based LM and a tree-based LM in order to capture long-span
information. On the other hand, the acoustic component consists of a set of language-
dependent Gaussian Mixture Models (GMM) trained for each allophone using information
about energy, cepstral and delta coefficients, and duration (i.e., prosodic information).
Finally, the backend classifier is an ANN that integrates all the information provided by the
two components. In order to reduce the computational load produced by using parallel
recognizers in PPRLM, they propose to use a single recognizer with a set of multilingual
phonemes including all the possible units from the languages to be recognized.
Unfortunately, this approach requires labelled transcriptions in order to train language
dependent n-gram LMs that are integrated into the recognizer in order to produce the N
different phoneme sequences as in PPRLM. The reported results show that the acoustic
information provides relevant information that improves the results considerably. In our
system we have also arrived to similar conclusions after including acoustic information at
sentence and phoneme level. Although we do not use tree-based LMs we agree that capturing
long-span information is also useful for improving system results.

[Gauvain et al, 2004] describe an extension to the PPRLM framework by using phone
lattices, both for training and testing, instead of using only the most likely phone sequence.
One of the interesting contributions of using this approach is that the phone lattices offer
more accurate n-gram frequencies estimates in order to train the n-gram based LMs. Finally,
an artificial neural network (ANN) is used as backend classifier instead of using the average
score estimated for each phone recognizer, obtaining the largest improvements when the
audio segment is large (i.e. more than 30s). In our case, since most of our audio files are short
we decided not to use the ANN but a Gaussian Classifier.

[López-Moreno et al, 2008] propose a new machine learning fusion scheme, called
Anchor-model, to create the final feature vector used for the backend classifier. In this
approach, the system exploits the relative behaviour of all the different sub-systems (e.g,
phonotactics models) to a given speech utterance. Then, the relative behaviour of each
language in comparison with the competing ones is modelled by using a SVM model, one for
each language to be recognized. The idea is interesting since the system uses the information
of the relative behaviour of the scores produced by each sub-system for a given input
language instead of using a single vector. This way, the system learns how the scores given
by the sub-system that models a given language tend to be higher than the scores produced by
the non-target subsystems. Then, at recognition, the system uses similarity functions between

Speed Up Strategies for the Creation of Multimodal and Multilingual Dialogue Systems

38

the new composite vector of all anchor models and the trained anchor model space. The
proposed technique outperforms other fusion schemes based on different kernels applied to a
SVM model. In our current system, we have not used this kind of fusion, but we propose a
simplified model using instead the differential scores between competing languages as input
vector to the Gaussian classifier.

[Ramasubramaniam et al, 2003] propose a slight variation of PPRLM called Parallel
Phone Recognition (PPR). The main difference between PPRLM and PPR is that the
sequence of allophones generated by each phone recognizer is used as input to only the
corresponding language-dependent LM instead of making them to go through a bank of M
different n-gram language models. This way, it is possible to evaluate the contribution of the
acoustic and phonotactic information separately, or it is also possible to integrate the
phonotactic and acoustic models into one-step allowing that the phone recognizer can use the
language model for constraining the Viterbi decoding rather than applying the constraints
after the phone recognition is complete. As a consequence of this approach, the phone
recognizer produces the most likely phone sequence that is also optimal regarding the
combination of the acoustic and phonotactic information. In this paper, they also propose the
bias removal procedure to improve the classification results. In addition, a mono Gaussian
classifier (GC) and a K-Nearest Neighbour Classifier (KNNC) are also compared. According
to their results, the bias removal performs better than the GC, and the GC better than the
KNNC. However, probably they could obtain better results with the GC using a mixture of
Gaussians instead of using just one Gaussian.

[Sai-Jayram et al, 2003] propose a modification of PPR, called Parallel Sub-Word
Recognition (PSWR), where instead of using phone-based HMMs for the recognizer they use
sub-word units created by automatic segmentation, segment clustering and segment HMM
models. This idea is interesting since labelled data is not required. Briefly, the technique
consists of splitting each utterance into segments with a minimum duration, and then
applying an agglomerative clustering of those segments to train HMM models from the final
clusters. They compare the results provided by the acoustic, language models, and mixed
scores but do not provide results integrating all this information. According to their results,
the proposed framework performs similar to PPR with the advantage of requiring not any
labelled data.

[Nagarajan and Murthy, 2004] present a similar technique to PSWR but in this case
using an HMM of syllables-like units. The training process does not require transcriptions
and the syllabic units are automatically defined using an unsupervised incremental clustering.
The results are good but the improvement is low. However, it is interesting that a better
improvement can be obtained when the more discriminative (language specific) units are
used. A similar behaviour we have observed in our experiments.

[Gleason and Zissman, 2001] present comparative results between using an ANN and a
single Gaussian classifier as the backend. In this case, the ANN performs slightly better.
However, they do not provide results using a multi-Gaussian classifier as the one we use in
our system.

A recently technique proposed in [Ma et al, 2005] is based in a new concept called Bag-
Of-Sounds models (BOS) of phone-like units (e.g. acoustic segments). The BOS concept is
inspired in the corresponding Bag-Of-Word (BOW) model used in information retrieval (see
section 2.2.1.3, page 31). Their proposal is to convert the utterances into a count vector
matrix, similar to the document-word matrix used in BOW, where “documents” correspond
to the different languages to recognize, and “words” correspond to the set of all possible
unigrams and bigrams generated using a universal inventory of phone models. Then, they

Chapter 2: State-of-the-art

39

apply a normalized entropy quantity to the count vector matrix in order to model the
discriminative power of each phone considering the entire set of training documents. Finally,
a Support Vector Machine (SVM) is used as backend classifier. In relation with our system,
we have experimented with different entropy quantities for creating a ranking of
discriminative n-grams; in our case, we tried the tf-idf term and proposed several other
alternatives.

Finally, [Li et al, 2006] present a new line of research where several sources of
information are combined. In this case, they propose the combination of a PPRLM-based
system and a Bag-Of-Sounds model to obtain corresponding scores for all target languages
and then concatenating them to form an utterance-level score vector. Then this composite
score vector is fed into an ANN and a simple linear discriminant function (LDF) in order to
generate two confidence scores for each language which are then fused and sent to the
backend classifier to make the final selection. An important conclusion from this study is that
the confidence scores from both classifiers (ANN and LDF) and the information provided by
the PPRLM and BOS system exhibit large diversity that is ideal for score fusion. In our work,
we have also focused on this kind of characteristics using information from the PPRLM
system and from an n-gram frequency ranking that provides utterance-level information
similar to the BOS system.

2.3.1 Description of the PPRLM Technique: Advantages and
Disadvantages

As mentioned above, PPRLM is the most popular approach to language identification.
The main objective of PPRLM is to model the frequency of occurrence of different allophone
sequences in each language. Following the diagram in Figure 2.5, this technique can be
divided in two stages. First, several parallel phone recognizer take the speech utterance and
outputs a sequence of allophones corresponding to the phone sets used for each one. Then,
the sequence of allophones is used as input to a bank of n-gram language models (LM) in
order to capture phonotactics information. In the second stage, the language model scores the
probability that the sequence of allophones corresponds to a given language.

Figure 2.5. Diagram of a PPRLM LID system (Source: [Zissman, 1996])

During test, the unknown utterance, U, is hypothetically identified as language L
following Eq. 2.15. Here, L is the set of all possible and equiprobable languages to identify, S
is the phone sequence, and Φ is the set of allophone acoustic models usually estimated using
HMM phone models. The prior probability of S, P(S|L), is estimated using a phone n-gram
LM. Several approximations can be applied to this equation in order to simplify the
calculations, for instance to consider that the phone models are language independent by not
using any phonotactic constraints for phone decoding.

Speed Up Strategies for the Creation of Multimodal and Multilingual Dialogue Systems

40

∑ Φ=
SL

hyp LSPLSUPL)|(),,|(maxarg

Eq. 2.15

The main advantages of PPRLM are: a) As it uses many recognizers, it is possible to
cover most of the phonetic realizations of every language. b) PPRLM makes possible to have
phone recognizers modelled for languages different to the languages that have to be
identified, which is especially useful in situations when the training data is not enough to
obtain reliable language dependant models. Obviously, if there is a match between the input
language and the language of the models the performance will be better, because it will
model explicitly the phonetic variations of each language.

In spite of the good results obtained using PPRLM, it presents some weaknesses that in
the literature have been solved in different ways.

1. The processing time is multiplied by the number of recognizers. This fact limits the
use of PPRLM for real time systems that require recognizing a high number of
languages. In this case, the recent incorporation of faster and multiple parallel
processors in new computer machines help to alleviate this problem. Another
solution, is the optimization of the algorithms using dedicated software libraries and
hardware that can reduce the elapsed time required during training or testing. In our
case, we have just take advantage of the new capabilities given by current computers.

2. The presence of bias in the log-likelihood scores generated by each combination of
the N recognizers and M language models. This problem is mainly due to the
differences between the allophone dictionaries and training data used by each
recognizer [Zissman, 1996]. [Ramasubramaniam et al, 2003] describes two solutions
for this problem. The first solution is called bias removal; it consists on a
normalization procedure using as LM score the calculated score minus the average
score in the training data. Then, the language is identified using a Maximum
Likelihood Classifier. The second solution is to use another kind of classifier, such as
Gaussian, K nearest-neighbour, or Support Vector Machine (SVM) classifiers. The
advantage of using these classifiers is that the final decision about the recognized
language is not affected by the bias, because the classification is not based on using an
absolute discriminant function. In this thesis, we decided to use a Gaussian Classifier
given the good results obtained in [Cordoba et al, 2006a] and [Cordoba et al, 2006b].
These classifiers also benefit from the normalization of scores (e.g., the T-norm
normalization). In our system, we use what we call “differential scores”, which is a
similar normalization.

3. The LMs models present the same kind of problems that occur in recognition tasks,
mainly data sparcity and the limitation of the n-grams to model long-span
information. In this case, it is difficult to solve the first problem because it would
require new training data (i.e., obtaining new recordings or using an external corpora
with the same dictionary of phonemes used in our platform) consisting of a sequence
of recognized phonemes. As mentioned before, data sparcity limits the performance
of the most important smoothing algorithms, although it is frequent to counteract it
using the deleted interpolation algorithm or other adaptation techniques (see section
2.2.1.1, page 28). In deleted interpolation, the conditional probability of a word given
its context is calculated as the linear interpolation between the individual probabilities
of different order n-gram models. Regarding solutions for the problem of including
long span (dynamic) information to the language models, [Navratil and Zühlke, 1997]
present slight improvements on the LID rate when using the skip-gram technique

Chapter 2: State-of-the-art

41

proposed by [Ney et al, 1994]. [Padró and Padró, 2004] present LID experiments on
written text for six languages using three different kinds of LM: Markov models,
trigram frequency vectors and n-gram text categorization [Cavnar and Trenkle, 1994].

In this thesis, we have mainly focused on providing new solutions to the third kind of
problems. In our case, extending the work proposed by [Cavnar and Trenkle, 1994]. Our
main interest in this technique was that it combines local information (n-grams) and long-
span information (collected counts from the whole utterance). In general terms, during
training the technique proposes the creation of a ranked template with the N (typically 400)
most frequents n-grams (up to n-grams of order five) of the character sequences in the train
corpus for each language. During the evaluation, a dynamic ranked template is created for the
phoneme sequence of the recognized utterance. Then a distance measure is applied between
the dynamic template and each language dependent template previously trained. The selected
language is the one that presents the higher correlation between templates. This technique is
very simple but provides good results for language recognition of written texts (up to 93%,
depending of the length of the sentence to recognize and the size of the template), it is robust
against text errors, and it does not require applying any kind of smoothing technique.

2.4 Machine Translation
Machine Translation (MT) is the name for the automatic process of translating text or

speech from one language to another. One of the first MT systems was presented in 1954, but
it was not until the 1970s when many governments started to be interested in MT thanks to
systems like the Canadian Meteo, for translating weather forecasts, and SYSTRAN 25 used by
the European Commission. In the 1980s the first versions of PC-based MT systems appeared.
Then, in the 1990s appeared the first online MT services such as BabelFish 26, sponsored by
Altavista. Finally, during the 2000s, MT has grown considerably thanks to the creation of
new efficient hybrid algorithms and the availability of training data that allows better
translations. In this section, we will show the background and the most important research
approaches in this field in the last years.

2.4.1 Current Approaches for Machine Translation

Current architectures for MT can be categorized into three main approaches: direct,
transfer and Interlingua. In direct translation, the text is translated word-by-word using a
bilingual dictionary and then reordered using simple rules. In the transfer approach, the
source text is first parsed and then syntactic and lexical rules are applied to transform the
parsed structure into a target parse structure that is used to generate the final target sentence.
Finally, in the Interlingua approach, the source sentence is deeply analyzed and converted
into an abstract language independent meaning representation (i.e. Interlingua) that is used to
generate the target sentence. For a detailed description of each approach, refer to [Jurafsky
and Martin, 2008]. These three approaches are represented graphically through the Vauquois
pyramid (see Figure 2.6). In this figure, the vertical axis represents the effort required for

25 http://www.systran.co.uk/
26 http://babelfish.altavista.com/

http://www.systran.co.uk/�
http://babelfish.altavista.com/�

Speed Up Strategies for the Creation of Multimodal and Multilingual Dialogue Systems

42

analysis and generation, while horizontal axis represents the amount of transfer knowledge
when moving up in the triangle.

Figure 2.6. The Vauquois triangle (Source: [Jurafsky and Martin, 2008])

These three approaches constitute the classical classification for machine translation.
All current systems are -in one way or another- hybrid combinations of them. On the other
hand, it is also possible to classify the MT systems considering the information components
applied to increase the accuracy of the translation. The most important sources of information
are Knowledge-Based, Example-Based, and Statistical.

In the Knowledge-Based approach, the MT system incorporates an extensive pragmatic
and semantic knowledge of the domain in the form of rules defined previously by an expert
or using supervised training. Depending on the desired level of quality of the translation, the
system requires a progressive in-depth understanding of the text (morphology, syntactic and
semantic information), and a more complex domain model (ontology of concepts). In general,
this approach provides high quality translations and is robust against recognition errors in a
speech-to-speech translation system but it is restricted to small domains since the creation of
the rules is very expensive and time consuming. Examples of research systems that
incorporates this information are KANT 27 at Carnegie Mellon University and the described
in [San-Segundo et al, 2008].

In the Example-Based Machine Translation (EBMT), proposed by [Sato and Nagao,
1990], the idea is to translate a source sentence by imitating a similar translation example
previously trained from a parallel corpus and stored in a database that is looked up at runtime.
In this kind of system, the main problems to solve are how to combine the different candidate
phrases in order to obtain a coherent translation, to disambiguate when it is necessary to
imitate more than one translation example, and how to solve problems with non-matching

27 http://www.lti.cs.cmu.edu/Research/Kant/

http://www.lti.cs.cmu.edu/Research/Kant/�

Chapter 2: State-of-the-art

43

segments of the sentence. A recent example of this kind of systems is described in [Morrissey
and Way, 2005].

Finally, in Statistical Machine Translation (SMT) systems the translations are generated
using statistical models where its parameters are estimated from the analysis of parallel
corpus. Initially classified as a different paradigm for machine translation, in the last years the
differences between the SMT and the EBMT approaches have been reduced thanks to the
development of phrase-based and syntax-based models in preference to the original word-
based translation. Nevertheless, some differences remain [Hutchins, 2005]. Since in the thesis
we have worked on a statistical-based machine translation system, in the next section we will
provide more background information about this approach and the main research work in this
area.

2.4.1.1 Statistical machine translation
In any automatic language translation, the goal is to translate a text, given in some

source language, into a target language. Given a source string, J
J fff 11 = , it must be

translated into a target string, J
I eee 11 = . Among all possible target strings, the system has

to choose the string with the highest probability given by Bayes decision rule, Eq. 2.16:

{ } { })Pr()|Pr(maxarg)|Pr(maxargˆ 111111
11

IIJ

e

JI

e

I eeffee
II

⋅==

Eq. 2.16

In this equation,)Pr(1
Ie is the probability given by the target language model, whereas

)|Pr(11
IJ ef is the probability given by the string translation model. The argmax operation

denotes the search problem, i.e. the generation of the most probable sequence of words in the
target language.

The overall architecture and process for translating a sentence is summarized in Figure
2.7. The first step is to pre-process the input sentence in order to make the translation task
simpler. Different kind of transformations can be done, ranging from the categorization of the
words to parsing the source string, in order to obtain better and more reliable alignments that
contribute to the generation of better translations. A similar process can be done to the final
candidate sentence in the target language in order to re-order or improve the translation. The
more complex process is the Global search where the system combines the probabilities
produced by the translation model,)|Pr(11

IJ ef , and the target language model,)Pr(1
Ie , in

order to select the best candidate sentence. An interesting characteristic of the Bayes decision
rule is that the language and the translation models provide independent information so that
they can be trained individually.

Speed Up Strategies for the Creation of Multimodal and Multilingual Dialogue Systems

44

Figure 2.7. Translation process based on Bayes decision rule

Currently, most of the statistical machine translation systems are based on the Bayes
decision rule, where the parameters for both the language and translation models are learnt
from the analysis of bilingual corpus. In general terms, the main difference between the
different proposed systems is the algorithm used to calculate the score produced by the
translation model, i.e.)|Pr(11

IJ ef . The most important approaches are statistical finite state
transducers [Casacuberta and Vidal, 2006][Bangalore and Riccardi, 2000], example-based
models [Sumita, 2001], word alignment models [Brown et al, 1993][Vogel et al, 1996], and
phrase-based alignments [Koehn et al, 2003]. These approaches are explained in the
following paragraphs, explaining with more detail the latter two in section 2.4.2 (page 45)
since they are the most relevant for this thesis.

In the statistical finite state transducers, the translation is performed using a finite state
transducer where, given an input sentence, the system searches for the most likely output
sentence through all possible output strings paths generated by the finite state transition
network and the joint probability of sentence pairs.

In the example-based models, the system creates a dictionary with large bilingual
chunks that are learnt from the parallel corpus. During the translation, the system selects the
most similar source-side chunk and picks up the target-side chunk from the bilingual
dictionary, applying afterwards reordering and refined rules.

In the word-based alignment models, the sentences of the parallel corpus are first
aligned and then the mappings between individual words in the source language and the
target language are learnt by the system by using interactive statistical methods. Afterwards,
based on these alignments, the system creates a translation model that is then used to generate
the most probable output sentence.

Finally, in the phrase-base alignment, the word-based alignment is conducted one-step
forward by considering not individual words but word sequences, i.e. blocks or phrases, of

Chapter 2: State-of-the-art

45

different lengths. Interestingly, these blocks do not correspond necessarily to linguistic
phrases but to “phrases” learnt using statistical methods and that consistently appear to be
corresponding translations along the corpus.

2.4.2 Word-based and Phrase-based Translation

According to Figure 2.7, the translation model can be decomposed into two models: the
the lexicon model and the alignment model. The first one models the probability of
translating two aligned words, i.e.)|(ij efp . The second one defines the correspondence, i.e.
alignments, between the words in the source sentence and the words in the target sentence. In
the basic model, some restrictions are imposed such as each source word has to be aligned to
exactly one target word, and allowing that source words that are not aligned to any word in
the target sentence can be modelled by assuming the existence of a null word or empty cell
on the target side. Then, more complex models are allowed by introducing the concept of
fertility, i.e., the possibility of aligning one target word to many source words, and a
distortion penalty that penalizes implausible alignments. Eq. 2.17 shows the formula used by
a basic first-order translation model based on word alignment. In this formula, e is the target
sentence, f the source sentence, I and J are the lengths of the target and source sentences
respectively, aj is the position in e that fj is aligned with, p(J|I) is the length model, p(aj|aj-1,I,J)
is the alignment model, and p(fj|eaj) is the lexicon model. Observe that the formula sums over
all possible alignments considering the restrictions mentioned above. The formula also shows
the the alignment and lexicon models.

∑∏
=

− ⋅=
J

j
a

J

j
ajjj

IJ efpJIaapIJpefp
1 1

111)|(),,|()|()|(

Eq. 2.17

Currently, most word-based alignment models are based on the work presented in
[Brown et al, 1993] namely the IBM 1-5 models, and the HMM models proposed by [Vogel
et al, 1996]. Below we describe them briefly. For more information about these models and
machine translation refer to [Manning and Schütze, 1999] chapter 13, [Jurafsky and Martin,
2008] chapter 25, [Chou and Juang, 2003] chapter 11, and the educational tutorial presented
by [Knight, 1999]. During the training process, since each model presents many free
parameters that have to be optimized, the algorithms only provide local minimums. In order
to reduce these problems, the training procedure is initialized with a simple model that does
not present local optima. Then, the parameters of the simple model are used to initialize the
training process of more complex models.

In IBM-1 model, it is assumed that all the alignments are equally likely, i.e. it presents
a uniform alignment probability. The big advantage of this model is that it converges to a
global maximum therefore in most of the cases it is used as seed for the following models.
IBM-2 makes a more realistic assumption using a zero-order model, i.e. the system only
considers a dependence on the absolute position of the source word. In IBM-3, the algorithm
uses a zero-order inverted model, i.e. a mapping from the target positions i to the source
positions j, introducing new parameters such as the fertility model, the distortion model, and
the spurious model. The fertility model gives the probability of aligning many source words
to one target word, the distortion model gives the probability of aligning two word positions
in the source and target sentences conditioned on the sizes of both sentences, and the spurious
model gives the probability of assigning a source word to the empty word. IBM-4 is similar
to IBM-3 but uses a first-order model where the algorithm introduces dependencies on the

Speed Up Strategies for the Creation of Multimodal and Multilingual Dialogue Systems

46

previous alignment, the identity of the source word, and the previous target word. The idea of
these dependencies is to reduce some problems introduced by the fertility model and the
process of specifying the final positions of the target words. In order to reduce the
dependencies on the identity of specific words that can result in an unreliable model due to
scarce training data, it is possible to use corresponding word classes or part-of-speech as
suggested by [Och, 1999][Kneser and Ney, 1993] and [Brown et al, 1993]. IBM-5 can be
considered as an improved version of IBM-4 where the probabilities are strictly normalized,
which means that the algorithm does not put probability mass on alignments or events that
can never occur. This way, the alignments are better estimated but at the cost of a more
complex and delaying algorithm. Finally, the HMM model can be considered as an improved
version of the IBM-2 model since it uses a first order model, i.e., considering dependencies
on the position of the previous alignment, which capture localities in the translations, i.e.
neighbouring source words are often aligned with neighbouring target words. In the baseline
HMM, the locality is captured by using absolute positions. In order to reduce the number of
alignment parameters, [Vogel et al, 1996] and [Dagan et al, 1993] propose a homogeneous
HMM where the alignment probabilities depend only on the jump width (aj – aj-1). Finally,
[Och and Ney, 2000b] propose the context dependent HMM where an additional dependence
on the identity of the source word of the previous alignment is introduced.

One of the main shortcomings of IBM-1, IBM-2, and HMM models is that they only
allow to model correspondences between single words instead of longer span
correspondences, i.e., modelling structural or syntactic aspects of the language. Although
IBM-3, 4, and 5 models reduce this problem by introducing the concept of fertility, it is not
enough to model more complex relationships. In order to reduce this problem, a new kind of
translation model was proposed in [Och et al, 1999], [Yamada and Knight, 2001] and [Koehn
et al, 2003] called phrase-based translation. In this kind of models, the system learns the
phrase alignments by using a word alignment model trained using the IBM models and
applying different heuristics to extract the final phrases. For instance, [Yamada and Knight,
2001] propose to extract only phrases that have a linguistic motivation, i.e., phrases that are
constituents in well-formed syntactic parse trees. On the other hand, [Koehn et al, 2003]
report better results when using long span phrases without imposing syntactic restrictions or
using a more complex IBM model to start with.

The process for creating the phrase alignments is called symmetrising. The idea of this
process, described in detail in [Och et al, 1999] and [Jurafsky and Martin, 2008], is to train
two separate word alignments, one for the source-to-target language, and another for target-
to-source language. These word alignments can be created using the IBM models or more
complex models to obtain better results [Och and Ney, 2000a]. Then different combinations
of both alignments are applied in order to produce the final alignments. For instance, it is
possible to intersect both alignments in order to create an initial high-precision phrase
alignment and then to apply the union in combination with other heuristics to add new points
to the initial intersected phrase alignment. In order to improve the generalization of the
alignments, the phrases are learnt by using bilingual word classes rather than using word
identities. In addition to the translation probability, the algorithm also considers a distortion
probability that penalizes large reordering in the final positions of the phrases in the target
sentence considering the positions in the source sentence. In [Och and Ney, 2004] full details
about the training and search process are described.

Current research on machine translation is oriented to the incorporation of new
complementary information using log-linear models [Och and Ney, 2002] in the search
process (see Eq. 2.18). This way, it is possible to combine the traditional models proposed by
the Bayes rule, i.e. translation and language model, with different sources of information such

Chapter 2: State-of-the-art

47

as POS-based models, word-classes, lemma-based LMs, likelihood of the parse tree and
dictionary matching on the source sentence, etc. In the equation, hm represents the different
models to combine, and λm the scaling factors that are optimized on a development set using
numerical optimization algorithms.

]),(exp[maxarg)|(maxargˆ
1

1111
11

∑
=

==
M

m

JI
mm

e

JI

e
fehfepe

II
λ

Eq. 2.18

Another area of research is the use of factored translation models [Koehn et al, 2006],
where instead of using only the surface form of words, the forms can be augmented with
different factors such as lemmas, POS tags, morphologies, word classes, supertags [Birch et
al, 2007], etc. The advantage of this model is that it can overcome some of the problems
associated with phrase-based alignments, since they are able to capture long-span
information, to respect linguistic phrase boundaries, and they allow the incorporation of more
generalizations that are implicit when using syntactic knowledge.

Finally, another area of interest are the so called discriminative word alignments
models [Moore et al, 2006] that can obtain equal or surpass the alignment accuracy obtained
by the IBM models. In this case, the alignments are created by using human-annotated word
alignments on a small set of the training data and adding arbitrary features that are linearly
interpolated in order to create the final alignments. Several features are proposed in the
literature, for instance: the relative distance between source and target words, a binary feature
to indicate if both words are identical, number of unaligned words in a sentence, probability
of translating one word into one, two, three, etc. words (i.e. fertility), etc.

2.4.3 Current Metrics for the Automatic Evaluation of Machine
Translation Quality

Although evaluating the quality of a translation is a subjective and very difficult task,
several automatic metrics have been proposed in order to avoid the necessity of performing
this task by human evaluators. The task is quite difficult since natural language is ambiguous
and complex. For instance, two sentences can contain different words but they can be
equivalent, while another two can differ in only a word but have an entirely different
meaning. In [Vilar et al, 2006] we show a descriptive list of the most relevant problems we
can find when automatically translating two sentences between different languages. In
contrast to machines, human beings are able to evaluate a translation according to two main
factors: adequacy and fluency. The first one evaluates if the translation preserves the same
meaning as the original sentence. The second one measures if the translation is grammatically
correct. On the other hand, automatic measures are only able to evaluate the closeness
between the translated sentence and a reference translation (or multiple translations if
possible). In this case, the candidate sentence is ranked as better if it is closer to a human
translation (references).

[Banerjee and Lavie, 2005] present a list of basic criteria for any useful and effective
MT metric: high correlation with human judgment, sensitivity to differences between
different systems, consistency among similar texts, reliability (different systems that score
similarly should be expected to perform similarly) and generality (it has to work with
independence of domain and scenario). In general, according to [Jurafsky and Martin, 2008],
automatic MT metrics are not good for evaluating radically different architectures (e.g. an

Speed Up Strategies for the Creation of Multimodal and Multilingual Dialogue Systems

48

Interlingua vs. a statistical-based machine translation systems), even when evaluating human-
aided translation. However, they can be very useful when evaluating improvements made to
the same MT system or with similar architectures.

This section describes the main metrics used for performing the automatic evaluation of
machine translation systems, including those that were used in this thesis.

2.4.3.1 Word error rate (WER)
Similar to the one used in speech recognition, this metric works at word level and it is

based on the calculation of the number of words that differ between a machine-translated
sentence and a reference translation.

N
IDSWER ++

=

Eq. 2.19

Where S is the number of substitutions, D is the number of deletions, I is the number of
insertions, and N is the number of words in the reference. If there are multiple translation
references, only the lowest rate is reported.

2.4.3.2 Position independent word error rate (PER)
Proposed by [Tillmann et al, 1997], this metric is similar to the WER but does not take

into account the ordering of words in the matching operation. It considers the translations and
the reference as bag-of-words and computes the differences between them, normalised by the
reference length. Besides, it is guaranteed that the PER rate is less than or equal to the WER.
The metric operates counting only the number of times that identical words occur in the
translated and the reference sentence. Words that do not match are counted as substitutions,
and depending on the translated sentence is longer or shorter than the reference translation,
the rest of the words are considered as insertions or deletions.

2.4.3.3 Bilingual evaluation understudy (BLEU)
Proposed by [Papineni et al, 2002], BLEU is one of the most popular metrics for

evaluating machine translation systems since it provides a high correlation with human
judgements of quality. The metric tries to guarantee adequacy, assigning a higher score to
sentences that use the same words as in the references, and it looks for fluency using longer
n-gram matches. BLEU is formulated as the geometric mean of a modified form of n-gram
precision, pn, using weighted n-grams up to order N, multiplied by a decaying length penalty
to impose that the best candidate matches the reference translations in length too.

Eq. 2.20 shows the formula for calculating the score. In this equation, N is the order of
the n-grams calculated (typically N = 4), BP is the Brevity Penalty factor that penalizes
translations that are shorter than their reference sentences. Lref is the number of words in the
reference translation that is closest in length to the translated sentence, and Lsys is the number
of words in the translated sentence. The precision pn is calculated for every n-gram order and
weighted by the factor wn (typically a uniform weight is applied, i.e. wn = 1/N). Count is the
number of n-grams found both in the candidate reference C and in the translated sentence.
Countsys is the number of n-grams found only in the translated sentence.

Chapter 2: State-of-the-art

49









⋅= ∑

=

N

n
nn pwBPScore

1
logexp

∑ ∑
∑ ∑

∈ ∈

∈ ∈=

}{

}{

)(

)(

Candidatesc Cngram
sys

Candidatesc Cngram
n ngramCount

ngramCount
p

))1,1exp(min(

Sys

ref

L
L

BP −=

Eq. 2.20

2.4.3.4 NIST
Proposed in [Doddington, 2002], it is based on the BLEU metric but introducing slight

modifications. First, BLEU uses the geometric mean of the n-gram precision, but NIST uses
the arithmetic mean to reduce the impact of low co-occurrences for high order n-grams.
Second, BLEU calculates n-gram precision using equal weights to each n-gram; on the
contrary, NIST takes into account how informative a particular n-gram is (i.e. the rarer the n-
gram is the larger weight it will obtain).

()
∑ ∑

∑
=

∈−

−−


































⋅















 −
=

N

n ref

sys

sgramn

occurcothatgramsnall

L
L

gramnInfo
Score

i

1
2 ,1minlogexp

1
β

()
() 









=− −

n

n

wwcount
wwcount

gramnInfo




1

11
2log)(

Eq. 2.21

Eq. 2.21 shows the formula to calculate the NIST score. In the equation, N is the order
of the n-grams calculated (typically N = 5). The exponential factor is the brevity penalty,
where β is such that the brevity penalty factor is equal to 0.5 when the number of words in the
translated sentence is 2/3rds of the average number of words in the reference translation. This
way, small variations in the translation length do not affect too much to the overall score. Lsys
is the number of words in the translated sentence; L ref is the average number of words in a
reference translation, averaged over all reference translations. Count(.) is the number of
occurrences for n-grams (w1...wn) and (w1...wn-1) in all reference translations.

2.4.3.5 Metric for evaluation of translation with explicit ordering (METEOR)
Proposed by [Banerjee and Lavie, 2005], it is one of the latest proposed metrics for

evaluating machine translation systems that shows a high correlation with human evaluators.
The metric is based on using the harmonic mean of unigram precision and recall. An
interesting characteristic of this metric compared to the previous ones is that it does not only
use the matching of the different n-grams in the reference and in the evaluated sentence but
also several other features such as exact word, stemming, and synonym matching. The
sentence is scored based on a combination of different features: unigram precision, unigram
recall, and a direct measure of how the words are out-of-order in comparison to the reference
sentence.

The algorithm creates initially an alignment of unigrams between the reference and the
translated sentence. The alignment is gradually created through successive stages not
allowing one word to map to more than other single word in the reference string. Each stage

Speed Up Strategies for the Creation of Multimodal and Multilingual Dialogue Systems

50

maps unigrams that have not been mapped previously and selects as the best alignment the
one with the fewer number of crosses (i.e. number of intersections of two mappings). By
default the first stage tries to make an exact match, the second stage uses a stemmer module,
and the third one is based on using a WordNet synonym module.

After creating the final alignment, it is scored using Eq. 2.22. In this equation, the
precision and recall measures are combined using the harmonic mean, weighting more the
recall than the precision. Precision (P) is defined as the number of unigrams in the translated
sentence that also appear in the reference translation (m) divided by the total number of
unigrams in the translated sentence (wt). Recall (R) is defined as the number of unigrams in
the translated sentence that also appear in the reference translation (m) divided by the total
number of unigrams in the reference sentence (wr). Now, in order to take into account longer
matches, METEOR computes a penalty (p) weight. The penalty is calculated as the number
of chunks (i.e. a set of adjacent unigrams that appear in the hypothesis and reference
sentences. Few chunks means that both sentences are almost equals) divided by the number
of unigrams (um) that have been mapped. Using the penalty the effect of the Fmean can be
reduced by up to 50% if there are no bigram or longer matches.

PR
PRFmean
9

10
+

=
tw

mP = ;
rw

mR =

3
_5.0 








⋅=

mu
ChunksNump ()pFmeanScore −⋅= 1

Eq. 2.22

Although reported results using this metric present a high correlation with human
evaluators, in this thesis we could not use it since it requires a stemmer and synonym module
that are not currently available for the Sign Language.

2.4.4 Speech to Sign Language Translation

Nowadays, thanks to the significant improvements in automatic speech recognition, 3D
animation, and statistical machine translation (SMT), it has been possible to face new
challenges such as speech-to-speech and speech-to-sign language translation. In this section,
we will describe different research projects and approaches, databases, tools, and standards
that have contributed in the development of this kind of systems.

In relation with speech-to-speech translation, several research projects such as
Verbmobil 28, Eutrans 29, Nespole 30, TC-Star 31, MASTOR 32, and GALE 33 have been
undertaken in recent years, contributing significantly to the creation of new algorithms and
applications for different tasks, domains, and vocabulary size. In general, the reported quality
of the translation is good. For instance, in Verbmobil the goal was the creation of a mobile

28 http://verbmobil.dfki.de/overview-us.html
29 http://cordis.europa.eu/esprit/src/30268.htm
30 http://nespole.itc.it/
31 http://www.tc-star.org/
32 http://domino.watson.ibm.com/comm/research.nsf/pages/r.uit.innovation.html
33 http://www.darpa.mil/IPTO/programs/gale/gale_concept.asp

http://verbmobil.dfki.de/overview-us.html�
http://cordis.europa.eu/esprit/src/30268.htm�
http://nespole.itc.it/�
http://www.tc-star.org/�
http://domino.watson.ibm.com/comm/research.nsf/pages/r.uit.innovation.html�
http://www.darpa.mil/IPTO/programs/gale/gale_concept.asp�

Chapter 2: State-of-the-art

51

speech-to-speech translation system for bidirectional German/English and German/Japanese,
allowing spontaneous speech and speaker independent recognition in a restricted domain (i.e.
making hotel reservations, scheduling appointments, and travel planning) with a vocabulary
size of about 10000 words. Reported results show around 80% correct translations and 90%
of dialogue task completion. In TC-Star, the goal was the creation of a speech-to-speech
translation system for unrestricted domains such as broadcast news and the European
parliament speeches allowing bidirectional translation for English, Spanish, and Mandarin
languages. In this case, the best result was around 70% of correct words when word positions
are ignored, i.e. around 38% of WER. Besides, in most of the current research projects the
translation is done using different types of statistical approaches such as phrase-based
translation [Koehn et al, 2003], example-based methods [Sommers, 1999], finite-state
transducers [Casacuberta and Vidal, 2006], and other data driven techniques. These have
been favoured by new efficient training and generation algorithms [Och and Ney,
2003][Koehn et al, 2003], automatic error measures [Papineni et al, 2002], higher
computational power and bigger parallel corpora [Koehn, 2005].

In relation with speech-to-sign language translation, it is based on the same technology
as the speech-to-speech translation with the difference that the output is provided by an
avatar. In the last years, this kind of systems has grown quickly since this technology is
especially useful to help deaf people to communicate with non-deaf people, and vice versa, as
human interpreters are expensive and are not always available. In addition, many deaf people
have problems when reading lips, and even written texts, as they are used to the sign
language grammar [Zhao et al, 2000]. Unfortunately, sign language presents a great
variability depending on the country, even between different regions or populations across a
country, which make difficult the research in this field. However, several studies have
appeared in order to establish some sort of standardization and common background. For
instance, in USA we can mention [Stokoe, 1960][Christopoulos and Bonvillian, 1985][Pyers,
2006], in Europe [Engberg-Pedersen, 2003][Atherton, 1999] and [Meurant, 2004], Africa
[Nyst, 2004] and Asia [Abdel-Fattah, 2005][Masataka, et al, 2006]. In Spain, there have been
several proposals for normalizing the Spanish Sign Language (LSE: Lengua de Signos
Española), but none of them has been accepted by the Deaf community. From their point of
view, these proposals tend to constrain the sign language, limiting its flexibility. The most
significant studies have been [Rodríguez, 1991][Monserrat and Gallardo, 2004][Herrero-
Blanco and Salazar-García, 2005], [Reyes, 2005], and [Parkhurst and Parkhurst, 2007].
[Rodríguez, 1991] carried out a detailed analysis of LSE showing its main characteristics and
the differences between the sign language used by Deaf people and the standard proposals.

It is well known that when developing systems for translating speech transcriptions into
the sign language, it is necessary to have a big parallel corpus that guarantees efficient
training of the parameters for the language and translation models. Unfortunately, most of the
currently available Sign Language (SL) corpora are too small or too general for training
purposes. In the literature, we can find references to the following corpus and research on
machine translation experiments.

The European Cultural Heritage Online organization 34 (ECHO) presents a multilingual
corpus in Swedish, British, and The Netherlands sign languages (ECHO corpus). It consists
of five children fables and several poems, a small lexicon and interviews with the sign
language performers. The corpus consists of different video material including one medium

34 http://www.let.kun.nl/sign-lang/echo/

http://www.let.kun.nl/sign-lang/echo/�

Speed Up Strategies for the Creation of Multimodal and Multilingual Dialogue Systems

52

shot of the body and one for the face, as well as two to four signers, male and female, per
language. It also includes transcriptions with general, manual, and non-manual information.
In addition, an annotation tool called ELAN 35 is also freely available in order to create, edit,
view, and search annotations of the video and audio data included in the corpora.

Another interesting corpus (ASL corpus) is made up of a set of videos, partly available
online, in American Sign Language created by The American Sign Language Linguistic
Research group at Boston University 36. The database consists of short stories consisting of
around 200 elicited sentences to illustrate different grammar structures, with fixed
vocabulary, where the signs occur in many different context and word orders. Besides, it
contains 20-25 minute dialogues between two native signers, and contains annotated data and
multiple synchronized video information providing different views of handshapes used in
ASL.

In [Bungeroth et al, 2006] and [Stein et al, 2006] a corpus, of around 2500 sentences,
called Phoenix for German and German Sign Language (DGS) in a restricted domain related
to weather reports was presented. It comes with a rich annotation of video data, a bilingual
text-based sentence corpus, and a monolingual German corpus. These works also describe a
statistical machine translation system that includes additional pre- and post-processing steps,
using grammar parsers, to improve the translation.

[Morrissey and Way, 2005] present an example-based Sign Language translation
system from English to the Sign Language of the Netherlands. The corpus for this work
consists of 561 sentences with an average sentence length of eight words. An advantage of
this corpus is that the annotation of the videos is time-aligned allowing the automatic
extraction of different linguistic information for improving the translation.

[Stein et al, 2007] describe an innovative sign to English translation system, using
image recognition processing and statistical machine translation, with promising WER results
(around 20%). However, the corpus used in this work consisted of only 680 sentences;
therefore, it is difficult to obtain better results with such a small training database.

[Chiu et al, 2007] describe a corpus of about 2000 sentences for the language pair
Chinese and Taiwanese sign language, which is used to perform experiments on machine
translation. They show that their optimization method surpasses IBM model 2.

In relation with research and available corpus in Spanish, the most important corpus is
provided by the Biblioteca Virtual Miguel de Cervantes that is available at their website 37; it
consists of several videos with poetry, literature for kids, and small pieces of classical
Spanish books. Unfortunately, this corpus does not provide any transcriptions, just video
content (that is common in most SL corpora), and it is very different from our current task
domain. Moreover, there is not a standard representation, or grammar, for the Lengua de
Signos Español (LSE), which makes the problem of data scarcity even worse. In [San-
Segundo et al, 2006] and [San-Segundo et al, 2008], up to the best of our knowledge, we
describe the first automatic translation system for Spanish speech to gesture in LSE. Besides,
a corpus of about 500 sentences is also described. This corpus and the speech to gesture
architecture are the reference used in this thesis for the experiments described in section 6.2
(page 170). In [San-Segundo et al, 2007] three different MT approaches are compared: rule-

35 http://www.lat-mpi.eu/tools/elan/
36 http://www.bu.edu/asllrp/
37 http://www.cervantesvirtual.com/seccion/signos/

http://www.lat-mpi.eu/tools/elan/�
http://www.bu.edu/asllrp/�
http://www.cervantesvirtual.com/seccion/signos/�

Chapter 2: State-of-the-art

53

based, statistical phrase-based and stochastic finite state transducers. In this thesis, we have
followed the statistical phrase-based approach, as we will show in section 6.2 (page 170).

Finally, in order to allow the translation from text or speech input into the sign
language it is necessary to use some kind of avatar or animated agent that provides the visual
representation required by deaf users. Currently, there has been an increasing interest on
developing and evaluating this kind of virtual agents in spoken dialogue systems for a great
variety of services and domains. For instance, [Cassell et al, 2002] describe an animated
agent for an information kiosk, and [Wahlster (Ed.), 2006] describe Smartakus, an artificial
life–like character with lip synchronization included in the SmartKom project to provide
visual information to the user. [Cole et al, 2003] and [Ma et al, 2002] describe several tools
and animated agents included in the CSLU Toolkit, which allows the creation of multimodal
dialogue services for a wide range of applications and domains. The toolkit includes the CU
Animate toolkit that allows the creation of arbitrary animated sequences and the
synchronization of the lips of the agent with speech sounds. [Balci et al, 2007] present an
open source platform, called XFace 38, which allows the creation of custom 3D talking heads
using the MPEG-4 Face Animation standard. In addition, [Granström et al, 2002] from the
KTH group describe in detail several multimodal dialogue systems where the animated
agents help to increase the capabilities of the service and allow the different final users to
have access to the service.

Unfortunately, most of the previous avatars are not useful for playing signs for deaf
people since they do not fulfil all the requirements imposed for this task. For instance, it is
important to have a fine motor control over all the body, not just the face or head, including
also arms and fingers, as well as the surrounding area since it avoids occlusions when using
only a frontal view and because many signs require the use of spatial information. Moreover,
facial expressions are also important since they transmit emotion, disambiguate between
different words, and provide new signs. Currently, there are several available commercial and
academic avatars that can be used for creating digital content, reading eBooks, or providing
information to deaf people. Below, a brief list of the most important ones is presented.

SigningAvatar 39: Created and commercialized by VCom3D, the designer has the
possibility of using several different avatars that can be used to create custom digital content.
The platform includes several tools for exporting a signed sentence into a video sequence in
different standard formats, for creating and editing new signs, and for the automatic
synchronization of lips and speech sounds. Besides, the toolkit includes a built-in library of
American Sign Language that can be used for speeding up the development process.

VSigns 40: It is a 3D human-like avatar that generates VRML (Virtual Reality Modeling
Language) sequences using MPEG-4 Body Animation specification. The process of signing
involves the conversion of the text input into SignWriting notation (see section 2.4.4.1),
which is converted into an XML representation using the SWML 41 (SignWriting Markup
Language) format. Then, the signs are converted into a sequence of Body Animation
Parameters following the MPEG-4 specification. Finally, these parameters are used to
animate the VRML-based avatar.

38 http://xface.itc.it/
39 http://www.vcom3d.com/
40 http://vsigns.iti.gr:8080/VSigns
41 http://swml.ucpel.tche.br/

http://xface.itc.it/�
http://www.vcom3d.com/�
http://vsigns.iti.gr:8080/VSigns�
http://swml.ucpel.tche.br/�

Speed Up Strategies for the Creation of Multimodal and Multilingual Dialogue Systems

54

WebSign: Reported by [Jemni and Elghoul, 2007], it is a Web-based tool that features a
3D avatar that is used to translate written text in Web pages into a sign language animation.
The representation is created using a dictionary of words and signs. The dictionary is created
incrementally thanks to the collaboration of users of the site. Since signs are locally
dependent, the site allows the creation of “community” dependent vocabularies or global
vocabularies. In addition, they report the creation of a new descriptive specification language
for the signs called SML that provides a XML-based description of the movements for the
avatar, regardless if the avatar is used for signing or for other purposes.

Finally, we have to mention the European project eSIGN 42 (Essential Sign Language
Information on Government Networks) that was one of the most important research efforts in
the development of tools for the automatic generation of sign language contents. In this
project, the main result was a 3D avatar, called VGuido, with enough flexibility to represent
signs from the sign language, and a visual environment for creating sign animations in a rapid
and easy way. The tools developed in this project were mainly oriented to translating Web
content into the sign language. The avatar is currently being used in local government
websites in Germany, the Netherlands, and the United Kingdom, and included in a recent
automatic translation system sponsored by IBM called SiSi 43 (Say it Sign it), which is
intended to be used in different areas such as education and entertainment. In our case, we
decided to use this avatar since it is highly flexible, it can be used as an ActiveX plug-in in
order to be easily integrated in the runtime platform, and because it uses the HamNoSys
notation (see next section) that presents advantages over other notations

2.4.4.1 Sign language transcription formats
As stated above, nowadays there are very few sign language corpora, existing only a

few public corpora available that contain little or no annotation at all. To make things worse,
there is not a standardised written form for the sign language. However, this annotation is
very important since it is required to train the translation system and to create the dictionary
used by the real-time system to translate the sequence of glosses into an enriched language
that the avatar can interpret and convert into an animated sequence of movements to be
played. Currently, in the literature we can find several proposals of languages such as
SignWriting, HamNoSys [Prillwitz et al, 1989], SML [Jemni and Elghoul, 2007], and VHML
(Virtual Human Markup Language) 44. Among them, the most important ones are
SignWriting and HamNoSys.

SignWriting 45 is a bi-dimensional representation of graphical symbols that represent
hand, handshapes, facial expressions, body movements, location, and contact. The notation,
as illustrated in Figure 2.8, is easy to read and write, and it can be linearly encoded in
computers assigning numeric codes to each symbol. However, the SignWriting specification
does not contain all the linguistic details required by an avatar in order to generate properly
the signs. For that reason, we did not consider it to be used in our system.

42 http://www.sign-lang.uni-hamburg.de/eSIGN/
43 http://www-03.ibm.com/press/us/en/pressrelease/22316.wss
44 http://www.vhml.org/
45 http://www.signwriting.org

http://www.sign-lang.uni-hamburg.de/eSIGN/�
http://www-03.ibm.com/press/us/en/pressrelease/22316.wss�
http://www.vhml.org/�
http://www.signwriting.org/�

Chapter 2: State-of-the-art

55

Figure 2.8. Example of SignWriting notation for the Spanish sign: Book (Source: [Parkhurst

and Parkhurst, 2007])

HamNoSys, Hamburg Sign Language Notation System, developed as a research tool
and a phonetic transcription system, was made publicly available in 1989. It consists of about
200 symbols covering the parameters of handshape, hand configuration, location, and
movement. Although the symbols are easy to recognize, they have to be precise. Therefore
they can be very long, difficult to decipher, and not easily usable for users to read or take
notes. An advantage of this notation is that it is applicable to any sign language. For this
reason, it has been used in several research institutions around the world and in our system.
Besides, the specification is currently on development; and the new proposal is expected to
include new symbols for information such as mouth movements and other facial expressions
that will be used to generate new signs and to provide a higher degree of emotion to the signs.
In any case, most avatars, including the one used in this thesis, that support this notation use
some sort of non-standard symbols to codify this information. For all these reasons, we
decided to use this notation. Figure 2.9 shows an example of one of the tools, the eSign editor
included in the toolkit that allows the creation and execution of new signs and glosses using
an embedded version of the avatar.

Figure 2.9. Example of HamNoSys notation and its representation using the avatar.

Speed Up Strategies for the Creation of Multimodal and Multilingual Dialogue Systems

56

57

33 PPLLAATTFFOORRMM AARRCCHHIITTEECCTTUURREE

An important contribution of the GEMINI project was the design of an innovative
platform that allows the specification of multimodal and multilingual services in an integrated
environment. The architecture, called also Application Generation Platform (AGP), the
modules that conform it and the information flow between them is shown in Figure 3.1. All
the modules are independent of each other; nevertheless, they were integrated into a common
graphical interface (GUI) to guide the designer in the design step by step and, at the same
time, let him go back and forth. In the figure, the different colours describe the degree of
implication of the author of the thesis in the creation or modification of each assistant in the
platform. This way, the yellow boxes correspond to the assistants developed during the
GEMINI project by other partners but that were modified afterwards by the author of the
thesis with the accelerations presented in this thesis. The pink boxes correspond to the
assistants that were completely designed and developed by the author of the thesis. The blue
boxes correspond to assistants created by other partners of the project but that include
minimum improvements and corrections introduced by the author of the thesis for
compatibility with the work done, mainly in the runtime system or other assistants. Finally,
white boxes correspond to assistants that were not modified at all.

Figure 3.1. Platform architecture

Speed Up Strategies for the Creation of Multimodal and Multilingual Dialogue Systems

58

The platform is divided into three main layers. The reason for this division is to
separate clearly the aspects that are service specific (general characteristics of the application,
database structure, database access), those corresponding to the high-level dialogue flow of
the application (modality and language independent), and the specific details imposed by
each modality and language. In this way, the designer is able to create several versions of the
same service (for different modalities and languages) in a single step at the intermediate
level.

In more detail, the assistants of the first layer are used to specify the overall aspects of
the service (e.g., modalities and languages to be implemented, general default values for each
modality, libraries, etc.); then, the database structure, not its contents, is described (classes,
attributes, relations, etc.); and finally, the database access functions, needed for the real-time
system, are defined (not their implementation).

In the second layer, the general flow of the application is modelled, including all the
actions that form it (transitions and calls between dialogues, input/output information, calls to
subdialogues, procedures, etc.). It is important to mention that in this layer no
modality/language specific details are defined, such as prompts/grammars, recognition errors,
design of the Web page, etc., as all these will be defined in the next layer. To be able to be
modality and language independent, in this layer all the input/output data provided by/to the
user are managed as language independent concepts.

Finally, the third layer contains the assistants that complete the general flow specifying
for each dialogue the details that are modality and language dependent. Here, the prompts and
grammars for each language, the appearance and contents of the Web pages, the error
treatment for speech recognition mistakes or Internet access, the presentation of information
on screen or using speech, etc., is defined. Furthermore, in this layer the final scripts of the
service are generated, unifying all the information from the previous assistants.

As we describe in the next section, all the assistants communicate between themselves
using a common XML syntax called GDialogXML. More details of the architecture can be
found in [D’Haro et al, 2006][Hamerich et al, 2004a][Hamerich et al, 2004b]. From sections
3.2 to 3.5, each layer and assistant of the platform are described. To clarify the design process
and the interaction with the assistants, we will show some steps of an example dialogue
where a bank transfer between accounts is carried out, asking the user for the number of the
source account, the destination account, and the amount of money to be transferred.

3.1 GDialogXML: Internal Descriptive Language for the
Generated Models

In order to ease communication inside the platform, during the Gemini Project we
participated in the development of a new object oriented abstract language based on XML
tags named Gemini Dialogue XML or GDialogXML. The main feature of this specification is
its flexibility, allowing the modelling of all application data, database access functions,
definition of all variables and actions needed in each dialogue state, system prompts,
grammars, user models, Web graphical interface, etc. Then, this information is used to carry
out the conversion to the languages used for the final presentation of the service according to
the modality (VoiceXML and/or xHTML). Besides, the syntax allows the addition of new
modalities, and the update to new versions of the script languages generated by the platform
with little effort.

As [Schubert et al, 2005][Hamerich et al, 2003][Wang et al, 2003] describe in more
detail, the GDialogXML syntax provides the means needed to model the following aspects:

Chapter 3: Platform Architecture

59

general concepts, data modelling, and dialogue modelling in a way both dependent and
independent of modality and language. As general concepts, we can mention variable and
constant definition, variable assignments, file paths, arithmetic, Boolean or string operations,
control structures for loops and jumps, variable types (lists, objects, references to objects,
atomic data), etc. For data modelling, we can specify the classes with attributes, which can
have simple data types such as string, integer, Boolean or complex types as embedded or
referenced objects or lists, supporting inheritance from base classes, etc. Regarding dialogue
modelling, all dialogue models consist of dialogue modules that call each other.

During all the development of the GEMINI project, the author of this thesis constantly
contributed with different proposals and minor changes to the GDialogXML syntax. To
summarize, the main contributions were 1.) The definition of the template for creating mixed-
initiative and over-answering dialogues (see section 4.5.4, page 106). 2.) The specification of
a procedure to unset a dialogue variable and repeating the same dialogue or call to the
database (see section 4.6.1, page 110), which was finally implemented through the creation of
the DoFilling tag. 3.) Finally, in the definition of an internal procedure for allowing calls to
non-returning dialogues from inside returning dialogues. For this case, our solution was to
use a hidden dialogue transparent to the designer, which jumps to the dialogue specified by a
global string variable that is previously set in the returning dialogue.

Throughout this thesis, and in order to clarify the input/output representation used in
the assistants, we will include some fragments of the generated code in some assistants,
giving suitable explanations of them.

3.2 FrameWork Layer

This layer has three assistants that allow the overall specification of the service, the
description of the database structure and the database access functions.

3.2.1 Application Description Assistant (ADA)

Developed by other partners of the GEMINI project, in this assistant several overall
aspects of the application, such as the number of modalities and languages, the location of
some services such as the database access, database connection settings (total number of
connection errors, timeouts), database path, etc., are specified; for the speech modality, the
timeout values for some events such as no input, default confidence levels for speech
recognition, maximum number of repetitions/errors before transferring to the operator, etc.;
for the Web modality, possible errors (e.g., page not found, non-authorized, timeouts, etc.).
More information regarding the error handling capabilities of the AGP can be found in
[Wang et al, 2003]. Besides, the default overall strategy for dialogues is defined: system-
driven or mixed-initiative.

Finally, the designer specifies the libraries, which will be used to speed up the design
process. Several types of libraries can be selected containing the definition of: data models,
database access functions, list of prompts and grammars for each language, and dialogues
from the general model of the application (see Section 4.2, page 88). The platform provides
some generic libraries, such as prompts and grammars for confirmations, generic data
models, etc., but its main potential is the possibility of saving most of the work done in the
platform as libraries, including complete dialogues, so that after the creation of a few
applications, the designer will have a complete set of libraries that can be reused in future

Speed Up Strategies for the Creation of Multimodal and Multilingual Dialogue Systems

60

applications. The platform allows the loading of libraries and provides the functionality to
edit their code to adapt them to a new application.

3.2.2 Data Model Assistant (DMA)

This assistant, developed by the partners of the GEMINI project, defines the data
structure (or data model) of the service specifying the classes, including inheritance,
attributes and types that make up the database. It uses as input the location of libraries and
files specified in the ADA. It is possible to define a class with attributes inherited from other
classes. The attributes can be of several types: (a) atomic (e.g., strings, Boolean, float,
integer, date, time, etc.), (b) full embedded objects or pointers to existing classes, or (c) lists
of atomic attributes or complex objects.

A graphical view of a class and its attributes can be seen in Figure 3.2 where, for the
bank transfer example, the Transaction class has been defined, which is made up of two
object type attributes from the class Account: the first one, DebitAccount, to specify the
source account and the second one, CreditAccount, to specify the destination account. On the
other hand, the class Account has several atomic type attributes (balance and account number
in the example) and other complex ones (account holder and last transactions list). We can
also see the code generated for the Transaction class, together with a reference to its base
class (Transaction inherits everything from the base class), called TransactionDescription
(number 1) and the attributes that will be inherited (number 2). In number 3, the
DebitAccount attribute is an object reference (ObjRefr) to the class Account, and the same
applies to the CreditAccount attribute.

Figure 3.2. Graphical details of a class and its attributes, and code fragment generated for the

Transaction class.

Finally, one advantage of defining the data model this way is that the dialogue designer
does not need to have the information contained in the database. This could be important if
the real database cannot be accessed for security reasons (e.g. a bank database with
confidential information about the clients). Besides, the designer can reuse the dialogue
model between similar services and modify the contents of the database with no effect in the
dialogue structure. However, regarding the acceleration strategies applied to this assistant
(see section 4.2, page 88) both cases were considered: with or without access to the database
content and depending on the information defined in the ADA the system changes its
behaviour accordingly.

Chapter 3: Platform Architecture

61

3.2.3 Data Connector Modelling Assistant (DCMA)

This assistant allows the definition of the structure of the database access functions that
are called from the runtime system. These functions are specified as interface definitions
including their input and output parameters (see Figure 3.3). This allows the use of database
functions by dialogue designers, without needing to know much about database programming
at all. It uses the libraries specified in the ADA and the data model defined in the DMA. This
assistant was created by the partners of the project GEMINI but improved in this thesis.

As the runtime platform itself must be independent from backend systems and
databases used in an application scenario, the specific implementation (in any suitable
programming language: SQL, ORACLE, Informix, etc.) of the access functions was left to
database or backend experts, meaning that they will provide the functionality for the database
functions, which have been defined by the dialogue experts. As the resulting model is
independent from any implementation detail, it is not affected by changes in the system
backend as long as the interface remains stable. However, in order to start with new
acceleration strategies for this assistant, it currently supports the specification of Microsoft
Access databases, accessing to the contents of such databases and proposing automatic SQL
queries for the specified functions (see section 4.3, page 91).

Figure 3.3. Form used to define the prototype of a database access function

Speed Up Strategies for the Creation of Multimodal and Multilingual Dialogue Systems

62

3.3 Retrieval Layer

In this layer, the service flow is defined at a high level, i.e., in a language and modality
independent way, so all it is done using concepts. The first assistant allows the definition of
the states and transitions of the dialogue flow, together with the slots to be requested to the
user at each state. The next assistant allows the specification of all the actions to be done at
each state (e.g. actions to retrieve/show information to the user, to query the DB), as well as
actions that control the transitions between states, conditional actions or looping procedures,
etc.

3.3.1 State Flow Modelling Assistant (SFMA)

This assistant is very important because it drastically accelerates the design process,
especially in the next assistant. As input, it uses the general strategy for the service, the data
model, and the database access functions.

In this assistant, the designer has to specify the states that make up the dialogue flow
(i.e. only the flow structure is defined, not the conditions that determine the transitions
between states, internal actions, nor other more detailed aspects because these are defined in
the next assistant in a rule-based manner). In addition, the designer specifies the data (slots)
that have to be filled by the user in each state and the transitions between the current state and
the following one(s). Besides, it is possible to specify which slots are optional (for over-
answering) and which ones can be asked for by using mixed-initiative.

Figure 3.4. GDialogXML code generated by the SFMA.

Chapter 3: Platform Architecture

63

Figure 3.4 shows the code generated by the SFMA for the example dialogue; it includes
information regarding the slots (field xInputFieldVars), dialogue transitions (field xCalls),
and generic information of the application, such as the name of the initial dialogue
(WelcomeDialog). The figure also shows the definition of the state where the bank transfer
data are collected (TransactionDialog). In this example, only the account names
(DebitAccountIdentifier and CreditAccountIdentifier) in that state have been selected, and the
collection of the amount to be transferred has been left for the next state, called
GetTransactionAmount. Besides, both slots are collected using mixed-initiative (the tag
‘‘xIsMixedInititative’’ is set to true).

3.3.2 Retrieval Modelling Assistant (RMA)

Designed and developed completely by the author of the thesis, this assistant is the
most complex and versatile module in the entire platform, and the one with the highest
number of accelerations. Given the large amount of actions that can be carried out in each
state, a large programming effort was necessary here, looking for its automation and
flexibility. Starting with the main window, it allows several editing and visualization
capabilities such as a tree-structured flow diagram where each leaf and branch represents the
states and transitions defined in the previous assistant. A colour-coding convention shows
whether a dialogue has been edited or not, the dialogue type, etc. In addition, it is possible to
access information regarding actions and variables already defined for each leaf (dialogue) in
the flow. All the automatically generated dialogues, libraries, and database access functions
already defined can also be used and edited. Other available capabilities are the
creation/deletion of dialogues, variables and constants, and the visualization of information
from previous assistants, the creation of if-then-else structures, selection structures (switch-
case), loops inside the dialogue (for, while), assignments between simple and complex
(objects) variables, and an assistant for mathematical operations and another one for strings.

The platform provides four basic dialogues types that cover the usual possibilities in
programming: based on a loop, based on a sequence of actions (or sub-dialogues), a switch
construct based on information input by the user (i.e. menu-based dialogue), or a switch
construct based on the value of a variable. Besides, empty dialogues, with no action inside,
can be created (used to specify the call to a dialogue that will be defined completely
afterwards) so that a top-down design of dialogues can be made; in this case, the dialogue
type is selected whenever the designer tries to edit the empty dialogue. Another possibility is
dialogue cloning, useful when the dialogue to be defined is very similar to an existing one.

The tool also provides the possibility of manually creating dialogues to obtain
information from the user (called DGet), and dialogues to provide information to the user
(called DSay).

Figure 3.5 shows the output generated by this assistant. The first section shows the
global variables of the application, which store the slots defined for the application that may
need to be accessed in all dialogues (for over-answering, as we will see in Section 4.5.4). The
actions executed in the two dialogues that form the bank transfer (included in the xReaction
tag) are also shown: SFM_TransactionDialog (number 1) and SFM_GetTransactionAmount
(number 4). In the first one, there is a call to a sub-dialogue (marked as number 2) that fills in
the source and destination accounts data using mixed-initiative; then, there is a call (marked
as number 3) to the second dialogue. In the second dialogue there is a call to a sub-dialogue
that collects the amount to be transferred (number 5), a call to the database access function

Speed Up Strategies for the Creation of Multimodal and Multilingual Dialogue Systems

64

(number 6), using as input parameters the three items already collected, which returns a
Boolean variable called TransactionPerformed, and a call to the next two dialogues specified
in the SFMA (numbers 7 and 8).

Figure 3.5. Code generated by the RMA for the bank transfer example.

3.4 Dialogues Layer

In this layer, the dialogue is completed with all modality and language dependent
aspects. It has four main assistants that are dedicated to the following tasks:

• To define the user levels and their settings (UMA, see Section 3.4.1),

• To complete the modality dependent aspects of dialogue design (MERA-Speech,
see Section 3.4.2),

• To complete the language dependent aspects and the input and output concepts
for each modality (MEA, see Section 3.4.3) and finally,

Chapter 3: Platform Architecture

65

• To unify all the information and generate the execution scripts according to the
modality (see Section 3.4.5).

Finally, section 3.4.6 briefly outlines some additional assistants incorporated to the
platform for specific tasks related, mainly, with the speech modality.

3.4.1 User Modelling Assistant (UMA)

This assistant, created by the partners of the GEMINI project, allows the specification
of different user levels and settings for each dialogue in the application in order to provide a
more personalized attention to the final user. It uses as input the default confidence and error
values defined in the ADA, and all DGet dialogues defined in the RMA.

To start with, all the values are specified first for the defined user levels, but later they
can be customized for each specific dialogue state, so that all settings can be user-level
dependent and dialogue state dependent. This way, the designer may impose, for example, a
stricter confirmation for some critical data such as the amount in a banking transaction.

The designer can specify different settings as the possibility of barge-in for a particular
user level, the maximum number of retries if there is an error (considering several error
types), the maximum timeouts for several events, etc. Besides, the confidence levels that
should be used in recognition for each user level are specified as they determine the
confirmation type that should be used (see Section 4.6.2, page 113): no confirmation
(confidence between the specified value and 1.0), implicit (confidence between the specified
value and the value for ‘no confirmation’), explicit (between the specified value and the value
for ‘implicit’) and repeat (between 0 and the value for ‘explicit’).

The decision as to the current user level is made by a runtime component that is called
after each interaction in the script generated by the platform and that sets the common
internal variable that is used in the final script. This way, the platform is independent of the
user modelling technology that is used.

3.4.2 Modality Extension Retrieval Assistant for Speech (MERA-
Speech)

This assistant adds special subdialogues that complement the dialogues already defined
for the application in the RMA. This way, the designer can include complex dialogues to deal
with modality specific problems. This assistant was completely created and developed by the
author of the thesis during the GEMINI project, and it is the second assistant with the higher
number of accelerations in the platform.

In this thesis, the research has been focused on providing semiautomatic solutions for
two basic problems that are specific to the speech modality: the presentation of object lists in
several steps (applied to DSay dialogues concerning a list) and confirmation handling, i.e.
how to handle recognition errors in dialogues that obtain information from the user (applied
to DGet dialogues). The input is the database model specified in the DMA and the dialogues
defined in the RMA (especially those marked as DGet and DSay for lists). The details
concerning the accelerations for this assistant are outlined in section 4.6.

Speed Up Strategies for the Creation of Multimodal and Multilingual Dialogue Systems

66

3.4.3 Modality and Language Extension Assistant (MEA)

Developed by the partners of the GEMINI project, in this assistant the language
dependent aspects of an application (input and output prompts/concepts) are specified for
each modality. For the speech modality, the extensions consist of links to grammar and
prompt concepts, while for the Web modality the extensions consist of links to input and
output concepts. In both cases, the extensions are language independent. In addition,
language dependent information, specifically wording for both speech prompts and Web
output concepts, is also set here. All this information is saved in different files for each
language and modality, whose content and organization is explained at the end of this section.
As input, it uses all dialogues defined in the RMA and MERA-Speech, together with the
specification of the user levels from the UMA. The assistant detects the input/output
dialogues (DGets and DSays) defined in previous assistants and asks the designer to define
prompts and recognition grammars for them. In addition, the assistant lets the designer define
the help prompts for high-level dialogues that are not classified as input/output.

For the speech modality, several prompts for each input dialogue have to be defined:
the default one, for the different user levels and for all possible recognition errors. In all
dialogues, the input/output parameters and the global variables can be used as part of the
prompt. To speed up the process of typing all these prompts, the assistant offers two
possibilities: reuse prompts already available for the current application or reuse prompts
generated in previous applications and saved as libraries. Prompts are set using three
alternatives: text-to-speech (TTS) prompts, pre-recorded audio files, or generated by a
Natural Language Generation (NLG) module in the runtime system.

In case of TTS prompts, the SSML 46 markup language can be optionally used. The tags
considered for the runtime system were as follows:

1. ‘‘emphasis’’ (to emphasize specific fragments), with the following values for the
‘‘level’’ attribute: ‘‘strong’’, ‘‘moderate’’, ‘‘none’’, and ‘‘reduced’’,

2. ‘‘break’’ (a break of a specific duration in ms), with the ‘‘time’’ attribute,

3. ‘‘prosody’’, with ‘‘pitch’’, ‘‘rate’’ and ‘‘volume’’ attributes. To specify them, in the
platform we have used a relative value as a positive or negative percentage, e.g.,
‘‘+10%’’.

Once the prompts for the main language have been specified, the designer has to
specify them for the additional languages. This process is accelerated by using the main
language prompt as a template to edit the string parts of a prompt (see section 4.7.1.1, page
116). These prompts can be specified either at once for one language and for all dialogues, or
for each dialogue for all additional languages. Figure 3.6 shows an example of the creation of
a TTS prompt for the dialogue DGet_ConfirmTransaction and for the default user (number
1). The assistant allows the designer to select the arguments of the dialogue to be inserted
into the prompt (number 2), as well as to use SSML tags (number 3). The final prompt is
displayed to the designer in 4. It is also possible to include a link to an audio file in order to
allow hybrid prompts (number 5). Besides, the assistant allows the designer to use audio
prompts instead TTS (number 6) or to use a natural language generator module called during
the real time system (number 7).

46 http://www.w3.org/TR/speech-synthesis/

http://www.w3.org/TR/speech-synthesis/�

Chapter 3: Platform Architecture

67

Figure 3.6. Example of the definition of a TTS prompt using SSML tags.

For the Web modality, the procedure is somewhat different because of different
concepts for user interaction. On the one hand, each output concept corresponds to some
xHTML markup code, optionally parameterized. On the other hand, each input concept
corresponds to a Web form control like a text input field, a text area, a select or a choice box,
etc. In addition, a set of attributes can be defined for each component: text elements for a
label, a hint, an alert, or an error message can be set and the rendering behaviour of the
control can also be defined.

As output, the assistant generates four different files for each modality. The first file
contains information regarding every dialogue in the application and references to the
input/output concepts used in each one. Figure 3.7 shows the code for this file for the speech
modality and for the dialogue that collects the amount to be transferred in the bank example.
The figure highlights the use of the tag Realisation because it tells the linker that this code is
an extension of a dialogue already defined in the RMA. Besides, the tag xPresentation holds
the information related to the system prompt concepts (marked as number 1); the tag xFilling
gives the information related to the behaviour of the recognizer, i.e., the prompts used to
inform the user of an unrecognized utterance (number 3) and no input detected (number 4),
together with the grammar to be used in the recognition (number 2).

As mentioned previously, multilinguality is achieved using concepts, so all definitions
here for prompts and grammars refer to concepts (PC suffix for prompts and GC for
grammars). These references are solved in auxiliary files that are described below. Finally,
we should mention that for the Web modality the same tags are used (xFilling and
xPresentation) but, instead of prompts and grammars, input (using the tag InputControlCall)
and output (tag OutputControlCall) concept references are used.

Speed Up Strategies for the Creation of Multimodal and Multilingual Dialogue Systems

68

Figure 3.7. GDialogXML code generated by the MEA for the speech modality.

The second file, for the speech modality case, is called ‘grammar concept file’, and it
contains the association between ‘grammar concept’ (GC) and the filename of the
grammar(s) that will be used in the real-time system, so it is language independent. As we
have different grammars for each language, to achieve multilinguality the grammars in all
languages have the same name but are in separate directories; the directory name is the
language code, so the real-time application just concatenates the language code with the
filename to retrieve the correct grammar. The assistant allows the specification of different
grammar formats such as JSFG, SRGS and grXML. Besides, during this step, a different
grammar for the speech recognizer can be also specified. In this way, the assistant allows the
specification of stochastic grammars (i.e. n-gram based language models) that can be used by
the ASR, and the specification of rule-based grammars for the Natural Language
Understanding module (NLU). The main motivation behind this behaviour was that at present
stochastic grammars are not fully supported in JSGF or SRGS grammars. For that reason, our
NLU and ASR runtime modules were properly configured to accept both source of
information.

The third file is the ‘prompt concept file’ and it contains, for each input/output
dialogue, the association between ‘prompt concept’ (PC) and the name of the text concept or
the audio file that has to be used for it (not the prompts for each language). The fourth file,
called ‘text concept file’, holds the actual prompts (the real texts in SSML format as we
mentioned above) that correspond to the text concepts defined in the ‘prompt concept file’.
Therefore, this file is language dependent and it is repeated for every language and, again, it
is saved with the same name in separate directories. This separation might seem complicated,
but it is the only way to ensure multilinguality and the flexibility to handle audio files,
prompts, etc., in the same application.

For the Web modality, similar files are generated, but now, instead of the ‘grammar
concept file’ and ‘prompt concept file’, the files are called ‘input concept file’ and ‘output
concept file’, again language independent, which describe the appearance of each input or
output item (radio button, submit button, secret text, labels, combo boxes, lists, etc.). They

Chapter 3: Platform Architecture

69

also include a reference to the text concepts that they use, which are also specified in a ‘text
concept file’ just like the speech modality.

3.4.4 Dialogue Model Linker (DML)

This module was developed by the partners of the GEMINI project and it is the
responsible of generating one file for each selected modality where all the information from
previous assistants is automatically linked together: dialogues, actions, input/output concepts,
prompts and grammars, etc.

The final dialogue model is a combination of the files produced by the RMA, the
MERA-Speech and the MEA. All these models are linked together by filling different
sections of GDialogXML dialogue units; see [Hamerich et al, 2003] for further information.

3.4.5 Script Generators

In this section, the modules that convert the dialogues coded in GDialogXML syntax
into the execution scripts needed for each modality (VoiceXML and xHTML) are described.
These modules were developed by the partners of the GEMINI project, but some
modifications were introduced by the author of the thesis in the VoiceXML generator in order
to adapt it to the runtime system described in section 3.5.3. To carry out the process, they
solve the problems and limitations of each standard and manage those issues regarding the
handling of multilinguality, database access, the preparation of prompts or Web text, and the
handling of concepts in the language-independent specification of the dialogue.

One important issue is how the system handles in real-time a prompt that includes
information returned by a database query. To solve this, the script generators include one
global variable that codes the language of the service with an identifier in ISO639-1 format
(language code) followed by an identifier ISO3166 (country code). This variable is set by the
language identification module at the beginning of the session and it is always passed as an
argument to all database access functions specified in the DCMA, where it is concatenated
with the field name that is going to be retrieved. Obviously, the database (there is a single
database for all languages) should contain the same information for each language used in the
service using fields with the same base name but different codes as suffix, e.g.,
info_text_en_UK for the field with the information in English, info_text_es_ES with the
information in Spanish, etc. Once the query is made, the right variables are filled in and the
information is provided to the user in the correct language.

3.4.5.1 VoiceXML generator and connection with the runtime platform
Using the file created by the linker (DML) in the previous step for the speech modality,

this module generates a file in VoiceXML format for each language used in the service.

The script generator for VoiceXML has to overcome the limitations imposed by this
language in its version 2.0. The main limitation is probably that VoiceXML does not allow
returning calls (subroutines), which are needed to solve the problem of presenting lists of
objects (see Section 4.6.1, page 110), as ordinary statements (returning calls are only allowed
at certain positions). Therefore, all complex statements and value expressions have to be
“flattened” into simpler operations and into calls to intermediate dialogues that allow jumps
to other states in the dialogue flow.

Speed Up Strategies for the Creation of Multimodal and Multilingual Dialogue Systems

70

Besides, VoiceXML does not allow input fields to be global variables; however, we
used global variables for over-answering so that they can be filled in previous states and do
not lose their contents when jumping to other states. Therefore, a synchronizing strategy had
to be implemented to map global variables to local input fields and vice versa. To handle
over-answering it is also necessary that, if a slot is optional or it is already filled, the
recognition process may be omitted. In VoiceXML all the slots in a form must be filled, so
we introduced additional intermediate variables and conditional blocks to find out whether
the slots associated to over-answering are filled or not. Another issue is how to clear the
contents of a slot in a form and jump back to previous dialogues or states, which is another
behaviour needed for list handling, as the VoiceXML manager would automatically repeat
the filling process for that slot and that is not the desired behaviour. To solve this, the
VoiceXML generator creates intermediate variables so that, when the slot has been cleared
intentionally, the filling process is not repeated.

When compared to other programming languages, VoiceXML lacks common
constructs for program logic, like loops (e.g. while and for). In general, the proposed solution
is to use an ECMA script, but this is useless when operations across fields or dialogues are
needed. In our case, we implemented a complex structure of blocks and calls that provides
these functionalities although it make difficult to debug the final script.

GDialogXML supports the idea of connecting services during runtime, e.g., services
providing access to databases, services generating prompts on the fly, and so on. The
VoiceXML generator implements these calls as HTTP requests via a CGI script. This CGI
script works as a data bridge and contacts the actual services. It is needed because it has to
produce VoiceXML code, since this is the only way to integrate dynamic data (result values)
into the dialogue flow. By using the bridge, the services are freed from the burden of
producing VoiceXML themselves. Although this solution works fine when transmitting data
to a database (i.e. updates procedures), several problems arise when the results from the
database have to be returned into the dialogue flow; besides, the script could be insufficient in
some applications, delaying and making difficult the design. In our case, we solved this
problem providing a general-purpose built-in script that dynamically generates the
VoiceXML code by using assignments of string constants to variables.

In order to generate prompts on the fly, the platform uses language-dependent JSGF
grammars, in which the correspondence between prompt and concept is specified, and the
recognizer would return in real-time the concept specified in the grammar instead of the
prompt. To increase performance, the VoiceXML generator uses a reference resolution
strategy for result values of the runtime services. This means that if the result of a service
request is a reference to a complex data object (e.g., a person), only the reference (consisting
of the identifying attributes) is transmitted. At the time when details of the object are needed,
the complete data structure of attribute values is transmitted. This is particularly important,
when the result of a service request is a large list of references to complex data objects, which
happens a lot when navigating through large information databases.

Another issue we found was that in order to simplify the reuse of the same VoiceXML
script for different languages (localisation), it would be useful to establish the external
representation of prompts by introducing prompt concepts that, in the real time system, can
be translated according to a global variable and looking up into the language dependent
prompt files. In the current platform, we create a different file for each language. On the other
hand, in VoiceXML there is no specification regarding how to identify the different active
recognizers. This could be interesting to accelerate the service, since several different

Chapter 3: Platform Architecture

71

recognizers can operate in parallel (i.e. one for continuous speech, other for isolated speech,
etc.). In the current platform, we solved this problem using the <property> tag.

Finally, the VoiceXML generator automatically creates global variables in the final
script, where the dynamic runtime values returned by the corresponding modules, are kept to
handle several aspects of the runtime system: the user level, the speaker identifier, the
confidence value from the last recognition, the current language, etc. The user level variable,
for example, is needed for switching prompts depending on the user level, which is set by
calling the User-Level-Detector runtime service.

In [Hamerich et al, 2003] and [Cordoba et al, 2004b] other limitations of VoiceXML
are described, together with some recommendations to improve the standard. It is important
to mention that they were submitted to the W3C for their consideration in future releases of
VoiceXML standard.

3.4.5.2 Web script generator
Using the file created by the linker (DML) in the previous step for the Web modality,

this module generates a file in xHTML format for each language used in the service.

Unlike the voice modality, for Web the distinction between the flow control, the data
and the presentation (e.g., buttons, images, frames) is not too clear. Nowadays, there are
many integrated development environments for the presentation part (Web editors), whereas
for the control and data access they have to be specified using script languages (e.g., perl,
php, python) or usual programming languages (e.g., Java, .Net). In other cases, the overall
flow control is supported by frameworks (Jakarta Struts...), but in general there is no
widespread language, so the task of integrating all of them is difficult. Therefore, the
objective of this assistant is not to compete with widespread Web editors but to provide a
complementary support to try to facilitate the separation between the modelling of the flow
control, the data and the presentation. To this end, the assistant automatically transforms the
GDialogXML models related to input and output concepts into xHTML files with embedded
xForms elements. This way, the generated files can be used as templates for Web designers
who can add additional design elements (xHTML tags, images, styles, etc.), while the
dialogue flow is preserved separately. A runtime interpreter for GDialogXML may execute
the dialogue model ‘‘as is’’ in the Web server environment to control the dialogue flow and
take care of the database transactions.

Thanks to this separation, the final script is platform independent and easily adaptable
to multiple display devices (browsers, PDA, public terminals, etc.). Although there are some
limitations with xForms as not all browsers support them, the use of plug-ins or rendering
programs in the server provides that support. Besides, the use of xHTML tags could favour
the integration of the two modalities, in a future development, so that they can work at the
same time using the standard X + V.

Although this module is an important part of the design platform, because it provides
one of the modality capabilities, in this thesis it will not be described in detail since the author
did not contribute to this module.

3.4.6 Auxiliary Assistants

In addition to the assistants described above, there are some other assistants that
complement the platform and for the voice modality. All these assistants were developed by

Speed Up Strategies for the Creation of Multimodal and Multilingual Dialogue Systems

72

the partners of the GEMINI project but some accelerations and minor modifications were
introduced by the author of the thesis.

3.4.6.1 Vocabulary builder
The first one is the vocabulary builder (VB) which prepares the vocabularies that will

be used by the recognizer. Thus, this component gets input from the language model
resources and produces the lexicon. The lexicon contains the phonetic transcription of each
word and in most cases the phonetic alternatives. There are equivalent dictionaries for each of
the different languages allowed in the platform.

3.4.6.2 Language modelling toolkit
A second assistant is the Language Modelling Toolkit (LMT) that allows the designer

to specify the grammar files that will be used in the runtime system to assign a meaning
representation from the different user answers to the system questions. The assistant allows
the creation and edition of grammars in JSGF format both for recognition and for prompt
generation using the Natural Language Generation (NLG) module. More details can be found
in section 4.7.1.2 and in [Georgila et al, 2004].

3.4.6.3 Diagen
The third assistant is called Diagen. The assistant allows the manual creation and fine

tuning edition of the different GDialogXML models and libraries generated by the assistants
of the AGP. Originally created during the development of the GEMINI project, it was later
extended and improved by [Hamerich, 2008] to allow the creation of new speech dialogues,
and to adapt it to new user environments and updates of the GDialogXML specification. In
addition, the author of this thesis also contributed to the development and extension of this
assistant in order to allow the creation and edition of some of the models generated by the
platform. In detail, the assistant was extended thanks to the possibility of creating models for
the DMA, DCMA, SFMA, and MERA-Speech assistants, as well as some minor changes to
the process of generating models for the RMA assistant.

Several accelerations were included in this assistant in order to simplify model edition
or to allow the creation of models from scratch. The main acceleration is the possibility of
creating any section of the GDialogXML specification with minimum effort. Instead of
typing all the tags nodes and children, the assistant uses a set of pop-up windows that are
sequentially displayed according to the information that the designer needs to specify.

Figure 3.8 shows an example of the process for creating, from scratch, a dialogue for
the retrieval model assistant. According to this figure, in (number 1) the designer specifies
that the new dialogue will require the definition of at least one global variable and dialogue.
After accepting, a new pop-up window is displayed (number 2) allowing the designer to
specify the information for the global variable to add. In order to add new variables, the
designer only needs to check the corresponding checkbox (i.e. Enter another variable) and a
similar pop-up window will be displayed after accepting the current one. The next step
(number 3) is the definition of the dialogue state. In this case, the designer first defines some
attributes of the new dialogue such as name, returning flag (i.e. a Boolean property that
indicate if after a transition to another dialogue state the system will require to
unconditionally return to the calling dialogue), etc. Besides, the new pop-up window allows
the specification of different properties for a dialogue such as variables, calls, help messages,
reactions, etc. In this case, the designer checks two elements to be defined.

Chapter 3: Platform Architecture

73

Figure 3.8. Process for creating a dialogue in GDialogXML using the Diagen assistant

In the example, the designer selects the specification of the help concept, defined using
the pop-up window marked as number 4, and the reaction procedure, marked with number 5.
A brief glance of number 5 gives a glimpse of the complexity of the actions that it is possible
to define using this pop-up window. For instance, it is possible to define conditional actions,
loops, calls to other dialogues, variable assignments by reference or value, repetitive
processes, etc. After clicking on any of the buttons of this pop-up window, the system

Speed Up Strategies for the Creation of Multimodal and Multilingual Dialogue Systems

74

automatically pastes the text of a default template that the designer carefully needs to
complete.

Considering that this is the only acceleration provided by the platform at this very critic
point of the design, most negative commentaries during the objective evaluation were
focused on this step, together with the total time required to complete the dialogue. Finally,
after accepting, the system returns to the main window of the assistant (number 6). In this
case, the GDialogXML code generated from all the information collected and defined using
the previous windows is pasted into the workspace.

Although the main purpose of this assistant is to allow the fine-tuning of the models
generated with the AGP and its assistants, it was used during the objective evaluation of the
platform. The main reason was that this assistant includes some auto-complete templates and
advanced editing functionalities that were adequate to provide comparison results between
using this assistant or the accelerated assistants included in the platform when creating the
dialogue service. For more details regarding the evaluation, please refer to section 5.2.

3.5 Runtime System
Although all the voice scripts generated by the AGP can be executed and tested using

any VoiceXML interpreter that includes a basic speech recognizer or synthesizer, in our case,
with the objective of having more control over the final system, we decided to implement the
runtime system using proprietary modules and open source code. In this section, we will
describe in detail the main components of the runtime platform.

3.5.1 Speech Recognizer and Synthesizer

Regarding the speech recognition system, our group has developed a recognizer based
on continuous HMM with multiple Gaussians per state [Cordoba et al, 2001] trained using
the SpeechDat database in Spanish with more than 4000 speakers. Moreover, it is possible to
adapt the acoustic models using MLLR (Maximum Likelihood Linear Regression) or MAP
(Maximum A- Posteriori) techniques through the functionalities provided by Hidden Markov
Model Toolkit (HTK) 47. In this way, it is possible to use new records to improve the models
or to adjust them to a particular speaker or the acoustic environment of the final service
[Cordoba et al, 2006a].

Boris is the Text-To-Speech synthesizer developed in our group [Pardo et al, 1995]. It
is a concatenative diphone synthesizer where the fundamental frequency and duration of the
units are calculated automatically using several features from the input text and an Artificial
Neural Network [Cordoba et al, 2002][Montero et al, 2003]. In addition, the synthesizer is
able to process a subset [Cordoba et al, 2004b] of the SSML standard that allows the designer
to modify some characteristics of the voice.

47 http://htk.eng.cam.ac.uk/

http://htk.eng.cam.ac.uk/�

Chapter 3: Platform Architecture

75

3.5.2 Animated Agent Used by the Sign Language Translation System

As it was mentioned in chapter 1, one of the main goals of the platform presented in
this thesis is to provide the final service in multiple modalities and for different types of final
users with a minimum effort for the designer. For that reason, we worked in the creation of an
automatic procedure for helping designers to quickly translate the prompts of the spoken
dialogue system into a representation in the sign language that it is played afterwards by a 3D
avatar in order to let deaf people use the service.

The process of converting the speech or textual representation into the final visual
representation can be divided into two parts as presented in Figure 3.9. The first part is the
automatic translation of the prompts into the corresponding visual messages in the sign
language. The second part is the process of creating and storing the signs using the
appropriate format required by the avatar that plays the signs. In this section, we will focus on
the second part, leaving the first part, i.e. the full description of the machine translation
system and the work done to improve the translations, for sections 2.4 and 6.2.

According to [Timmermans, 2005], nowadays there are an estimated of one million
deaf people just in the 26 European states. For many of them, sign languages are their first
language for communication. In spite of what many people thinks, currently there is no a
single or universal sign language. All of them differ from each other in a similar way as
spoken languages, having its own grammar, syntax, lexicon, rules, etc.

Figure 3.9. Offline and Online process for creating and using sign language prompts

At the very beginning of this project, we thought that a simple interface displaying the
text of the prompt or the recognized sentence by the ASR was enough to allow deaf people to
use the service. However, as we were going further we realized that most deaf people have a
low ability to understand written text because they are used to communicate using the sign
language grammar that, as stated above, is different from the grammar used by hearing
people, or because many of them did not have access to academic studies. For these reasons,
it is very important for them to have access to information in their mother language. In order

Speed Up Strategies for the Creation of Multimodal and Multilingual Dialogue Systems

76

to provide this kind of visual information, we integrated, in the runtime system, a 3D avatar
called VGuido 48. This avatar was the result of the European project eSIGN (Essential Sign
Language Information on Government Networks). It constitutes one of the most important
efforts in developing tools for the automatic generation of Sign Language contents. Although
the tools developed in eSIGN were oriented to translate Web content into Sign Language, and
as a result it is being used right now on local Government websites in Germany, the
Netherlands and United Kingdom, the 3D avatar allows a quick generation and playing of
any content in the corresponding Sign Language.

Figure 3.10. Example of process to design and play a sign with VGuido.

For the design stage, the toolkit has a graphical editor that allows the creation of any
kind of sign through dynamic configurations of different elements of the avatar body (i.e.
head, left and right hands, eyes, trunk, etc.). The process is depicted in Figure 3.10. The first
step is to define the gloss (i.e. the written word representing semantic information of the
sign), in the example it is the capital word: LAWYER. The second step is to define the gloss
using the HamNoSys glyphs representation. HamNoSys glyphs describe the hand-shape,
hand configuration, location, and movement that the avatar has to play. The editor allows the
creation of all the possible symbols covered by the HamNoSys standard using the pop-up

48 http://www.sign-lang.uni-hamburg.de/eSIGN/AnnualReport2003/VGuido_Internet.html

http://www.sign-lang.uni-hamburg.de/eSIGN/AnnualReport2003/VGuido_Internet.html�

Chapter 3: Platform Architecture

77

window in step 3. Although not covered by HamNoSys notation, other information such
mouth, eyes, shoulders, speed, size of the movement, etc. can also be included to define the
gloss through other pop-up windows. In the figure, we have included the J01, HL, RL and
WR symbols (step 1) to represent a specific movement of lips, face and head for instance.
The next step, number 4, is to create a XML representation of the avatar movements for the
corresponding gloss. The XML is written using a proprietary language called SiGML
(Signing Gesture Markup Language) that are used later by the runtime system to concatenate
the sentence to play to the user (i.e. the signing system constructs human-like motion from
these scripted descriptions of signing motions). These signing motions belong to “Gestural-
SiGML”, a subset of the full SiGML notation, which is based on the HamNoSys notation for
Sign Language transcription [Prillwitz et al, 1989]. Finally, in step 5, the designer can play
the sign with the avatar to verify the motion of the sign.

At runtime, the system uses the translated sentence, consisting of a sequence of glosses,
and picks up the corresponding predefined file for each gloss containing the sequence (script)
of the animation coded written in SiGML. Then, using the script, the avatar builds and plays
a human-like movement that represents the sign. The animation consists of a sequence of
temporal frames that define a static position for the avatar at each moment.

An important advantage of this agent is that it is possible to store these scripts files (one
for every gloss in the vocabulary) in order to sequentially concatenate them to form a
sentence. In this way, in order to play a Sign Language sequence from a defined prompt in
the system two conditions have to be fulfilled: a) the script for the sign must exist; b) the
prompt has to be translated from its written representation into a sequence of signs following
the grammar structure of the Sign Language.

The first condition cannot be easily made automatic since signs change from country to
country (even from city to city in the same country) and because the creation of every sign is
a time consuming task. However, after some time, it is possible to have a big number of signs
stored that simplify future developments.

Regarding the second condition, since, in general, dialogue designers do not necessarily
know Sign Language, it is hard for them to translate a defined prompt into a sign sequence, or
it could be too expensive to hire an expert to do this work. Then, an automatic solution can be
proposed. In this thesis, we propose an automatic solution based on machine translation
techniques (see section 2.4, page 41). In our platform, we have used free available software
for training the translation models and for translating sentences between both languages. In
our case, we used Giza++ [Och and Ney, 2003] and Pharaoh [Koehn, 2004] toolkits. These
open source programs provide all the required tools to train and run a phrase-based
translation system [Koehn et al, 2003]. A full description of the developed system in our
group can be found in [San-Segundo et al, 2006] and [San-Segundo et al, 2008]. In section
6.2, we will show how the quality of the translations can be improved using an adapted
language model with online counts.

3.5.3 Distributed Platform and VoiceXML Interpreter (OpenVXI)

Finally, another important component in order to run the VoiceXML script generated
by the AGP is the interpreter or browser that executes the script and performs the connections
with the other modules (recognizer, synthesizer, database access, telephonic interface, etc.).

Speed Up Strategies for the Creation of Multimodal and Multilingual Dialogue Systems

78

Currently, several commercial and free applications can be downloaded from internet and
used as VoiceXML browser. For instance, we can mention VXI VoiceXML browser 49 for
Asterisk PBX, VoiceXML Gateway Software 50, Hewlett-Packard OpenCall Media
platform 51, JVoiceXML 52, PublicVoiceXML 53, among others. The selected interpreter for
this thesis was the open source library OpenVXI 54 [Eberman et al, 2002] supported by
Vocalocity Inc. It consists of a collection of configurable components that the developers can
use, modify, or completely substitute with their own code where appropriate, supporting
also proprietary grammar formats, URI types, and VoiceXML objects. The platform includes
basic telephony functionalities, an XML parser to process VoiceXML and JavaScript files,
processing of user input, a complete implementation of the Form Interpretation Algorithm
(FIA) following the specification 2.0, basic debugging functionalities, simulated speech
recognition, and generation of prompts and text-to-speech. Since the source files are
available, there were not restrictions to adapt, mainly, the TTS and ASR interfaces to our
proprietary modules and platform. In [Cordoba et al, 2004a], [Cordoba et al, 2004b] and
[Hamerich et al, 2003], the process to adapt the browser to the characteristics of our runtime
platform are described in detail.

Another task that was undertook during the realisation of this thesis was the integration
of the runtime system into the distributed platform presented in Figure 3.11. This platform
was the result of the DIHANA project 55 [Hurtado et al, 2005]. The platform is made up of
seven modules that execute the different processes in a dialogue system. The architecture also
defines the different messages the modules can use to share information among them.

Each module, when initialized, opens a specific port that allows the communication of
that module with the Hub and, in through it, with the other modules. The architecture allows
the communication between each module with all the others using sockets through the Hub
(represented by solid arrows in Figure 3.11). However, the common communication flow is
represented by dashed arrows.

The first module in the platform is the Dialogue Manager (DM). It is the most
important component in the dialogue system. It controls the dialogue flow according to the
answers and messages to be retrieved/presented from/to the final user, and with the
interaction with external knowledge sources (i.e. database, language identification module,
user models, etc.). Another important task performed by the DM is to provide solutions for
miscommunications during the dialogue, such as inaccurate meaning representation of the
user’s input and the output of the language-understanding component, or discrepancies
between the information the final user wants and the available in the database. In this case,
the DM has to manage different clarification and verification strategies according to the
problem. In the current runtime system, the DM corresponds to the OpenVXI interpreter. Its
function is to load the dialogue flow as a scripted sequence of states, with its transitions and
procedures, coded in VoiceXML.

49 http://www.i6net.com/products/vxi/
50 http://www.visibridge.com/
51 http://www.hp.com/
52 http://jvoicexml.sourceforge.net/
53 http://publicvoicexml.sourceforge.net/
54 http://sourceforge.net/projects/openvxi/
55 http://www.dihana.upv.es

http://www.i6net.com/products/vxi/�
http://www.visibridge.com/�
http://www.hp.com/�
http://jvoicexml.sourceforge.net/�
http://publicvoicexml.sourceforge.net/�
http://sourceforge.net/projects/openvxi/�
http://www.dihana.upv.es/�

Chapter 3: Platform Architecture

79

Figure 3.11. Distributed architecture for the runtime system

The interpreter also provides methods for remote access to the service database using a
HTTP request to a Web and servlet servers (Apache and Tomcat server respectively in the
current implementation). The procedure is exemplified in Figure 3.12. When the DM finds a
subdialog tag with a url address in the VoiceXML file (number 1), it calls the Apache server
converting the parameters in the namelist attribute into a http request (number 2) to the CGI
script file, i.e. dc_script.cgi in the example, which in turn prepares the call (number 3) to a
Java servlet executed by the Tomcat server. The servlet performs the database access using
the corresponding SQL instruction (number 4) and retrieves the information back to the
Apache server (number 5). Finally, the cgi file in the Apache server transforms the
information (number 6) into a dynamic VoiceXML file (number 7) that the DM uses to get
the DB results and to present them to the final user.

The next component in the distributed architecture is the Natural Language Generator
(NLG). This module is responsible of generating a natural language message that conveys the
information retrieved from the database or the different messages when the system needs to
provide a confirmation or clarification message to the user. [McTear, 2004] describes three
main approaches for language generation: canned text, template filling and planning.
VoiceXML supports the first two. In the current platform, the canned text can be supported
when a database field contains the textual description of the information to be provided to the
user. For the second approach, the VoiceXML file has to specify different prompts, with
slightly variations, according to different situations, e.g. when the system cannot recognize a
spoken utterance the first, second or third time, or it can specify different message according
to the user level or number of retrieved items (see section 3.4.2 and 3.4.3, page 65), etc. Since
the language generation is ‘embedded’ into the VoiceXML file, this module does not need to
be present in the real-time system.

Speed Up Strategies for the Creation of Multimodal and Multilingual Dialogue Systems

80

Figure 3.12. Procedure to retrieve information from the database using the runtime system

After the natural language generator module constructs the message to be presented to
the user, the TTS module converts it into a spoken form. The simplest case is to play a
previously recorded message, with the possibility of filling slots with the information
retrieved from the database. However, in most cases the TTS plays the message provided by
the language generator. The process involves analyzing the text message to convert it into a
linguistic representation (i.e. phonemes) that can be used by the speech generator to produce
the synthetic speech.

The next module is the audio server; it has two main functions: a) to play to the user the
synthetic speech (i.e. audio samples) received from the TTS, b) to collect the audio input
from the microphone/telephone that the final user uses to communicate with the system. The
module can send directly the audio samples to the speech recognizer module or it can first
process the samples in order to send audio features (i.e. MFCC, delta and delta-delta features)
instead.

The next module in the platform is the Automatic Speech Recognizer (ASR). After
processing the audio features, it produces an N-best list with the most probable sentences for
the given utterance. During this process, the recognizer loads the speech grammar that
restricts the sentences that the system can recognize. The language models, supported by our
platform, are stochastic n-gram models. Finally, the system also assigns a confidence score
for each word in the recognized sentence.

Then, the Natural Language Understanding module (NLU) loads the corresponding
semantic interpretation grammars 56 in order to analyse the recognized sentence and to assign
its meaning, i.e. interpretation, which is used later by the dialogue manager. In general terms,
the interpretation can be considered as a simple assignment between relevant sections of the
uttered sentence and the slots that the application defines. For instance, a sentence like: “I

56 http://www.w3.org/TR/semantic-interpretation/

http://www.w3.org/TR/semantic-interpretation/�

Chapter 3: Platform Architecture

81

want to flight from New York to London” can be “interpreted” as departure_city:NY and
arrival_city:London. Following the standard VoiceXML specification, our real time platform
allows two kinds of speech grammars: SRGS 57(Speech Recognition Grammar Specification)
and JSGF 58 (Java Speech Grammar Format) files. The main advantages of using these finite
state grammars were two. First, since these grammars specify, through a finite number of
rules, the whole set of grammatically correct sentences that the final user can speak to the
system, it was easy to use them to filter the n-best list of sentences recognized by the ASR
using statistical grammars that do not necessarily provide grammatical sentences but provide
robustness to the system. Second, the specification of both kinds of grammars defines special
tags that allow the semantic interpretation of the sentence at the same time. This way, it was
not necessary to include new parsers or modify the VoiceXML browser in order to use a new
grammar specification. The runtime platform allows both kinds of grammars to be referenced
in the VoiceXML file using inline or external links, and described in two formats, as
Augmented Backus-Naur Form 59 or in XML Form. In our runtime platform, the first format
was used for specifying the JSGF files, and the second one for SRGS files.

Figure 3.13. Example of a SRGS grammar file used by the NLU module in the run-time

system

Figure 3.13 shows an example of the SRGS file used in our banking application. In this
example, there are three rules, one public (MoneyQuantity) and two privates (Number and
Currency). The public rule contains the sentence the user can speak, including references to
the private rules for completing the sentence. The one-of element identifies the set of
alternative elements for the private rules. In this case, the recognized sentence must contain at
least one of these items. Finally, the item element includes a special label tag, [CDATA] that

57 http://www.w3.org/TR/speech-grammar/
58 http://www.w3.org/TR/jsgf/
59 http://rfc.net/rfc2234.txt

http://www.w3.org/TR/speech-grammar/�
http://www.w3.org/TR/jsgf/�
http://rfc.net/rfc2234.txt�

Speed Up Strategies for the Creation of Multimodal and Multilingual Dialogue Systems

82

defines the semantic interpretation for each item. In the example, the semantic interpretation
for the Number rule allows the conversion of the string one hundred into its numeric
representation (100). This number is then assigned to the slot number as semantic
interpretation.

Another important issue performed in this module is related to the confidence given to
the recognized sentence and to the confidence assigned to each word in the sentence (this
confidence can be different to the one provided by the speech recognizer). Several
methodologies have been proposed for assigning these confidences [Jiang, 2005][Ferreiros et
al, 2005][San-Segundo et al, 2001b]. In our case, the module does not modify the confidence
at word level given by the speech recognizer, but it assigns as sentence confidence the mean
of the confidences values assigned to each slot, not words, in the recognized sentence (see
Eq. 3.1).

∑=
N

i
iconfslot

N
ConfSentence _1_

Eq. 3.1

The idea of not including all the words in the equation is to avoid contributions from
spurious or non-relevant words. Finally, this confidence is assigned, at run-time, to a global
variable called fConfidence that is used in the flow defined in the Modality Extension
Retrieval Assistant for Speech (MERA-Speech, see sections 3.4.2 and 4.6.2, pages 65 and
113) for the confirmation handling (i.e. for handling nomatch, explicit, implicit and none
confirmation).

3.5.4 Portability and Use of Standards

Amongst the main objectives of our platform are portability, meaning independence of
the operating system and the runtime platform, scalability, widespread use of standards and
feasibility to use existing or new technologies. This section describes our main efforts to
successfully fulfil these objectives.

In first place, all the graphic components of the platform have been programmed and
generated using Qt 60, which is a multi-platform (Linux, Windows, Mac, X11) integrated
development environment, compatible with C++, with which the designer can write code that
can be executed in different operating systems and development environments, e.g. for Visual
Studio, Visual .Net, Borland, just by recompiling. Thanks to Qt, it is possible to have a
platform version available for Windows and another one for Linux. Moreover, Qt provides
several methods and tools to quickly translate all texts in the graphical interface to adapt them
to another language.

We have also used the UTF-8 format (8-bit Unicode Transformation Format), which is
a variable-length character coding for the Unicode standard in multiple languages, to help us
in our target of multilinguality. Besides, it is the default coding in XML and it is used by all
internet protocols. This format is especially crucial in the definition of prompts and grammars
for all languages in the service.

60 http://www.qtsoftware.com/

http://www.qtsoftware.com/�

Chapter 3: Platform Architecture

83

3.6 Scope and Limitations

As we mentioned in the introduction (Chapter 1), the main objective of the platform is
to allow the construction of dialogue applications for multiple modalities and languages at the
same time. The generated applications can be used to access services based on database
queries/modification (e.g., banking, train reservations, share prices in real time, etc.) through
a telephone or a Web browser. Considering the limitations imposed by the standards used in
the scripts generated by the platform, it is limited in the current version to the execution of
each modality on its own.

In any case, we consider that the platform is well prepared for true multimodality. The
only missing things right now are new code elements for synchronization in our XML syntax
and a new code generator (e.g., for X + V). For the speech modality, the platform generates a
script using the VoiceXML 2.0 standard that allows a certain degree of mixed-initiative
dialogues. Regarding the Web modality, the platform generates pages made up with Web
forms (including radio buttons, textboxes, combo boxes, etc.), and coded using the xHTML
language, so they are accessible from a conventional Web browser.

Besides, the platform allows the coding of multimedia contents (e.g., videos,
recordings, images, etc.) as part of user output. Finally, because the output is coded in
xHTML, an expert designer might use it as a base to add other more complex audiovisual
resources, such as animations, interactive maps, etc., using specialized Web design tools.

In [Allen et al, 1999] four levels of mixing initiative are identified: unsolicited
reporting, sub-dialogue initiation, fixed subtask initiative, and negotiated mixed-initiative.
Unsolicited reporting allows an agent to inform others about critical information needed out
of turn. Sub-dialogue initiation allows the system to initiate a sub-dialogue in certain
situations, e.g., to ask for a clarification. In a fixed subtask initiative, the system keeps the
initiative for a task, and it executes the task interacting with the user when necessary. In the
negotiated mixed-initiative level, there is no fixed assignment of responsibilities or initiative,
so agents can negotiate who takes the initiative and proceeds with the interaction based on it.

On the other hand, [McTear, 2002] states that finite-state models are always fixed
system-initiative, while frame-based systems may permit some degree of mixed-initiative, but
that they may also be fixed user-initiative. Finally, [Allen et al, 2001] survey five levels of
systems in increasing complexity of software architecture: finite-state, frame-based, sets of
contexts, plan based, and agent based models. Considering this perspective, our platform
covers the first two levels of task complexity in Allen’s classification, and supports, as a
frame-based system, the lower levels of mixed-initiative interaction: unsolicited reporting and
a few cases of sub-dialogue initiation for the management of lists of objects (see Section
4.6.1, page 110).

Speed Up Strategies for the Creation of Multimodal and Multilingual Dialogue Systems

84

85

44 SSPPEEEEDD UUPP SSTTRRAATTEEGGIIEESS AAPPPPLLIIEEDD IINN TTHHEE

DDIIAALLOOGGUUEE DDEESSIIGGNN

In this section, all the strategies to accelerate the dialogue design are explained in
detail. The goal of all these accelerations is to reduce the design time by simplifying the
definition of the different dialogues, actions, and elements required to design and run the
service. Moreover, the proposed accelerations guarantee that the generated models are well
formed and optimized, as well as contribute to minimize the possibility of the designer
making mistakes in the design.

The important contribution of the thesis is that most of the accelerations presented in
this section are innovative and non-existing, up to the best of our knowledge, in any
commercial and research platform. In case that a similar acceleration is available in any of the
current platforms, we have tried to go one-step further by incorporating new automation
mechanisms.

In summary, the accelerations can be classified into three classes: Heuristic based, Rule
and Context based, and Wizards for simplifying the design process. The first one corresponds
to accelerations that use the database contents and the data model structure. The second one
corresponds to the application of configurable domain knowledge rules that we have
incorporated into the assistants taking into account our experience in designing dialogue
systems. On the other hand, context based accelerations correspond to strategies that use the
available information saved in previous assistants to generate different kind of proposals that
take into account the goal of each assistant and its level of access to the information. Finally,
the third one corresponds to other accelerations mainly based on the incorporation of
different wizard windows that help designers to automate/eliminate repetitive or common
procedures when designing dialogue applications. In relation with the accelerations based on
using the data model and database contents, it is important to mention that they can be
classified as content-independent and content dependent. In the former case, the system has
no access to the contents of the database; this situation is common in situations where the
developers have restrictions to access the database due to security reasons since the database
could contain confidential information regarding the clients (e.g. pin codes, credit card
numbers, etc.). In this case, the platform adapts the functionality of the assistants in order to
only exploit the data model structure, at the expense of reducing the number of accelerations
available to the designer. In the latter case, the platform has full access to the database
contents (i.e. tables and fields) allowing the system to propose new accelerations such as full
custom classes and attributes or new dialogue proposals, in addition to the already available
accelerations provided by using the data model structure.

Defining a ranking of importance of the proposed accelerations is not an easy task as
each one contributes to the definition of the service. However, considering the level of
innovation in comparison to other platforms and the effort we did for allowing them in the
platform, we can be sure that the accelerations included in the RMA (section 4.5) are the
most important ones since this is the assistant where the higher number of information has to
be defined in the entire platform. This way the possibility of automatically proposing the
actions for each assistant and the possibility of creating dialogues combining mixed-initiative
and over-answering capabilities are really important. On the other hand, all the accelerations

Speed Up Strategies for the Creation of Multimodal and Multilingual Dialogue Systems

86

included in the MERA-Speech assistant are the second most important accelerations for two
reasons. First, because we could not find any similar kind of assistants in other platforms for
solving the problem of presenting lists of results and confirmation handling, leaving the
solution to the designer without offering any kind of predefined proposal or leaving the
solution to the ASR engine used in the real-time system. In second place, because the
complexity of defining all the flow for the presentation of results and confirmations
considering different conditions (e.g., number of items retrieved, levels of confidence and
number and type of the slots to be confirmed) required the creation of innovative templates
described in detail in Appendix C.

The chapter is organized as follows: section 4.1 describes the heuristic information
extracted from the database contents in order to accelerate the design in different assistants of
the platform. Section 4.2 describes the accelerations to create the object-oriented
representation of the data model structure used by the platform. In section 4.3, the
accelerations for creating the prototypes of the functions used by the runtime system to access
the backend database are described. Sections 4.4 and 4.5 describe the accelerations
implemented in the assistants for creating and complementing the state flow model of the
dialogue service. Section 4.6 explains the accelerations implemented in the assistant that
defines the dialogue flow for the presentation of lists of objects retrieved by a database access
and the confirmation handling for the speech modality. In section 4.7, the accelerations for
creating speech prompts and grammars are explained. Finally, section 4.8 outlines the
conclusions of this chapter.

4.1 Heuristics
In order to accelerate the design of the service in different assistants, we have first

implemented a new module that automatically extracts heuristic information from the
database contents when it is available. These heuristics are obtained using an open SQL
query that retrieves all the information from every table in the database. The system
automatically collects information regarding the name and the number of the different tables
and fields, and the number of records for every table. In addition, for each field the following
features are also collected:

a) The average length in characters

b) The average number of words

c) The vocabulary size (number of words that are different)

d) The proportion of values that are different

e) The field type

f) The number of empty values

These features, grouped or individually, are mainly used to accelerate the design or to
improve the presentation of information in many assistants of the platform, as we will show
in the following sections. For instance: (a), (b), (c) and (d) have been used to detect candidate
slots to be requested using mixed-initiative dialogues (see section 4.4.3, page 99), (e)
accelerates the creation of the data model structure (section 4.2.1, page 89) and to create and
debug SQL statements (section 4.3.2, page 93), (f) is used to sort by relevance the attributes
displayed by the wizard when creating the database structure (section 4.2.1, page 89) and
when proposing dialogues to retrieve information from the user in the RMA (section 4.5,
page 101).

Chapter 4: Speed up strategies applied in the dialogue design

87

An important issue we observed when retrieving the field type was that sometimes the
metadata information provided by the SQL function was incorrect due to: a) the driver for
accessing the database was only able to return a limited number of field types, hence some
types like Boolean or dates were mapped as integer or string types respectively, b) the
designer of the database defined a field using a generic type such as string or float when they
actually corresponded, for instance, to dates or integers, and c) we found problems for
mapping special types such as hyperlinks, or currencies, etc. into the types supported by the
platform.

In order to correctly identify the field type, which results in a considerable reduction of
the number of times that the designer will need to change the proposed type for a given
attribute when creating the classes (see Figure 4.1), we implemented a post-processing step to
confirm or reassign the types returned by the metadata information from the database using a
special SQL query. The post-processing is made using regular expressions (RE) to detect the
following types: integer, float, date, string, Boolean, empty fields, or mixed (e.g., URLs,
emails, binary info, etc.). During this step, the system analyzes all the non-empty values for a
given field and selects as field type the one that appears more than 90% of the times. The
exceptions to this criterion are: a) a numeric field is considered integer if all its records are
classified as such; if not, it is classified as a float, b) the empty type is assigned to fields
containing more than 95% of the time empty values.

With the purpose of analyzing the performance of the regular expressions, an objective
evaluation was carried out. In this evaluation, twenty-one databases, most of them available
online, were retrieved and visually inspected field by field. In total, there were 109 tables (an
average of 5 tables per database), 767 fields and 610,506 records.

 Real Type
Integer Float Date String Blank Mixed Bool Total

R
E

 T
yp

e

Integer 205
94.0%

2
0.9%

0 7
3.3%

1
0.5%

0 0 215

Float 0 60
96.8%

0 1
1.6%

1
1.6%

0 0 62

Date 0 0 43
100%

0 0 0 0 43

String 0 0 0 336
99.1%

2
0.6%

1
0.3%

0 339

Blank 1
2.8%

0 0 1
2.8%

34
94.4%

0 0 36

Mixed 2
6.7%

4
13.3%

0 8
26.7%

0 16
53.3%

0 30

Bool 5
11.9%

0 0 0 0 0 37
88.1%

42

Total 213 66 43 353 38 17 37 89.6%

Table 4.1. Confusion matrix for automatic field types detection comparing the human
classification (real type) and the proposed type by the system (RE type)

Speed Up Strategies for the Creation of Multimodal and Multilingual Dialogue Systems

88

Table 4.1 shows the performance of the different regular expressions (RE) when
compared with the classification made by a human evaluator. According to this table, the
average recognition is 89.6%, obtaining the best rates for dates, strings, and numeric
quantities, which are the most common types in most databases. Analyzing in detail the
misrecognitions, 0.9% of floats were incorrectly detected as integers due to values such as
2.0, 30.0, etc. which were automatically returned by the database driver without the decimal
part. Another source of errors was detecting some numeric quantities due to special symbols
such as dashes, percentages, or the euro symbol, which were incorrectly interpreted as a
string type (3.3% and 1.6%). The major problems occurred for the Mixed type. Here, the
system was not able to distinguish between this type and the String type since they are, in
practice, the same. However, we wanted to separate them classifying as Mixed things as:
URLs, emails, long strings, etc., since for a speech recognizer they may be handled using
different strategies (e.g. spelling, general grammars, etc.).

On the other hand, Table 4.2 shows the confusion matrix for comparing the type
retrieved by the driver and the real classification made by a human evaluator. Observe that
for some columns (e.g. blank, mixed and Boolean) the system cannot distinguish from its
actual type since the driver does not return them correctly (for instance, Booleans are
returned as integers, -1, 0, or 1) or because they do not exist as such but were defined for this
thesis only (blank and mixed). However, checking again Table 4.1 we can see that the regular
expressions were robust enough to provide a good performance for these special types.

 Real Type
Integer Float Date String Blank Mixed Boolean Total

D
ri

ve
r

T
yp

e

Integer 125 0 0 7 0 0 30 162
Float 37 40 0 0 0 0 0 77
Date 0 0 43 0 0 0 0 43

String 51 26 0 345 38 11 7 478
Blank 0 0 0 0 0 0 0 0
Mixed 0 0 0 1 0 6 0 7

Boolean 0 0 0 0 0 0 0 0
Total 213 66 43 353 38 17 37 767

Table 4.2. Confusion matrix comparing the human classification (real type) and the driver
classification (driver type)

4.2 Strategies Applied to the Data Model Assistant (DMA)

As described in section 3.2.2 (page 60), in this assistant the data model structure of the
service is created by the definition of object oriented classes. The objective of these classes is
to provide information about which fields in the database are relevant for the service and how
these fields can be grouped together. Therefore, we can think that the attributes in a class
correspond to the possible fields to be requested or presented to the user in one or more
dialogue states. Each class can be characterized by a list of attributes and optionally a list of
base classes (inheriting their attributes). The attributes may be: a) of atomic types (e.g.,
string, Boolean, float, date, etc.), b) complex objects, they refer to an existing class (e.g.
ObjRefr or ObjEmbed), or c) lists of either atomic type items or complex objects. Since this

Chapter 4: Speed up strategies applied in the dialogue design

89

is one of the first assistants in the platform, a significant effort was done in order to accelerate
the creation of the database structure and to include relevant information that can be used for
other assistants in the platform.

The main acceleration included in this assistant is the incorporation of a new wizard
window that uses the heuristic information described in the previous section to propose full
custom classes and attributes that the designer can use when creating the structure. In
addition, if the system has not access to the database, the assistant also provides the following
accelerations: a) re-utilization of libraries with models previously created, which can be
copied totally or partially, b) automatic creation of a class when it is referenced as an attribute
inside another one, and c) definition of classes inheriting the attributes of a base class. These
accelerations were incorporated during the GEMINI project by other partners of the project.

4.2.1 Semi-automatic Classes Proposals

In order to allow the designer to create custom classes selecting the tables and fields
from the database or from already existing classes in the model, we have included a new
wizard (see Figure 4.1) that using the heuristic (e), the field type (section 4.1, page 86),
automatically sets the field types in the wizard. For example, in Figure 4.1, the field type for
“minimum debit” in the database is string, but the wizard changes it to integer because all its
values are actually this type. In any case, this can be modified by the designer. Besides, in
order to first show the most important or relevant fields for each table in the database we
have included a simple mechanism to sort the fields in the assistant by relevance using the
heuristic (f), the number of empty values in a given field. This way, if the number is high,
then the system considers that it is unlikely that this field will be used to request information
to the user, then the attribute is placed at the bottom of the list and displays a warning
message when the attribute is selected.

Moreover, the assistant accelerates the design proposing automatic names when a new
class is being created; in this case, the proposed name is a combination of the selected
attributes. Besides, the system also proposes an automatic name when it detects that the class
or any attribute has the same name as a previously defined one; in this case, the proposed
name is the original name of the class/attribute plus a sequential number. Then, when the
designer finishes the creation of the class, the assistant automatically saves all the information
defined in the wizard window in the final GDialogXML file for this assistant. When the
designer selects an attribute from a field in the database, this information is also saved in the
output xml file using the GDialogXML tag xDataMAttr. In this way, subsequent assistants
will use this information to implement better acceleration strategies.

Finally, in order to reduce the information displayed and to make the wizard more
intuitive, the first time the designer uses it, if the number of tables in the database is too high
it is possible to select those that will be actually needed during the design. In addition, it is
also possible to customize the name of the tables in the database. This feature could be
especially relevant if the database designer is different from the dialogue designer or if the
names of the tables and fields are not very intuitive. . In case the designer uses a custom
name, the assistant will present the information of the table/field using the custom name,
although internally and when the final XML file is saved, the real name is used.

Speed Up Strategies for the Creation of Multimodal and Multilingual Dialogue Systems

90

Figure 4.1. Form fill-in window that allows the creation of custom classes (from the database

and classes from the current model) in the DMA.

4.2.2 Common Accelerations

Besides, for both approaches (content dependent and content independent), the design
of the data model is accelerated in the assistant by the following features:

1. Re-utilization of libraries with models previously created, which can be copied
totally or partially, or a new class can be created by mixing several original classes. The
assistant allows the creation and loading of libraries. In this way, it is possible to take
advantage of previous knowledge or from previous prototypes of the service in order to
improve it.

2. Automatic creation of a non-existing class when it is referenced as an attribute inside
another one. For instance, consider the example shown in Figure 4.2. In this case, suppose
that the designer is defining the attributes for class Account. When the complex attribute
AccountHolder is included into the class, the assistant automatically searches the referenced
object, i.e. the class Person, in the internal list of already defined classes. Since this class has
not been defined previously, the assistant automatically creates it as an empty class.
Afterwards, the designer can edit the new class including the attributes that belong to it. This
way the assistant allows a top-down design. In the example, the same process is done for the
reference class TransactionDescription.

Chapter 4: Speed up strategies applied in the dialogue design

91

Figure 4.2. Example of the automatic creation of a referenced class

3. Definition of classes inheriting the attributes of a base class (i.e. parent classes). In
this case, when defining the new class, the designer only needs to specify all the classes to be
used as base classes. Then, the assistant automatically inherits all the attributes defined in the
selected base classes into the new class. This way, the platform uses concepts inherited from
object-oriented programming.

4.3 Strategies Applied to the Data Connector Model Assistant
(DCMA)
According to section 3.2.3 (page 61), this assistant allows the definition of the

prototypes (i.e. the input and output parameters) of the database access functions that are
called from the runtime system. The platform only requires the prototypes because they
provide enough information for the following assistants of the platform and their actual
implementation is not needed when designing the dialogue flow. However, it is also possible
to take advantage of this assistant in order to create the actual implementation of such
functions and to include meta-information to accelerate the dialogue design in subsequent
assistants.

The main acceleration strategy, designed by the partners of the GEMINI project, is the
association of the input/output parameters to attributes and classes from the data model
structure. This information is especially useful for the Retrieval Model Assistant (RMA) and
the State Flow Model Assistant (SFMA) in order to create dialogue state proposals and to
propose database access functions for a given state in the design. In addition, the author of
this thesis has contributed with a new wizard window that allows the automatic generation
and debugging of the SQL queries needed to perform the functions in the real-time system.
This wizard is useful for designers with little knowledge on query languages and can be used
to check if the prototypes have the correct number of input/output parameters. This
acceleration is also interesting since most of the current development platforms do not
include such kind of accelerations, and in those where we found a similar assistant it did not
automatically propose the SQL query but only allowed to specify and debug it.

4.3.1 Definition of Relations between the Function Arguments and the
Data Model

As mentioned above, the first, and main, acceleration strategy included in this assistant
is the possibility of defining the relation between the input/output arguments of the database

Speed Up Strategies for the Creation of Multimodal and Multilingual Dialogue Systems

92

access functions and the attributes and classes from the data model, which were defined in the
previous assistant. All this information is kept in the output model, which is going to be used
automatically in future stages of the design process (see section 4.4.2.2 and 4.5.2, pages 98
and 103).

In Figure 4.3, the code generated by the assistant for the banking example is shown. In
this case, we show the GDialogXML code generated by the function
PerformTransactionFromDebitAccountToCreditAccount using the same process shown in
Figure 3.3. This function has three argument variables to collect the information regarding
the accounts and the quantity to transfer, and one returning variable defined as Boolean. In
the code, the tag xArgumentVars (number 1) contains the information regarding the input
parameters: the debit account number (DebitAccountNumber), the destination account
(CreditAccountNumber) and the amount to be transferred (TransactionAmount) and the tag
xReturnValueVars (number 2) contains the return argument TransactionPerformed (in this
case, a Boolean variable that indicates if the transfer is successful or not). In the figure, the
variable TransactionAmount has a dependency, specified through the xDataMAttr tag, with
the data model attribute Transaction.TransactionAmount. This dependency will be used in
the posterior assistants (i.e., SFMA and RMA) to create dialogue proposals and the automatic
proposal of a database access function for a given state in the design. An important
acceleration included during this process is that the assistant automatically proposes the class
and attribute which is more likely to be related to the argument, as well as the database table
and field. The mechanism is to use the name of the argument being edited to search for
similar classes or attributes in the data model structure. The table and field of the database is
extracted from the data model since this information has been already defined in the previous
assistant.

Figure 4.3. GDialogXML code generated by the DCMA for the bank transfer.

Chapter 4: Speed up strategies applied in the dialogue design

93

4.3.2 Automatic Generation of SQL Queries

The second strategy, proposed and implemented by the author of the thesis, was the
inclusion of an assistant that generates automatically the SQL query for a given function. The
main motivation behind this assistant was to reduce the necessity for the designer of knowing
a new programming language and, at the same time, to simplify the inclusion of the generated
query in the Java servlet created for accessing the database at runtime.

Figure 4.4. Form fill-in window for the automatic creation and testing of SQL queries for

database access functions.

Figure 4.4 shows the main window of this assistant. The assistant allows the inclusion
of several constraints supported by the SQL language such as maths functions (average, max,
min, ln, exp, etc.), sorting, selection (Top or Distinct), clustering (Group By), Boolean
operators (And, Or) for combining the query restrictions, among others.

In order to automatically create the query, the assistant uses the input arguments
(defined in the function prototype, see number 2 in the figure) as constraints for the WHERE
clause, and the information of the output arguments as returned fields for the SELECT clause
(number 1). During this process, the wizard also uses the heuristic (e), the field type, in order
to correctly create and debug the SQL statement. The assistant allows the inclusion of new
input or output arguments if the function prototype is not complete or if the designer wants to
test new argument combinations. The next step is to generate automatically the SQL
sentence. It is presented in a textbox (number 3) that the designer can use to edit the proposed
query.

Since the input/output arguments could be defined using different types (i.e. atomic:
string, integer, float, etc, or object oriented such as list, embed, and reference) several
strategies were applied in order to create SQL queries that can use such kind of parameters.
In general, if the argument is atomic then the query uses the argument directly. However, a

Speed Up Strategies for the Creation of Multimodal and Multilingual Dialogue Systems

94

special case appears when the returning argument has been defined as a Boolean type since
there are two possibilities. The first one is that the associated database field is Boolean too; in
this case, there is no problem since the regular expressions do the association directly. The
second possibility is that the returning parameter does not have an associated database field;
in this case, we need that the query returns this type. In order to do it, the assistant builds a
query that finishes in a Boolean comparison between the number of retrieved records and
zero records (i.e. count (records) <= 0). The most complex case corresponds to object-
oriented arguments. In this case, if the returning argument is an object the system analyzes
the object class and provides a list with the atomic elements of that class in order to allow the
designer to select the corresponding arguments to be used in the SQL query from that class.
Then, the query is created returning all the selected arguments. Finally, it is the servlet the
responsible of taking all the retrieved fields and returning the object, or a pointer to the
object, used by the final script. A similar case appears if the argument is a list. In this case,
the system looks for the type of the elements in the list and allows the designer to select the
corresponding table and field if that information was not defined when creating the function
prototype in the previous step (see section 4.3.1, page 91).

In addition, the assistant has a debug window (element number 5 in the figure) that
allows the designer to view the retrieved records when using the proposed query. In order to
debug the query, the assistant first asks for specific values for the input arguments of the
function (using a pop-up window, see number 4). The assistant detects automatically the type
of each argument and pre-process them in order to avoid problems when performing the
query (i.e. escaping especial characters, confirming that the introduced values correspond to
the type of the fields, etc.). Finally, the system shows the retrieved results that allow the
designer to know if the query is correct or not.

4.4 Strategies Applied to the State Flow Model Assistant (SFMA)
As mentioned in section 3.3.1 (page 62), in this assistant, the designer defines the state

transition network that represents the dialogue flow at an abstract level, i.e. specifying only
the high-level states of the dialogue, the slots to be asked to the user, and the transitions
between states, but not the specific details of each state. The specific details will be defined in
the following assistant, the RMA, which is drastically accelerated thanks to these high-level
states of the dialogue specified here.

Considering the different versions of this assistant released throughout the GEMINI
project, the author of the thesis has contributed with several improvements and accelerations
that are described next. In summary, the new accelerations are the automatic generation of
state proposals, the possibility of specifying the slots through attributes offered automatically
from the data model, and the unification of the slots to be requested. In addition, the new GUI
allows the definition of new states using wizard driven steps and a drag-and-drop interface.

4.4.1 Functionalities Included in the Graphical User Interface

One of the first conditions imposed to this assistant was that the graphical user interface
would allow several editing and visualization capabilities such as the possibility of creating
the flow diagram using a tree-structured description. In this kind of representation, each leaf
and branch represents a state and a corresponding transition. This kind of visual
representation is common in most of the commercial and research platforms [McTear, 1998]

Chapter 4: Speed up strategies applied in the dialogue design

95

because it simplifies the visualization of the flow through its different states and transitions,
although it is limited by the complexity of the task, because as the number of states grows the
visualization degrades. Several strategies have been proposed to solve this problem (see
sections 2.1.1 and 2.1.2, pages 8 and 16). For instance, it is possible to reduce the displayed
information dividing the design into different layers (e.g., dialogue flow and error handling),
providing more or less information, or encapsulating common actions or a big number of
actions into a single object. In our platform, depending on the assistant, the GUI allows the
designer to show detailed or minimum information about the states, as well as some degree of
encapsulation using libraries. In relation to this assistant, we implemented an automatic
algorithm that helps the designer to place the objects in the canvas and reduces the
visualization problems produced when all the transitions between states are displayed.

In detail, the algorithm is applied each time the designer connects two or more states
among them. By default, transitions are displayed in the canvas using a solid line connecting
the states. However, the algorithm is used to automatically evaluate if it is suitable to use a
line or to use a connector symbol, like the ones used in flow charts, instead. The decision
mainly relies on two factors: 1) the distance between the connected states in the GUI, and 2)
the number and size of the objects that are along the path of the connection line. The distance
is calculated as the hypotenuse between the x and y coordinates of the two states to be
connected. If the distance is longer than one third of the size of the canvas (i.e. the workspace
that the designer views without using the horizontal or vertical scrollbars) then a connector is
used, if not the system evaluates the second factor. In the next case, the system evaluates the
existence of other state boxes along the path of a straight solid line connecting the selected
states. In case there are not collisions, the system uses the solid line. If not, the system
evaluates the size of the intersected object; in case the size is small (when compared to the
canvas size in a given ratio), the system uses the solid line, if not it uses the connector.

Figure 4.5. Appearance of the SFMA main window

As described above, the main objective of this algorithm is to avoid the creation of a
confusing network of crossing lines or to force the designer to follow long lines beyond the

Speed Up Strategies for the Creation of Multimodal and Multilingual Dialogue Systems

96

area of visualization of the canvas. After finishing the connection, in case the system had
selected the solid line if the designer clicks over it the line is repainted using a thicker line in
order to distinguish it from the other lines. In case the system had selected the connector
symbol if the designer clicks on it, the system automatically moves the cursor to the location
of the other state associated with the selected connector.

In addition, the assistant includes an automatic procedure to rearrange the objects in the
canvas. In this case, the system takes advantage of the algorithm described above and a built-
in function provided by the programming language and objects (i.e. Qt). In any case, the
designer can modify the location of any object in the GUI dragging and dropping it to any
place in the canvas.

Finally, the system uses an internal xml file where all the objects (i.e. input/output
connectors, states, lines, etc.) and their attributes (i.e. name, colour, position, size, etc.) are
saved in order to use this file the next time the designer loads the current design.

Figure 4.5 shows the main window of this assistant, including an example of the
visualization of the canvas (workspace), the states, transitions, and connector symbols. For
instance, observe that the state GetCurrencyName is connected to the state
AskOtherExchangeRates by the connector number eight (8). Without the connector symbols
it would require a confusing line connecting them from one extreme of the canvas to the other
(a similar case applies for the connectors 3 and 10).

Figure 4.6. Process for the creation of a 1:N transitions in the SFMA

Chapter 4: Speed up strategies applied in the dialogue design

97

The main window allows designers to create new states just dragging and dropping
them from the floating window with the proposal of states, or using contextual right click
commands. Besides, the GUI allows the creation of different types of transitions between
states such as N:1, 1:M or N:M. In all the cases, the procedure is to select first the set of
initial states and then the target states. After that, the assistant automatically creates and
shows the connections (see Figure 4.6). As usual in other GUI, the designer can select or
unselect nodes using the Ctrl key and the mouse pointer. Finally, several other GUI actions
such as find/create/delete/edit a state, or zoom in/out the workspace are also available.

4.4.2 Automatic State Proposals for Defining the Dialogue Flow

One of the most important accelerations proposed and implemented in this assistant by
the author of the thesis was the automatic proposal of dialogue states that include the slots to
be requested to the user. The advantage of these proposals is that they can be used directly by
the designer with little or no modification. In order to create these proposals, the assistant
uses the information from the database structure (from the DMA) and the prototypes of the
access functions to the database (from the DCMA). The proposed states are available in a
floating window through the GUI (see Figure 4.5). The next sub-sections provide a detailed
explanation of the algorithm used to generate these state proposals.

Figure 4.7. Pop-up window with states proposals from classes defined in the data model

structure (DMA)

4.4.2.1 Class dependent states
“States from DMA” in Figure 4.7. For each class defined in the DMA, the assistant creates a
class template, identifiable by the prefix “class”, which the designer can drag and drop into
the workspace. A pop-up window allows the designer to select the attributes to use as slots in
the new state. The assistant also allows the designer to select multiple templates in order to
create the new state. In this case, the pop-up window shows all atomic attributes that belong

Speed Up Strategies for the Creation of Multimodal and Multilingual Dialogue Systems

98

to the selected classes. The name for the new state is automatically generated from the
selected classes, but the designer can change the name. Finally, the new state is inserted into
the workspace allowing the designer to define the transitions (i.e. connections) to other states.
Figure 4.7 shows an example of using the template class_Transaction. In this case, the
designer selects the attributes TransactionAmount (number 2) and AccountNumber (number
4) to be used as slots in the new state Transaction (number 1). Observe that the assistant
expands complex attributes (with inheritance and objects) allowing only the selection of
atomic attributes because only these attributes can be asked to the user in the real time system
(number 3 and 4).

4.4.2.2 States from attributes with database dependency
This kind of states is created from any attribute defined in the database model (DMA) that
refer to a database field and conditioned, at the same time, which the attribute has been used
as an input argument in any database access function defined in the DCMA. The proposed
states are also included in the “States from DMA” tab and include the prefix “state” (see
Figure 4.7). The main motivation for proposing these states is that these attributes are likely
to be asked to the user. The proposed states contain only one slot and its name corresponds to
the name of the attribute in the data model. However, the designer can select several states
before making the drag and drop allowing the creation of states with multiple slots. The
proposed name, as in the previous case, is automatically generated from the selected classes
but can be edited afterwards.

Figure 4.8. Example of a proposed state from a defined database access function. The

GDialogXML code corresponds with the definition of the function in the DCMA.

4.4.2.3 From the database access functions
“States from DCMA” in Figure 4.8. In this case, the system analyzes all the prototypes of the
database functions defined in the DCMA containing input arguments defined as atomic types.
Then, the system uses the name of the function as proposal for the name of the state, and the
input arguments as slots for that state. Again, the assistant allows the designer to select

Chapter 4: Speed up strategies applied in the dialogue design

99

several of these proposals when making the dragging and dropping, in order to create more
complex states. Figure 4.8 shows examples of proposed states and the GDialogXML code
generated by the DCMA when defining the database access function. In this case, there is a
database access function called VerifyAccountByIdentifier, which receives two input
arguments (i.e. the AuthenticationCode and AccountIdentifier), then the system automatically
creates a new state proposal called state_VerifyAccountByIdentifier including two slots.

4.4.2.4 Empty state and already created states
The first one allows the creation of a new empty state, with no defined slots inside, that the
designer can define completely afterwards. This way, we allow a top-down design. The
second one allows the designer to re-use already defined states to create new states. In this
case, the slots are copied but the name of the state should be different to avoid confusions.
The assistant does not deny the possibility of using the same name but the optimal solution
would be to make a new connection to the existing state using the GUI.

4.4.3 Automatic Unification of Slots for Mixed-Initiative Dialogues

This acceleration helps the designer to decide when two or more slots are good
candidates to be requested at the same time (using mixed-initiative forms) or one by one
(using directed forms) only when mixed-initiative is not advisable. This is a feature we offer
and distinguish our platform from others, since in other platforms they leave the decision up
to the designer. Since this functionality relies on using heuristic information it is only
available when the system has access to the database contents and when the slots in a given
state have been related to a table and field in the backend database.

In this case, the assistant uses the average length, the vocabulary size, the proportion of
different values, and the field type as main heuristics obtained for the candidate fields
(section 4.1, page 86) and applies a set of customizable rules to decide which slots can be
unified and which ones cannot. The existing rules have been created taking into account that,
at present, the only modality that actually needs the definition of mixed-initiative slots, in our
platform, is the speech modality (i.e., in the Web modality the final user can fill all the slots
using just one form).

Figure 4.9 Configuration window for creating or editing rules for automatic detection of

directed or mixed-initiative dialogues

Speed Up Strategies for the Creation of Multimodal and Multilingual Dialogue Systems

100

According to the predefined rules included in the platform, although it is configurable
by the designer (using the wizard shown in Figure 4.9), the system does not propose the
unification using mixed-initiative dialogues when:

1. There are two slots defined as strings and the sum of the average length of both is
longer than 30 characters. In this case, the system tries to avoid the recognition of
very long sentences

2. One of the slots is defined as a string with an average length greater than 10
characters, and the other slot is an integer/float number greater than 4 digits. In this
case, the rule tries to avoid the recognition of long strings, e.g. an address or name,
plus long numeric quantities, e.g. phone or social security numbers, etc., in the same
sentence, which again is very likely to fail.

3. There are two numeric slots with a proportion of different fields for a given attribute
which is close to one, and the vocabulary size of both fields is high (configurable
value). Again, there is a high probability of misrecognition.

Therefore, in all three cases, the system decides that it is better to ask one slot at a time
using directed dialogues. The configuration window allows, in any case, the edition of the
predefined rules and the creation of new rules (number 2 in Figure 4.9) and conditions
(number 3). In addition, it is also possible to create rules for detecting directed dialogues
using the wizard (number 1).

If there is a conflict between two or more rules (i.e. one rule proposing MI unification
and another one proposing direct dialogues), the system will apply the directed strategy since
this is the default choice in VoiceXML. In any case, in spite of the system proposal, after
applying the previously mentioned rules, the designer can modify the decision allowing two
or more slots to be unified, or not, as mixed-initiative.

Figure 4.10. Example and GDialogXML code for two slots automatically unified for mixed-

initiative

Chapter 4: Speed up strategies applied in the dialogue design

101

Figure 4.10 shows an example of automatic unification for a proposed DCMA state
called VerifyAccountByIdentifier. Observe that the GDialogXML code for the corresponding
function in the DCMA contains information about the tables and fields used to define the
input arguments for that function. According to the heuristics information for those fields, the
AuthenticationCode corresponds to an integer field with an average length of 4 numbers, and
the AccountIdentifier field corresponds to a string field with an average length of 9
characters. In this case, the assistant proposes to unify both slots as mixed-initiative, setting
the flag Is MI to true and the filling type to Mixed-Initiative (the other filling type value is
“system initiative”).

4.5 Strategies Applied to the Retrieval Model Assistant (RMA)
As described in section 3.3.2 (page 63), this assistant is used to specify in detail all the

information and actions (e.g., variables, loops, conditions, math or string operations, calls to
subroutines and dialogues to provide/obtain information to/from the user, etc.) to be done in
each state previously defined in the previous assistant, the SFMA, and optionally in new
states. Therefore, this assistant provides the most complete functionality for dialogue design
in the platform. For that reason, we made a strong effort on including several accelerations in
this assistant.

In summary, the assistant allows the following accelerations: automatic generation of
several dialogues that the designer can drag and drop in the different windows that make up
the assistant, to obtain information from the user (dialogues with prefix DGet) and to provide
information to the user (dialogues with prefix DSay); the automatic generation of relevant
action proposals according to the dialogue being edited at each time; the automatic passing of
arguments when connecting different actions and dialogues; and, finally, the possibility of
creating complex dialogues using Mixed Initiative and Over-answering capabilities, among
other accelerations that are described in detail below and published in [D’Haro et al, 2006],
[D’Haro et al, 2004a], and [D’Haro et al, 2004b].

4.5.1 Automatically Proposed Dialogues

When the RMA is started, it analyses the information from the data model and the
database access function looking for all attributes defined as atomic types to automatically
generate dialogues to obtain information from the user (called DGet) and dialogues to
provide information to the user (called DSay). These dialogues include a GDialogXML
property that allows the Modality Extension Assistant (see Sections 3.4.2 and 3.4.3, page 65)
to identify them from other dialogues, and to know when the designer has to specify for the
DSay dialogues the prompt/output concepts to be presented to the user (for the speech/Web
modality respectively), and for the DGet dialogues the grammar/input concepts used by the
recognizer/Web generator and the confirmation strategies.

In general, the assistant creates different types of DSay/DGet dialogues depending on
the type of the input parameters and the class or database function used to generate them. For
instance, dialogues with the mask DGet/DSay_ATTR_attribute-name_IN_CLASS_class-
name (see Figure 4.11) are created from the data model structure and require only a matching
with one input atomic parameter (i.e., the calling dialogue has to pass as argument to the
DGet/DSay dialogue one atomic variable). In this case, these dialogues may be useful to
obtain/provide information to the user before/after calling a database function that
receives/returns an atomic parameter. On the other hand, dialogues with the mask
DSay_ATTR_attribute-name_GIVEN_CLASS_class-name require a matching with one input

Speed Up Strategies for the Creation of Multimodal and Multilingual Dialogue Systems

102

complex parameter (i.e. a reference to an object or the object itself) in this case to a specific
class in the data model. In this case, the database function returns a complex object. Observe
that the platform does not offer DGet dialogues in this case, since it is expected that DGet
dialogues only fulfil atomic parameters, not complex ones (i.e., DGet dialogues ask users for
strings, integers, floats, etc. data, not complex objects). Finally, the mask DSay_return-
variable_FROM_databaseFunction-name is used to identify DSay dialogues created from the
atomic returning variables for all the database access functions defined in the DCMA. In this
case, the designer can use these dialogues for providing atomic data after retrieving the
information from the database.

Figure 4.11. Auxiliary screen of the RMA and popup window for dialogue configuration.

Although all the previous automatic DGet/DSay dialogues are enough for most
dialogue applications, the algorithm suffers of some limitations. For instance, if the attributes
in the data model classes are complex or include object inheritance, the assistant is not able to
generate automatic dialogues for them. Besides, these dialogues cannot be merged to create
more complex ones. In order to solve these problems, the assistant provides configurable
DSay dialogues using a template (dialogues with prefix “DSay for” in Figure 4.11,) that
shows the class and its attributes, expanding the complex attributes (with inheritance and
objects) and allowing the designer to select any of these attributes to be used when designing
the prompt in the modality extension assistant (MEA).

Finally, other DSay dialogue templates are also available, for instance: a) A generic
DSay template to provide concepts (DSay Concept Template), which are useful for providing
generic information to the user without querying the database or asking any information to
the final users. b) Configurable DSay to present variables from a dialogue, in case that the

Chapter 4: Speed up strategies applied in the dialogue design

103

variable has not any dependence with the data model or it has not been returned from a
database access. c) A generic DSay template to present lists of objects, specifically designed
for handling lists of results after querying the database (see section 4.6.1, page 110), and d)
Predefined DSay such as: Welcome, Goodbye, Transfer to operator, etc. In addition,
dialogues from loaded libraries and database access functions can also be used.

Figure 4.11 shows all the dialogues mentioned above, with an example of the
configurable template for the Transaction class called ‘DSay for Transaction’ where several
attributes have been selected and will be provided to the user in the real-time system. The
flexibility of this template lets the designer select attributes from the different child classes of
the Transaction class (e.g., AccountNumber), complex attributes coming from inherited
classes and contained in another class (e.g., LastName from class AccountHolder included in
class CreditAccount). When the dialogue definition is over, it is added to the list of dialogues
tab, so that it can be used later on.

4.5.2 Automatic Generation of Action Proposals in Each State

This is one of the most important accelerations included in this assistant. The main
motivation for this strategy was to include in one popup window, called ‘‘SFM proposals’’
all the actions that the designer could require, or at least with many chances to be used, to
complete the definition of all the dialogues previously defined in the SFMA. In general,
typical actions for a dialogue are, first, to request some information from the user (i.e., the
slots for that state), then to access the database through a call to a database access function,
then to provide the results of the database query, and finally to jump to the next dialogue.
Considering that these actions are the most common ones, we decided to implement different
mechanisms for including automatically proposals for each case, as explained below.

To decide which actions are relevant, all the information already defined in previous
assistants, especially the SFMA, is analyzed using the following strategies for each of the
four sections in the window from Figure 4.12:

• Slots asked in the current state, the transitions, and the corresponding slots in
those destination states. In this case, the strategy is to use directly the information
from the SFMA. In the figure, the system shows the current slot for the edited
dialogue (i.e., currencyName) and for the following dialogues (e.g., slotYesOrNo).
Besides, the system shows the calls to following dialogues with up to two levels in
depth.

• State specific DGets: to select them, the system looks for the slots defined in the
SFMA; if they are related to the Data Model, the system selects the corresponding
dialogues automatically; if not, a more relaxed criterion is used, which is to look for
a match in the name or attribute type.

• Database access functions: to filter the possible functions already defined in the
DCMA, the system first considers functions with the same number and type of
input parameters as the defined slots for the current dialogue. The next criterion is
as follows: if the input parameter includes a reference to the data model there
should be a match in class and attribute between slot and parameter; if not, they
should match in type. If no function passes these filters, a more relaxed filter is
applied (e.g., similarity between names). If even with the relaxed filter there is no
function to be proposed in this window, it would probably mean that there is no
database access function suitable for that state and it should have been defined

Speed Up Strategies for the Creation of Multimodal and Multilingual Dialogue Systems

104

before. The assistant offers the possibility of creating those functions, and then
reload the information in this window. Finally, the other possibility is that for the
current dialogue it is not necessary to access the database since that will be done in
another dialogue.

• State specific DSays: they are selected in a similar way to DGet dialogues, but we
also include DSays specific to the values returned by the database functions
selected in the previous step.

Figure 4.12. Example with automatic dialogues and database access function proposals

Figure 4.12 shows an example of the proposals for the banking application. In this
example, the designer is editing a dialogue where given a currency name the system provides
its specific information (buy and sell price, general information, etc.). Using the proposal
window, all the designer would need to do is to select the corresponding DGet in the window
(DGet_ATTR_CurrencyName_IN_CLASS_ Currency), then the database access function
GetCurrencyByName, and finally the DSays that provide the desired attributes from the
currency. To finish, the designer would drop the call to the next state (e.g.,
AskOtherExchangeRates).

As we can see, this is one of the most useful accelerations, as most common actions
that are needed in most of the dialogues can be accessed just dragging and dropping the ones
proposed in this window.

Chapter 4: Speed up strategies applied in the dialogue design

105

4.5.3 Automated Passing of Arguments between Actions

This is a critical aspect of dialogue applications design. Several actions and states have
to be ‘connected’ as they use the information from the preceding dialogues. In general, most
current design platforms allow the same kind of functionality, offering the user a selectable
list of all the available variables in the dialogue. In other cases, especially considering the
connections with database access functions, some platforms only allow the designer to define
the matching by modifying by hand the script code. In this acceleration, we have tried to go
one-step beyond by automating the connection through automatic proposals. In this case, the
assistant detects the input/output variables required in each action and, using a popup
window, it offers the most suitable already defined variable of a compatible type; if there are
more than one variable of a compatible type, the assistant sorts them according to the name
similarity between variable and dialogue. If there is no a compatible variable already defined
in the system or the name proposed by the assistant is not desired, a new local or global
variable can be created in the same window. Moreover, if the designer makes a mistake or
needs to edit the matching made in the previous steps, the assistant provides a window where
all this matching can be edited.

Figure 4.13. Form fill-in windows that automate the process of passing arguments between

actions

Figure 4.13 shows an example of this acceleration for the GetInformationByCategory
function defined in the data connector model. This function requires two input arguments:
InfoCategory (e.g. loans, cards, deposits, etc.) and InfoSubCategory (e.g. car loans, house
loans, visa, invest savings, etc.) and returns the information to be presented to the final user.
The form fill-in windows allows the designer to associate the input arguments as local
variables already defined and to assign the result to a new local string variable called
InfoText. In all the cases, the system automatically proposes the values and options presented

Speed Up Strategies for the Creation of Multimodal and Multilingual Dialogue Systems

106

in the forms. In this way, the designer only needs to click the accept button and continue with
the design.

4.5.4 Mixed-Initiative and Over-Answering

This acceleration allows the creation of complex dialogues where the system can ask
for several slots at the same time or the user can answer with optional information. Even
though these two functionalities might be considered as speech modality dependent or
unnecessary for the Web modality, therefore they should not be handled at this stage (i.e. the
RMA is modality and language independent), we preferred to include them here for two main
reasons: first, because some other modality that can be included in the future might benefit
from this functionality too, and, second, we could make it possible that in a Web page the
user does not have to fill in all required fields at the same time. In this case, the Web system
would detect that a certain slot is missing and, instead of generating an error, it would ask for
the missing data in a subsequent form, in a similar way as VoiceXML handles mixed-
initiative with several slots.

As we have mentioned at the beginning of this chapter, this acceleration is one of the
most important speed up strategies applied to the platform. The main motivation for this
acceleration was to overcome some of the main limitations we found in current design
platforms. In first place, this acceleration allows the quick creation of dialogues with mixed-
initiative that are difficult to define in many platforms since they do not offer a similar
procedure for creating them, leaving the designer, in most cases, only the possibility of
creating directed dialogue forms (i.e., where only one slot can be asked at each time). Second,
if we consider the platforms that allow the definition of mixed initiative dialogues, we found,
as far as we know, that none of these platforms allows the creation of dialogues with over-
answering capabilities or a combination of mixed-initiative with over-answering. This is
mainly due to limitations of the VoiceXML language that we overcame during the GEMINI
project. Finally, as an additional improvement, the use of this acceleration allows designers to
create a better dialogue flow since the assistant automatically proposes the slots that can be
asked using mixed initiative based on heuristic information (see section 4.4.3, page 99). This
way, the system tries to avoid requesting complex or too confusable slots to the final users. In
addition, since the internal code and flow is automatically generated it reduces designer
mistakes in the design or in the codification of the information.

To provide this functionality, the system offers a Mixed-initiative Template that the
designer can drag and drop over the dialogue that is being edited. The template shows
available slots that can be selected (by default, the ones specified in the SFMA for the current
dialogue). Moreover, the template gives the possibility of adding optional slots to be used for
over-answering at the same time. With this information, the system generates the necessary
programming code (including calls and automatic dialogues) in GDialogXML syntax that
controls the mixed-initiative handling. It is important to mention that the author of the thesis
directly contributed during the GEMINI project to the definition of the mixed-initiative and
over-answering templates using as reference the VoiceXML specification and the
possibilities of our own XML syntax.

Figure 4.14 shows an example of a mixed-initiative dialogue created using the
template. In number 1, the slots to be asked are declared. Number 2 defines the procedure for
asking several slots at the same time; numbers 3 and 4 handle the situation in which the user
answers partially or only some of the slots are filled after the recognition, so the system has to
ask again for unsolved slots.

Chapter 4: Speed up strategies applied in the dialogue design

107

Figure 4.14. Example of the GDialogXML syntax for a mixed-initiative dialogue created in

the RMA

Figure 4.15 shows, for the bank transfer example, the process followed to create a
dialogue where two slots, CreditAccountIdentifier and CreditDebitIdentifier, are asked using
mixed-initiative. The designer just needs to drag and drop the Mixed-initiative Template (the
selected item marked as number 1) on the main window of the dialogue (identified with
number two); then, a popup window appears (number three) where the designer selects the
desired slots (by default, the ones selected in the SFMA, CreditAccountIdentifier and
DebitAccountIdentifier) and presses Accept with the possibility to add optional slots (over-
answering) or not.

To admit over-answering, the procedure is very similar: when the designer drops any
DGet (action to obtain data from the user) the system automatically offers to select additional
slots as over-answering from that specific state and from the following states in the flow
(with a limit of two in the hierarchy). As default, the slots defined as optional in the SFMA
(see section 3.3.1, page 62) are automatically converted into over-answering slots here. In the
runtime system, the behaviour is that before any DGet the system checks whether the data to
be asked has been already obtained in a previous state in the flow (as would be the case with
over-answering). To help in this checking, in the final script all slots are declared as global
variables, so they can be accessed from any state.

Speed Up Strategies for the Creation of Multimodal and Multilingual Dialogue Systems

108

Figure 4.15. Example of the creation of a mixed-initiative dialogue

Similarly to the mixed-initiative case explained above, the system generates the
necessary programming code (including calls and automatic dialogues) in GDialogXML
syntax for handling the over-answering.

Figure 4.16. GDialogXML code for a dialogue to ask for a single slot and define another one

as optional using over-answering

Chapter 4: Speed up strategies applied in the dialogue design

109

Observe in Figure 4.16 that in this case the code includes the name of the compulsory
slot (number 1 in the figure) and the optional one (number 2). In order to allow the user to
answer both slots at the same time, the template defines both slots as target variables (in
number 3) but remarking the optional variable in number 4. Then, in number 5, the template
defines the condition for repeating the same query until the compulsory slot is filled by the
user. Number 6 specifies the DGet dialogue to ask the compulsory and optional slots. Finally,
number 7 specifies the concept (i.e., language independent) used for providing help to the
user in case of problems or if the user requests it. Then, in the MEA assistant the prompt
associated to this concept is defined, see section 3.4.3 (page 66).

4.5.5 Other Functionalities

Besides all the strategies mentioned herein, we have also included in the GUI some
useful characteristics as hotkeys for accessing the most common functionalities of the
assistant, different colours for distinguishing each kind of dialogue (i.e. already filled, empty,
DSay or DGet dialogues, etc.). Besides, in order to reduce the number of dialogues shown in
the canvas the designer can switch between a basic presentation of the dialogue or a more
detailed visual/textual flow (i.e., including internal information about variables, dialogues
that are called from or call to the current one, type, etc.)

There is also a method to display the contents of complex or nested actions contained in
a dialogue using tooltips (see Figure 4.17), which help the designer in their interpretation
avoiding the need to open or edit them.

Finally, several other GUI actions such as find/create/delete/edit a dialogue, or zoom
in/out the workspace are also available, as well as other contextual right click commands.

Figure 4.17. Tooltips functionality for a quick description of all internal actions

4.6 Strategies Applied to the Modality Extension Retrieval
Assistant for Speech (MERA-Speech)
As we have mentioned in the introduction of this chapter, the accelerations introduced

in this assistant can be considered as the second most important strategies applied to the
platform. In this assistant, we considered solutions for two specific problems for the speech
modality: the presentation of results to the user after accessing the database, and the
confirmation of user answers. When we studied the mechanisms offered by current both

Speed Up Strategies for the Creation of Multimodal and Multilingual Dialogue Systems

110

commercial and research design platforms to deal with these problems, we found that the
typical solution was to leave the designer to specify the complete dialogue flow or to leave
the problem to some predefined actions provided by the ASR engine. Obviously, these
solutions are not satisfactory since they imply the codification by hand of too many situations
and conditions. Besides, as we will see in section 4.6.2 (page 113), there are some restrictions
for some confirmations that the designer could not take into account. On the other hand, the
assistant also accelerates the design by providing automatic proposals for the different data
that the designer has to provide, automatically generating all the dialogue flow according to
the designer selections, and using predefined and reusable built-in dialogues. Finally, another
important contribution of the thesis are the templates that we have defined and used to codify
all the internal dialogue flow and actions required to solve each of the problems and
situations considered (see Appendix C). These templates were created from our experience in
designing dialogue applications, considering the common solutions to the problems we have
dealt in this assistant, as well as taking into account the limitations that we found for the
VoiceXML standard.

As explained in section 3.4.2 (page 65), this assistant allows the designer to adapt
specific dialogues defined in the RMA to the speech modality. The dialogues considered by
the assistant are those that show lists of information to the user (e.g., mainly the ones created
using the DSay template for list of objects and marked with prefix DSay_From_List, see
section 4.5.1, page 101) and those that obtain information from the user (e.g., the ones
created from the automatic dialogues in the RMA and marked with prefix DGet, see section
4.5.1).

For the DSay dialogues, the assistant allows to specify the dialogue flow for providing
the information contained in a list of retrieved results after making a database access. The
flow depends on the size of the list. Four cases have been considered: when there is not any
retrieved result, when the list has only one item, when the number of items lies on a defined
range, or when there are too many items, so it is difficult to say all of them using speech.

On the other hand, for the DGet dialogues, the assistant automatically generates the
flow for confirmation handling (i.e. what to do when the user does not provide an answer
after a system query, to allow an implicit confirmation, or when the confidence level is in the
range of the explicit confirmation, etc.).

Finally, since the algorithms used to automatically create the flow for the dialogues
completed in this assistant are too complex to be described in detail in this section, we have
decided to include an easy to read description in pseudo-code in Appendix C. The appendix
describes the cases considered in this assistant: a) handling of lists of objects, b) simple
confirmation and full confirmation for dialogues with one slot, c) confirmation of dialogues
with mixed-initiative, d) confirmation handling for dialogues with one compulsory slot plus
slots with over-answering, and e) the most complex case, confirmation handling for dialogues
with mixed-initiative and over-answering slots.

4.6.1 Presentation of Object Lists

Object lists are the result of a database query, so there is usually a lot of information to
be provided to the user. The assistant considers four different cases as a function of the
number of items in the list. For each case, a simple form allows the designer to specify the
actions that have to be carried out. After filling the four forms, the actions and new dialogues
needed to provide/obtain information to/from the user are automatically generated.

Chapter 4: Speed up strategies applied in the dialogue design

111

In order to accelerate the process of filling in the forms, the assistant provides the most
reasonable default values for all dialogue and slot names after the analysis of the input files of
the assistant (in this case, the models generated by all the previous assistants in the platform:
ADA, DMA, DCMA, SFMA, RMA, and UMA). The assistant also considered a simplified
case: when the list only depends on one slot input by the user, e.g., when asking for a list of
banking transactions. In this case, the assistant presents a simplified version of the following
windows where the designer does not need to specify the slots to be cleared. The four
different cases and their actions are as follows:

1. The list is empty: As the query has been too restrictive, some slots need to be unset
and a new query has to be done with less restrictive values. The first action is to use a
predefined DSay dialogue to tell the user that there is no available information and
then to jump back to a previous state selected by the designer, where the user is asked
again for the slots that the designer decides that have to be unset. The objective is that
the user answers the next time with a more generic answer to the slot so that the query
is less restrictive.

2. The list has one item: This is the simplest case, since there is only one item, the
designer only needs to define a configurable DSay that can provide complete or
partial info from the item found. In order to configure the DSay dialogue, a pop-up
window shows a list with the available attributes for the class of the item.

Figure 4.18. Example of the assistant window for configuring a DSay dialogue for the

presentation of objects lists (case 3).

Speed Up Strategies for the Creation of Multimodal and Multilingual Dialogue Systems

112

3. More than one item and less than a maximum allowed: This is the more complex
situation, as the items have to be provided in groups. Figure 4.18 shows the window
used to define this case. In the figure, number 1 and 2 define an optional step for
informing the user, at the beginning of this dialogue, how many items there are in the
list (using the built-in dialogue DSay_NumberOfItems), and to ask how many the user
wants to listen to (DGet_MaxNumberOfItems). If the user does not provide a valid
number (e.g., it is too high) the system uses the default number defined in the ADA
(see section 3.2.1, page 59). As acceleration, the assistant automatically proposes
default dialogues that can also be reused in other DSay dialogues for presentation of
lists of objects.

The next step (number 3) is to configure the enumeration of the retrieved items. The
pop up window, number 9, allows the designer to select the attributes to be used to
configure the prompt that provides general info to the user. In this case, it is expected
to select few of them and provide more information in a following step. After playing
the info for each item in the group, the user is asked if he/she wants to continue to the
next group, repeat the group, begin from scratch, exit, or select a specific item to
receive more detailed information. In this case, the system uses universal command
words as proposed by the Universal Speech Interface project [Toth et al, 2002].

In case that the user chooses one item, the system provides detailed information
(number 4) of the object using a new selection of attributes (made through the pop-up
window in number 9) specified by the designer (similar to the case when the list has
one item).

The checkbox, number 5, allows the designer to select an optional jump to another
dialogue after the presentation. By default, the system proposes the dialogue that calls
the DSay of Lists or the initial dialogue of the service; the designer can also select a
DYesOrNo dialogue to know if the user wants another service or not.

Another situation (step 2 case B in the figure, near number 6) that the assistant faces is
when the system finishes reading the whole list and the user does not like any item or
has cancelled before the end of the list. In this case, the system informs the user that
there are not more items to show (the assistant proposes the dialogue
DSay_NoMoreItemsToPlay, number 6) and then jumps back to a previous state
selected by the designer (number 8), where the user is asked again for the slots that
the designer has decided to unset (number 7), so that the user can answer with a
different input that provides different database items. This situation is similar to case
1.

4. More items than the maximum allowed: As there are too many items, the search
should be more restrictive. In a first step, the system uses a predefined DSay dialogue
to inform the user about this situation. For the next steps, the assistant can handle
three different situations:

First, the designer can choose that the system plays information for items from one to
a maximum as in case 3.

Second, if all slots of the application are already filled, the user has to change some of
them to make them more restrictive (e.g., the user wants last month’s transactions but
there are too many). In this case, the designer specifies which slots have to be unset
(e.g., the slot containing the period of time the user wants to know) and the questions
will be repeated, in a similar way as in case 1.

Chapter 4: Speed up strategies applied in the dialogue design

113

Finally, the third situation, if there are still some slots to be asked, the system
continues with the normal dialogue flow until the next database query.

4.6.2 Confirmation Handling

One of the main problems in a dialogue system is how to cope with speech recognition
errors. Unfortunately, the great variability of speech among different speakers, environments,
channels, noises, etc., prevents modelling all possible variations. Therefore, the system will
always need to deal with speech recognition errors, requiring the confirmation of speech
recognition results by asking the user, in order to proceed in the dialogue flow (i.e., especially
before retrieving/modifying any information from/in the database). The problem is that if the
system confirms every single slot, the dialogue will be too slow and user satisfaction will
decrease drastically. A solution of compromise is to use the confidence level provided by the
speech recognizer. The confidence is a value between 0 and 1 that provides a measure of
reliability of the speech recognition results: a value close to 0 means that results are not
reliable, and a value close to 1 means that results are very reliable. Usually, three thresholds,
τi, can be defined for this confidence value and several strategies can be adopted according to
these thresholds [San-Segundo et al, 2001b]. The most popular strategy and the one
implemented in our platform, being CV the confidence value is the following:

• No confirmation: τ1 < CV ≤ 1.0. The result is accepted with no confirmation
because the confidence is very high.

• Implicit confirmation: τ2 < CV ≤ τ1. High confidence in the result. An “implicit
confirmation” is applied, which means that the system provides the recognition
result to the user as a fact in the next dialogue turn, speeding up the dialogue, e.g.
“You want to travel to London. When do you intend to leave?” The user can say
“no” or “cancel” at that point to go back in the dialogue if London was not the
intended destination.

• Explicit confirmation: τ3 < CV ≤ τ2. The confidence is intermediate. The best
option is to ask the user if the result is correct, e.g. “Do you mean London?” to
confirm that London is the intended destination.

• Reject: 0.0 ≤ CV ≤ τ3. The confidence level is extremely low, so the result is
clearly unreliable. The system rejects it and asks it again.

In our platform, the default confidence levels for all the dialogues are defined in the
Application Description Assistant (ADA) at the beginning of the design. However, they can
be modified according to different user profiles and depending on the dialogue using the User
Modelling Assistant (UMA). In the MERA-Speech assistant, it is also possible to define
which of the strategies described above are available or not depending on the complexity and
subsequent actions given a particular dialogue. In order to do this, we have considered two
confirmation profiles: Simple and Complete. Simple is recommended for dialogues that need
a very high confidence, such as Yes/No or passwords questions; in this case, only two levels
are allowed: no confirmation and repeat the question. However, Complete uses all the
strategies described above.

Initially, when the MERA-Speech assistant is initialized, it automatically selects, from
the file generated by the RMA, all the dialogues that are used as input dialogues (e.g., the
ones with prefix DGet) that need confirmation and analyzes their flow to propose the most
suitable confirmation profile (Simple or Complete). However, the designer can change that
proposal and the assistant checks whether the selected type is feasible. Then, after accepting

Speed Up Strategies for the Creation of Multimodal and Multilingual Dialogue Systems

114

or modifying the proposals of the assistant, the designer just has to press the accept button in
order to allow the system to automatically complete the confirmation flow following the
algorithm described in Appendix C. Finally, the MERA-Speech uses the same common
internal variable used in the UMA assistant (section 3.4.1, page 65) to store the confidence
value returned by the last recognition call. Then, the final script tells the system to compare
this value with the current confidence limits, stored in four fixed name variables, as defined
in the UMA for each user level and specific dialogue.

In detail, the algorithm that analyzes the dialogue is as follows: first, the system
examines the number and type of slots to be retrieved by the DGet dialogue, and if there is
only one slot, its type is Boolean or string (as used to contain an alphanumeric password) and
the number of actions in the calling dialogue is not too high, the system selects the simple
profile; if all these conditions are not fulfilled, then the system selects the Complete profile.

When the algorithm allows the system to use the Complete profile, the assistant has to
consider three different cases to determine if implicit confirmation can be allowed or not. If
the system does not allow the implicit confirmation, explicit confirmation is used regardless
of the confidence levels defined in the UMA. If the implicit confirmation is allowed, the
assistant automatically sets a global variable with the name of the DGet dialogue where to
jump back and unset its slots in case the user rejects the recognition in the following DGet
dialogue (remind that the rejection, using implicit confirmation, is detected in the following
DGet). The three conditions that have to be fulfilled in order to accept the implicit
confirmation are the following ones:

1. If the next action after calling the DGet dialogue does not correspond to a database
access. The reason is to allow, in the real time system, the possibility of making the
confirmation before accessing the database (i.e., in the following DGet dialogue).

2. When the selected dialogue (DGet_1) calls another dialogue (DGet_2) which in turn
is not called from other dialogues (e.g. a DGet_3). The reason is that otherwise the
system will not be able to set the global variable which contain the dialogue to jump
back (It could be DGet_1 or DGet_3) in case of a rejection. Therefore, without this
information the system cannot guarantee to jump back to the right DGet dialogue in
order to repeat the last question and fill the slot again.

Chapter 4: Speed up strategies applied in the dialogue design

115

3. The selected dialogue (DGet_1) calls to different dialogues but they are not called
from other places (e.g. if DGet_3 is called from DGet_4). In this case, the problem
appears for the DGet_3 dialogue, because from that dialogue the system cannot
guarantee to jump back to the right DGet (DGet_1 or DGet_4) as in case 2.

Finally, the assistant automatically generates the dialogue flow (consisting of calls to
internal automatically generated dialogues for each type of confirmation and dialogue state)
to carry out all the confirmation and subsequent correction. These internal dialogues are
named in a smart way (using the Universal Speech Interface (USI) project, [Toth et al, 2002])
so that the designer can easily identify them when defining the grammars and prompts in the
next assistant.

4.7 Strategies Applied to Other Assistants

This section describes, for consistency with this chapter, several accelerations applied
to other assistants in the platform that were mainly developed during the GEMINI project.

In general, the following assistants and their accelerations were developed by other
partners of the project, except when explicitly stated that they were introduced by the author
of this thesis.

Speed Up Strategies for the Creation of Multimodal and Multilingual Dialogue Systems

116

4.7.1 Modality and Language Extension Assistant (MEA)

As mentioned in section 3.4.3 (page 66), this assistant is the responsible of defining all
the language and modality dependent aspects of the application (e.g., grammars and prompts
for the speech modality, input/output concepts for the Web modality).

The main accelerations included in this assistant are: a) The possibility of creating
language-dependent prompts using pre-loaded libraries and reusing prompts in other
languages as configurable templates (see section 4.7.1.1). b) the creation of JSGF grammars
using a wizard window, which also allows the creation of the pronunciation vocabulary used
by the speech recognizer (see section 4.7.1.2), and c) the possibility of debugging JSGF files
and creating n-gram based stochastic speech grammars (see section 4.7.1.3).

4.7.1.1 Setting of system prompts
For the speech modality, several prompts for each different kinds of dialogue (filling

(DGet), presentation (DSay), or help) have to be defined: the default one, for the different
user levels, and for all possible recognition errors (no input, no match, service timeout, etc.),
and the number of times that the assistant allows every error to occur (1, 2, 3, …) before
transferring the call to an operator or exiting.

To speed up the process of typing all these prompts, the assistant offers three
possibilities: 1) reuse prompts already available for the current application, 2) reuse prompts
generated in previous applications and saved as libraries, or 3) reuse wording libraries saved
from previous applications.

Figure 4.19. Assistant window for copying prompts

Chapter 4: Speed up strategies applied in the dialogue design

117

For the first and second case, the system allows the designer to copy the contents of an
already defined prompt into the currently edited prompt. Figure 4.19 shows the interface for
copying prompts when creating a prompt for a specific dialogue. Prompts in this window are
loaded from previous saved libraries or from other states of the current service.

For the third case, the system allows the reusability of prompt wordings from old
applications. The difference between wording and prompt libraries is very subtle (see Figure
4.20). While a wording only contains full or partial sentences without including prompt
arguments, SSML information, or breaks, prompt libraries may contain all this information.
The former are useful for cross-domain services, while the latter are useful, especially when
they include prompt arguments, for in-domain services or for new versions of the same
service. In our platform, in order to distinguish them, wording lists are saved with the
extension pwl and the name is automatically composed concatenating the application name
and the language (e.g. ApplicationName_LanguageID.pwl). By contrast, prompt libraries are
saved one for each language of the service with the name tcf.xml in the corresponding folder.

Figure 4.20. Examples of wording and prompt library files.

Once the prompts for the main language have been specified, the designer has to
specify them for the additional languages. This process is accelerated by using the main
language prompt as a template to edit the string parts of the language dependent prompts.
These prompts can be specified either at once for one language for all dialogues, or for each
dialogue for all additional languages.

When editing a prompt for an additional language, only the string and break prompt
items can be edited, added or removed. Prompt arguments (i.e. slots passed as arguments to
that prompt) are kept from the main language prompt template, and cannot be removed since
it is supposed that they are required to provide the information to the user (e.g. Your account
balance is <slot_balance> euros, in English, or El saldo de su cuenta es <slot_balance> euros,
in Spanish) with independency of the language. In any case, the wizard allows the designer to
change the order of the arguments throughout the sentence using the arrows in number 2.

Figure 4.21 shows the window used to create prompts for additional languages.
Number 1 notifies the designer about the dialogue, user level, error type, and number of
occurrence the prompt that is being edited corresponds to. Number 2 shows the prompt in the
main language. This prompt is used as a template to configure the prompt in number 4 for the
new language (number 3). As mentioned above, number 6 and 7 allow the designer (through
the pop-up window shown in Figure 4.19) to use already defined wordings or prompts

Speed Up Strategies for the Creation of Multimodal and Multilingual Dialogue Systems

118

respectively. The window also allows the designer to use new SSML tags (number 5) and the
possibility of including audio files in order to allow hybrid prompts (number 8).

Figure 4.21. Additional languages prompts setting window.

4.7.1.2 Creation of rule-based grammars
As mentioned in section 3.4.6.2 (page 72), the Language Modelling Toolkit (LMT) is

an auxiliary assistant that allows the designer to specify the language models that will be used
in the runtime system to ‘‘understand’’ the different user answers to the system questions.
This assistant helps the designer to generate and depict rule-based grammars in JSGF format,
without requiring the use of third party applications. The assistant was created during the
GEMINI project, and it is described in detail in [Georgila et al, 2004].

Figure 4.22 shows the main window of the assistant. In this example, the grammar
name, Journey, is defined in number 1. The grammar format is selected (number 2) to be
written in JSGF in Augmented Backus-Naur representation (it is also possible to select
writing it in XML format). The grammar language is selected in step 3 as British English
(en_UK). In step 4, the designer defines the rules that compose the grammar, specifying if
they are public or private. For each rule, it is possible to define rule attributes in step 5. The
rule attributes allow the definition of the slots to be used to store semantic information. In the
example, destination is the name of the slot that will store the semantic interpretation given
by the specific token uttered by the user (i.e. Lisbon, Paris, Athens, or Madrid). Finally, in
step 6 the designer introduces, using a pop-up window not shown in the figure, the set of
possible tokens the user can say in that specific rule. The pop-up window allows the designer
to match the rule attribute with the corresponding semantic interpretation.

Chapter 4: Speed up strategies applied in the dialogue design

119

The assistant includes several accelerations that simplify the process of creating the
grammars and pronunciation dictionaries for the speech recognizer. For instance, during the
definition of the grammar, the assistant allows the designer to specify references to other
rules, grouping and optional groupings, alternatives, rule expansions, and multi-word tokens.
Besides, when creating the rules, the designer can type in words and strings of words or insert
them from multiple external vocabulary files. In addition, it is possible to define all the
tokens related to a rule and mapped to the same semantic attribute. For instance, in Figure
4.22, the rule <arrival> has four tokens (Lisbon, Paris, Athens, and Madrid) and all of them
have the same semantic concept, “destination”. Since this information can be stored in a
database consisting of hundreds or thousands of records, the assistant allows the designer to
load a file containing all database records, to link them to the semantic attribute, and to
decide if they are optional, or if they have to be expanded zero or more times, or expanded
one or more times.

Figure 4.22. Example of the definition of a grammar rule using the Language Modelling

Toolkit

Finally, the assistant also incorporates a vocabulary builder component that generates
the phonetic transcriptions, in the Speech Assessment Methods Phonetic Alphabet
(SAMPA 61) format, of the words included in the grammar in order to create the
pronunciation dictionary used by the speech recognition. Currently, the tool allows the
automatic transcription for the four original languages supported by the AGP (i.e. English,
German, Greek, and Spanish). However, in order to allow the transcription for other

61 http://www.phon.ucl.ac.uk/home/sampa/index.html

http://www.phon.ucl.ac.uk/home/sampa/index.html�

Speed Up Strategies for the Creation of Multimodal and Multilingual Dialogue Systems

120

languages, the tool includes a language-independent function that enables the user to write
context-dependent rules for grapheme-to-phoneme and phoneme-to-grapheme conversions.
Finally, [Georgila et al, 2004] report a subjective evaluation where different kind of
grammars and scenarios were evaluated, showing the efficiency of the tool considering that it
saves time and prevents designers from making mistakes that can be hard to locate if the
grammar is generated by hand.

4.7.1.3 Creation of stochastic grammars
In addition to the possibility of creating context-free grammars using JSGF files, the

platform includes two new functionalities incorporated by the author of the thesis, in order to
create and debug stochastic language models. The first functionality allows the designer to
obtain a text file with all the sentences that a JSGF grammar can produce when all its rules
are automatically and recursively expanded. This feature allows the designer to debug the
grammar providing a full list of all the sentences that the ASR can recognize. The second
functionality is the automatic creation of a stochastic grammar based on word n-grams
generated from the file with all the previously generated sentences. The main motivation for
this functionality is to create automatically the stochastic grammars required by the ASR.
This way, the ASR can support large and open vocabularies, improving the service and
allowing a more robust and flexible recognition of user’s utterances.

The process of creating the grammars is done using the assistant shown in Figure 4.24
after specifying the grammar and clicking in button number 1. The first step is to generate a
raw text file containing all possible sentences generated from an existing rule based grammar
file (currently, only JSGF files are accepted but in future releases it will be possible to use
others formats) created using the built-in assistant of the platform (section 4.7.1.2) or from
other platforms.

Figure 4.23. Example of full generation of possible sentences from a JSGF file

Chapter 4: Speed up strategies applied in the dialogue design

121

The process for generating the sentences is to first expand all rule names (e.g.
<Category>, <I_want>, etc. in Figure 4.23) defined in the file, considering at the same time
all the possible combinations with special JSGF symbols for alternatives, grouping and
optional grouping (i.e. |, () and [] respectively). Although the assistant is flexible and robust
enough to parse several kinds of rule names, there are some limitations regarding the standard
JSGF format; for example, the assistant does not expand recursive/nested rules, incomplete or
malformed rules, unary operators neither weights information. These improvements will be
considered in future developments of the platform.

The second step, number two in Figure 4.24, is to generate the stochastic grammar from
the sentences created in the previous step or from new texts. The designer needs to select,
number 3, the text file generated in the previous step or include more files, and the name of
the grammar file to be generated (number 4). By default, the assistant automatically proposes
the name of the output file using the name of the JSGF file used in the previous step or from
the first text file selected in step three. With this information, the assistant generates three
files: 1) the grammar file (up to trigrams), 2) a vocabulary file containing all different words
that appears from the selected texts, and 3) the pronunciation file, in SAMPA format, for the
recognizer.

Figure 4.24. Assistant for the creation of stochastic language models

Speed Up Strategies for the Creation of Multimodal and Multilingual Dialogue Systems

122

4.8 Conclusions

In this chapter, we have described all the accelerations included in the design platform
in order to speed up the design and guide the designer through all the steps required to create
a multimodal and multilingual dialogue service. Apart from the direct applicability of these
accelerations in the design platform, and the advantages for designers, the proposed
accelerations are in most cases innovative and do not exist in any of the current commercial
and research platforms.

Different types of accelerations have been proposed according to the requirements,
capabilities, and available information at each assistant. In some cases, the accelerations take
advantage of heuristic information extracted from the contents of the backend database used
in the service or from an object oriented data model structure that represents the tables, fields,
and relationships between fields of the database. In other cases, the accelerations consist of
the application of predefined and configurable rules that using contextual and previously
defined information from other assistants, allows the generation of different kinds of
proposals that simplify the process of creating and fulfilling the dialogue flow. Finally, other
accelerations consist of different wizard windows or simplified processes that help designers
to complete, create, or debug models (e.g., grammars, prompts, SQL commands) required by
the design and runtime platform.

In order to provide some of the accelerations, an automatic procedure to extract
heuristic information from the backend database was created. During this process, we had to
deal with some limitations of the connecting database driver, mistakes in the definition of the
fields in the database, and for mapping some field types supported by the platform but not for
most database engines. These problems were solved through a set of regular expressions that
were evaluated on different available databases obtaining an average correlation of 89.6 %
when compared to the classification made by a human evaluator.

In relation with the accelerations included to create the data model structure we have
proposed a new assistant that automatically exploits the heuristics extracted from the database
contents in order to automatically propose, organize, and simplify the process of defining the
classes and attributes.

In relation with the assistant that defines the prototypes of the database access
functions, we have incorporated a new wizard window that allows the automatic generation
and debugging of SQL queries used by the real-time system. Internally the system
implements an automatic procedure that analyzes and proposes the SQL statements using
information regarding the type of the input/output parameters. This acceleration contributes
to reduce the necessity of learning a new programming language (SQL in this case), and goes
one step forward to similar assistants in current development platforms: the queries are
automatically proposed. Another acceleration, proposed and implemented by the partners of
the GEMINI project, allows the definition of relations between the function arguments and
the data model structure. Then, in the following assistants, these relations are exploited
trough different kind of automatic proposals that simplify the design.

In relation with the assistant where the state flow model is generated, during this thesis,
we have contributed with a new graphical interface that simplifies the creation of the
transition network, and provides a clear overview of the dialogue flow by using an automatic
algorithm that reduces and reorganizes the information displayed to the designer. On the
other hand, the main accelerations are the automatic generation of different state proposals
that can be used to quickly create complex states, together with the possibility of using an
automatic analysis of the feasibility of the slots defined in a given state of being requested

Chapter 4: Speed up strategies applied in the dialogue design

123

using mixed initiative forms or direct forms. Both accelerations represent an important effort
for the reduction of the design time and to improve the quality of the generated flow in
comparison to current development platforms. Especially interesting is the process of
automatically proposing the slots to be requested using mixed-initiative forms or directed
dialogues which is not provided in any other platform.

In relation with the retrieval modelling assistant, it has been the assistant where the
higher number of accelerations have been proposed and implemented. Specifically we have
incorporated several automatic dialogues and templates that can be used to obtain or present
information to the final user. In a similar way to the previous assistant, the proposed
dialogues help to reduce designer mistakes when creating new dialogues by proposing default
built-in dialogues. Besides, we have incorporated an auxiliary window where the designer
can find all the actions that are considered relevant for the dialogue being edited. This
acceleration and the procedure to fulfil the information presented to the designer do not exist
in any other platform and it is one of the most important contributions of this thesis. In
addition, we have also created an automatic procedure to help the designer to connect the
input/output parameters of different actions and dialogues with the local/global variables that
contain or will contain the information for/from those actions and dialogues. Again, in this
case the assistant applies different rules and mechanisms to automate this process that is
usually made by hand in other development platforms. Finally, we have also designed a
simple procedure to define dialogues with mixed-initiative or over-answering capabilities.

In relation with the assistant that defines the specific details for the speech modality, the
proposed accelerations were the automatic generation of the dialogue flow required for the
confirmation handling of the user answers, together with an assistant where the dialogue flow
for providing the information contained in a list of retrieved results after querying the
backend database can be specified. In this case, both accelerations provide innovative
contributions to the design of spoken dialogue applications by proposing different procedures
and dialogue flows, codified through predefined templates, considering the number of items
to show to the user, the number and type of the slots to be requested, as well as the
confirmation type to be used. Finally, the assistant semi-automatically proposes the
information required to complete some actions or steps of the dialogue flow.

Finally, other assistants in the platform were also accelerated in order to allow the quick
definition of language dependent prompts and pronunciation vocabularies used by the speech
recognizer, as well as the creation and debugging of stochastic grammars.

Speed Up Strategies for the Creation of Multimodal and Multilingual Dialogue Systems

124

125

55 EEVVAALLUUAATTIIOONN OOFF TTHHEE AACCCCEELLEERRAATTIIOONN

TTEECCHHNNIIQQUUEESS

In order to estimate the goodness of the platform, its assistants, and the different
acceleration techniques, two different types of evaluations were proposed: the first one is a
subjective evaluation where several persons, with different levels of experience on designing
and programming dialogue applications, rated the design platform and its assistants. The
second one is an objective and subjective evaluation, where another set of designers were
proposed to evaluate the platform using a measurement system that provided several
objective metrics when using the assistants and compared our platform with an alternative
assistant with less accelerations. Finally, these evaluators were also asked to fill in a
subjective evaluation form. The next sections present full details for both evaluations.
Finally, in section 5.3 (page 147) we present the conclusions of the evaluations.

5.1 Subjective Evaluation

In order to rate the usability and acceptability of the platform, during the GEMINI
project we carried out a subjective evaluation of all the assistants included in the Application
Generation Platform (AGP). The main topics evaluated at this time were: a) the friendliness
of each assistant in the platform and the whole platform interface, b) the complexity and time
required to learn to use each assistant and the whole platform, c) the level of functionality of
each assistant, d) the level of consistency, transparency, and intuitiveness of each assistant,
and e) the willingness of the evaluators to use the platform to develop dialogue applications.
Appendix D contains the detailed questionnaire the evaluators had to answer.

5.1.1 Experimental setup

Since this evaluation was carried out during the GEMINI project, we were able to
evaluate the platform and its assistants with different groups of evaluators created from the
partners of the project. In this case, the Greek group was created from people from the
University of Patras – Wire Communication Lab (WLC 62) and from the Knowledge 63
company. The German group was created from workers at Temic SDS GmbH company
(currently, Harman-Becker 64). Finally, the Spanish group was created from people working
or studying at the Universidad Politécnica de Madrid (UPM). In turn, these groups were
divided into three categories considering the level of knowledge and experience on designing
dialogue applications. The three categories considered were: novices, i.e. testers that never
developed a dialogue application before, intermediate, i.e. testers with some experience on
using or designing dialogue services, and finally experts, i.e. evaluators who previously had
used other platforms or languages to develop dialogue applications.

62 http://www.wcl.ee.upatras.gr/
63 http://www.knowledge.gr/
64 http://www.harmanbecker.com/

http://www.wcl.ee.upatras.gr/�
http://www.knowledge.gr/�
http://www.harmanbecker.com/�

Speed Up Strategies for the Creation of Multimodal and Multilingual Dialogue Systems

126

Partner Novice Intermediate Expert Total

WCL (Greece) 11 4 0 15

KNOW (Greece) 0 4 6 10

HB (Germany) 9 0 0 9

UPM (Spain) 4 3 0 7

Total 24 11 6 41

Table 5.1. Distribution of the evaluation participants for the subjective test

Table 5.1 shows the statistics and details about the forty-one participants involved in
this subjective evaluation. From WLC, 15 subjects, post-graduate students, were involved.
All of them having experience in at least one programming language, but most of them with
no experience in dialogue applications. From this group, four were classified as intermediate
level since they had some experience in Web applications. From Knowledge, 10 subjects,
developers working in the company, evaluated the platform. Fifty percent of the subjects
were speech application developers, whereas the other fifty percent were Web application
developers. In this group, the average number of years of experience in designing dialogue
applications was three. Therefore, they were categorized as intermediates and experts. From
Temic, nine subjects, software engineers working in the company, evaluated the platform. All
of them were classified as novices as they had never before written a dialogue application.
Finally, from the UPM, seven subjects, pre-graduate students and teachers of the university,
were involved. In this case, three were classified as intermediate with an average of four
years of experience in speech dialogue development. The age of the users was varying in the
range of 21 to 49 years old. Considering the subjects’ mother tongue, the groups included
Greek (61%), Spanish (17%), and German (22%) speakers. Figure 5.1 illustrates the final
distribution of programming skills of the users involved in the evaluation.

Figure 5.1. Final distribution of experience status for the evaluation participants of the

subjective test

The evaluation was done in one session of 3-4 hours. This session was divided into
three main blocks. To start with, an overview of the platform was presented to the
participants. Including also information about some definitions and terms (e.g.,
multimodality, over-answering, mixed-initiative, etc.) used during the evaluation that were

Chapter 5: Evaluation of the acceleration techniques

127

not known at all by most of the participants, especially the novice users. Besides, the
architecture of the platform, the sequence of the layers, and the functionality of each assistant
were also explained.

During the second block, the participants received a detailed demonstration of each
assistant, its interface, capabilities, accelerations, settings, and proper input and output were
described. The demonstration was based on a demo version of a banking application.

Finally, in the third section, the evaluators were asked to use each assistant of the
platform in order to create an appropriate model for a new dialogue service. For instance, the
testers were asked to perform the following tasks: to create the data model for three complex
classes, to prepare at least three database access functions for the DCMA. In addition, they
had to design at least four states in the SFMA, to get the information about a house loan, to
do a transaction of a certain amount between two accounts using mixed-initiative and to
obtain the current value of a currency in the RMA. The final goal of all these tasks was to
cover more than the 90% of the functionality of the AGP. In any case, in order to carry out all
these tasks within the limitation of the 3-4 hours of the evaluation, the participants were
allowed to create and reuse some predefined libraries and models without starting from
scratch. After finishing the evaluation, a short discussion was carried out about the main
problems that they had faced, and they were also asked to answer a questionnaire with
specific questions for each assistant and for the overall appearance and behaviour of the
platform.

5.1.2 Evaluation results

As we have described before, after finishing the evaluation of each assistant and the
whole platform, the participants were asked to answer the questionnaire included in
Appendix D. The questionnaire consists of four questions per assistant and seventeenth for
the overall AGP. The scale used by most of the questions is a 10-point scale being 1 the
minimum and 10 the maximum score. In this section, we will show the results obtained for
each of the four questions per assistant and for the overall evaluation of the AGP.

In summary, we can say that all the assistants were rated positively, with an average
score between 7.0 and 8.5, which is a very homogeneous score. Here, the ADA, DMA,
SFMA, DCMA, MERA-Speech, and UMA assistants were rated, in average, between seven
and eight considering the four initial questions. The RMA was rated as having a very good
overall appearance and extremely good functionality. However, it had some difficulties in
learning and was perceived as less intuitive. The most probable reason is that it is the
assistant that provides the biggest functionality for dialogue design, as it is the place where
detailed design is made, and the evaluating designers were given very little time to learn each
assistant and practise with them, so in practice evaluators only read part of the documentation
provided beforehand regarding the designs they were asked to do.

On the other hand, the participants rated the assistant for the modality and language
extension (MEA) below seven for all the questionnaire sections. In this case, the low results
are probably the result of the time required to set the prompts and grammars (text typing),
especially for different language definitions where machine translation and more prompt and
grammar libraries would be desirable.

• How quickly did you learn to use each assistant?

Speed Up Strategies for the Creation of Multimodal and Multilingual Dialogue Systems

128

As we can see in Figure 5.2, the average score for all the assistants was 7.7, which is a
very good rate considering the different functionalities and processes done by each assistant.
As we have previously mentioned, the RMA obtained only a 6.4 score mainly due to the short
time the participants had to use it and the big number of functionalities offered by this
assistant. In the other hand, the MERA-Speech, the other assistant developed in this thesis,
was highly rated since most of the complexity of the generated flow is hidden to the
designers.

Figure 5.2. Evaluation results for the question about how quick the participants learnt to use

the platform assistants

• Is the assistant easy and intuitive to use? Do you know what to do at each step?

According to Figure 5.3, the average rating for all the assistants in the platform was 7.3.
Here we observe a similar behaviour regarding the previous question, i.e. the most complex
assistants have the lower score. It is interesting also to observe again that the MERA-Speech
is one of the most positively rated assistants. One of the reasons was that its graphical
interface contained enough information to guide the designer.

Figure 5.3. Evaluation results for the question about how easy and intuitive were the platform

assistants

Chapter 5: Evaluation of the acceleration techniques

129

• Is the functionality of the assistant sufficient?

Figure 5.4 shows the results for the third question in the survey. Here we can see that
all the assistants were highly rated, with an average score of 8.0. In this case, the RMA and
MERA-Speech assistants obtained the maximum scores. It is important to mention that, at the
time of this evaluation, most of the accelerations described and designed by the author of this
thesis had not been included in the DMA, DCMA, and SFMA assistants, therefore they could
have obtained a higher score. On the other hand, the MEA assistant was the assistant with the
lowest score. As we mentioned above this was mainly due to the low number of accelerations
included in it.

Figure 5.4. Evaluation results for the question about how sufficient was the functionality of

each platform assistant

• How do you rate the appearance of the assistant (consistent, transparent, and
intuitive)?

Figure 5.5 shows the results for the last question about each assistant. The average
score for all the assistants is 8.0. It is interesting to observe that for this question the results
were more homogenous but consistent with the previous one. Again the assistants designed
and implemented by the author of the thesis were the ones that obtained the highest scores.

Figure 5.5. Evaluation results for the question about how consistent, transparent, and intuitive

the users rated each platform assistant

Speed Up Strategies for the Creation of Multimodal and Multilingual Dialogue Systems

130

Figure 5.6 shows the average results for the four general questions included in the
survey considering each assistant independently.

7.6

8.1 7.9

7.7

7.3

8.1 8.0

6.8

6.0

6.5

7.0

7.5

8.0

8.5

ADA DMA DCMA SFMA RMA MERA UMA MEA

Figure 5.6. Average results of the subjective evaluation for general questions about the
assistants

Finally, the questionnaire gave the participants the opportunity of providing comments
and suggestions about each assistant. Next, a summary of their comments is provided.

• “All the assistants require some kind of contextual help at “mouse-over” in order
to guide the designers about the capabilities and functionalities of the assistant”;

• “Some of the assistants require some kind of GUI adaptability to the monitor
resolution”;

• “The SFMA and RMA functionality should eventually be integrated into one
assistant, as they are using at a high degree the data model”;

• “The RMA is the most demanding regarding the time needed to understand it and
use it, however it boasts a high quality GUI, desirable for the other assistants too”;

• MERA-Speech: “very nice functionality for lists handling, offering a wide range
of possibilities”;

• UMA: “very simple functionality, that could eventually be integrated into one of
the Speech modality assistants (MERA-Speech or MEA)”;

• MEA: some users remarked that setting additional language prompts was too
slow, possible due to the expectation of automatic text translation from the main
language;

• MEA: additional knowledge and learning time is required at this level (for a
speech developer to get used with Web pages specific items, and for Web
developers to understand speech resources design).

Finally, the participants had to answer the second part of the questionnaire to evaluate
the platform as a whole. In this evaluation, 1 means very poor and 10 means excellent. Table
5.2 shows the results of this section of the evaluation. The overall score was in average: 8.37,
with the maximum scores in the following aspects:

Chapter 5: Evaluation of the acceleration techniques

131

• Speeding up the development time of an application

• Over-answering and Mixed-initiative functionality

• Lists handling for speech applications

Question Average
rating

The provision of data modelling and connecting to external data sources 8.7

The provision of application state flow modelling 8.6

Easy adaptability to other languages 8.2

Easy adaptability to other modalities 7.9

Ready-made error-handling (nomatch, noinput) 8.1

Speed up of development time as compared to writing VoiceXML/+xHTML
code by hand 9.0

Provision of user modelling 7.8

Provision of mixed-initiative dialogue handling 8.5

Provision of list handling 8.6

Provision of over-answering 9.0

Provision of easy connection to run-time modules 7.9

Table 5.2. Subjective evaluation of the platform

Following we include the questions and a short description of the statistics obtained for
each one.

Did you learn quickly how to make applications with the AGP?
In this case, 55% of the users said yes, and 45% of the users said no. Considering the

level of experience, most of the novice and intermediate participants answered “yes”, while
experts answered “no” in most of the cases. The reason for this answer from the experts was
that they had certain expectations of the platform and the basic training received at the
beginning of the evaluation was considered as not enough.

Do you think non-experts could use the AGP efficiently?
In this case, 32% said “yes”, although they were concerned about terms that are not

familiar for novice users such as over-answering, mixed-initiative, multimodality, etc. On the
contrary, 68% of testers said “no”. They considered that the platform is useful only for
experts; and that non-experts will not be able to design and deploy a good dialogue
application even using the AGP. However, they considered that with more training, it should
be possible. In any case, this is a common procedure for all speech or Web platforms.

Speed Up Strategies for the Creation of Multimodal and Multilingual Dialogue Systems

132

How do you rate the overall appearance of the AGP (consistent, transparent, and
intuitive)?
The average score in this question was 7.7. This low score is mainly due to the fact that

for the overall rating users considered also the AGP GUI, the basic functionality of each
assistant and the overall effort to use the platform, and not only the specific platform
functionality (i.e. mixed-initiative, list handling, etc.).

Do you find the various assistants of the AGP are well integrated?
In this case, 88% of the users answered “yes”. However, some testers considered

important to suggest a possible merging of some of the assistants (e.g., DMA, DCMA and
SFMA, or RMA and SFMA).

Would you use this system in the future or recommend it to develop speech/Web
applications?
Positively, 95% of the testers answered “yes”. Only two expert Web developers said

“no” because they preferred to write HTML code by hand instead of using the AGP.

5.2 Objective Evaluation
Finally, the performance and usefulness of the different accelerations included in the

platform were validated through an objective evaluation. Here, our idea was to obtain a set of
quantitative measures obtained by different testers when they were requested to perform
different tasks using the AGP and a parallel tool that does not include any of the accelerations
described in this thesis. Then, these measures were used to compare the performance of each
assistant and the whole platform in relation to the other tool. The next section describes the
experimental setup including information about the proposed quantitative measures, the
assistants and tasks that were evaluated, the tool used in the comparison with the AGP, as
well as information about the participants, and the answers of the evaluators to a subjective
test measuring the assistants and their accelerations.

5.2.1 Experimental setup

The first thing we had to specify was the objective measures to obtain. However,
currently there is not a standard method for evaluating the accelerations proposed. [Jung et al,
2008] propose a set of quantitative measures for measuring the performance of a dialogue
design platform with accelerations. In their proposal, they set different tasks that the
evaluators had to carry out using the platform with accelerations and an open text editor
chosen by each participant. During the evaluation, different metrics are measured such as
mouse clicks, keystrokes, and elapsed time. Then these metrics are used to compare the
performance of the platform with the hand-made models created using the text editor.

For evaluating our platform, we have decided to follow a similar approach, introducing
some differences, obtaining a set of similar quantitative measures when different assistants of
the AGP are used in order to complete a set of previously defined tasks. Then, we compared
these quantitative measures with the ones obtained when annotating the same tasks in the
internal language format used by the platform, i.e. GDialogXML syntax. In this case, the
evaluators made the annotation using a semi-automatic assistant called Diagen (see section
3.4.6, page 71) already included in the platform. The reason to use this assistant, instead of
allowing the evaluators to use any text editor of their liking, was to make a fairest comparison

Chapter 5: Evaluation of the acceleration techniques

133

between both evaluations. It is well known that writing any information in any XML-based
language is a tedious and difficult task (especially if the XML document is required to be
well formed and the XML tags are case-sensitive as in the GDialogXML specification). In
addition, the assistant reduces the necessity of memorizing the XML specification. On the
other hand, almost all developers and development platforms use some kind of tool for
writing from scratch or performing fine-tuning of the code generated by the main application.
Diagen is a representative example of this kind of applications.

In addition, it is important to mention that the main reasons for selecting a comparison
between using the AGP assistants and Diagen, instead of comparing with other development
platforms, was that we could not find any commercial or academic platform comparable to
the AGP. For instance, most of these platforms create only VoiceXML applications instead of
multimodal services as in the AGP, or they do not take into account the Database information
neither include all the accelerations that we wanted to evaluate. Finally, most of the
commercial platforms have an advanced graphical interface that we were not interested on
evaluating. It is well known that the appearance of the GUI will have a great influence over
the evaluators.

The evaluation was done by 9 testers which were classified in the same three levels
defined for the subjective evaluation (section 5.1.1, page 125): novice, intermediate, and
expert. All the evaluators had some experience in at least one programming language but
most of them had no, or a very little, experience in designing dialogue applications. The
evaluators, most of them pre-graduate students at our university, were then classified
according to their level of experience on developing dialogue applications resulting in the
following groups: 4 evaluators in the novice group, 3 in the intermediate level, and 2 in the
experts group. From this group, only three participants had some knowledge of the AGP. The
average age was 27 years old (from 22 to 41 years old).

Since not all the assistants in the platform were developed by the author of the thesis
neither they include most of the accelerations proposed and described in this thesis, we
decided to include in the evaluation only the following assistants that are the basic
contribution of this thesis: DMA, DCMA, SFMA, RMA, and MERA-Speech. All these
assistants were initially proposed to be also evaluated using the Diagen assistant. However,
after considering the high complexity of the dialogues produced by the MERA-Speech due to
the automatic templates included on it, we decided not to include this assistant in the non-
accelerated evaluation, since it would involve an excessive work and, evidently, the
comparison would be unfavourable.

Figure 5.7. Interface used to start the evaluation of the different assistants in the AGP and

using the Diagen assistant

Speed Up Strategies for the Creation of Multimodal and Multilingual Dialogue Systems

134

Figure 5.7 shows the window used to perform the evaluation of the different assistants.
Number 1 allows the selection of the name of the evaluator in order to save the corresponding
files with the statistics. Number 2 is a check box to indicate that the evaluation can be started.
This check box controls if the testers are using the assistant for training purposes or for
evaluation. Number 3 and 4 allow the evaluator to select the assistant to be evaluated using
the AGP or Diagen respectively. Number 5 allows the evaluator to save the quantitative
measures of the current assistant being evaluated.

The evaluation was done in two sessions of 4 hours each. During each session, the
testers were trained in all the assistants to be evaluated at that session. During the first
session, the evaluators received a complete explanation of the whole platform, the goals of
the evaluation, and the interfaces used to get the statistics. Finally, they also received
instructions and evaluated the three first assistants in the evaluation: DMA, DCMA and
SFMA. During the second session, the evaluators learnt how to use and evaluated the RMA
and MERA-Speech assistants. In general, each assistant evaluation was divided into three
main blocks: in the first one, the evaluators received instructions about the capabilities and
accelerations included in the corresponding assistant through examples of use. In the second
block, the evaluators were proposed to carry out an example task using the assistant in order
to consolidate the knowledge acquired in the first block and to allow to answer to the doubts
that could arise when practicing with the assistant. Finally, during the third block, the
evaluation was carried out and later the evaluators were also requested to fill in a subjective
survey to measure the acceptance, usability, intuitiveness, and most interesting features of
each assistant, etc.

As we have mentioned before, the quantitative measures proposed in [Jung et al, 2008]
are the number of keyboard strokes, the number of mouse clicks, and elapsed time. In this
evaluation, we have included one more measure: the number of times the user presses the
delete key when typing. The goal of this new metric was to provide an additional measure of
the difficulty of introducing information in the assistants or writing the GDialogXML code.
Besides, since the assistants reduce the number of times the designer had to type, this fact
could also be reflected in the number of errors the designers could make. In order to obtain
these statistics, each assistant to be evaluated was executed in parallel with a measurement
system. This system captures all the events from the mouse and keyboard, differentiating the
events occurring in the assistant window from events occurring in other applications. Finally,
we also included an automatic and invisible mechanism (the testers were not aware of this
process) for recording and saving the screen during the evaluation. The recorded videos were
later reviewed in order to find out the main problems the testers found and to obtain a visual
feedback of the process that the testers followed to complete the tasks. These videos also
allowed us to discover if the testers used or not the accelerations included in the assistants,
and the steps that took most of the elapsed time during the evaluation.

Figure 5.8 shows the program used to save the statistics. Number 1 allows the evaluator
to select the step to be evaluated according to the current assistant selected in the previous
form window (Figure 5.7). Each time the evaluator changes the step the system automatically
checks out if the statistics has been saved or not, and asks the evaluator what to do. Number 2
is used to start or to pause the evaluation. When the evaluation is paused, neither mouse nor
keyboard events are registered. Number 3 allows the evaluator to save the statistics and to go
to the next step in the evaluation. Number 4 is used to clear all the registered events for a
given step, starting it from scratch. Number 5 shows the different counters used in the
evaluation. Number 6 and 7 allow the evaluators to reduce in one the number of clicks and

Chapter 5: Evaluation of the acceleration techniques

135

keystrokes registered. The objective of these two buttons was to allow the evaluator to correct
manually an error when evaluating the assistants, and to measure the difficulty/uncertainty of
a given task considering that the evaluator was probably confused. In the same way, number
7 automatically records the number of times the evaluators press the backspace or delete
keys. In practice, the evaluators rarely use these two buttons, so we only used the number of
times the backspace or delete keys were used.

Figure 5.8. Interface to record the mouse and keyboard events during the evaluation

5.2.2 Description of the evaluated tasks and results

In order to test the different accelerations included in the platform, we designed a set of
tasks to be performed by the testers using the assistants included in the AGP and using
Diagen. Each of the proposed tasks could be divided into one or several steps in order to test,
gradually, the different possibilities and accelerations allowed by the assistants, as well as the
different kind of problems that a designer could find when developing a real application. This
section will briefly describe the different tasks proposed and the steps included in each task,
as well as graphics comparing the performance of the assistants of the AGP vs Diagen. In
order to simplify the presentation of the evaluation and the comparison considering the
different tasks, participants, and metrics, we have included a different graphic for each task
and assistant evaluated. In general, these figures show the average improvements, in
percentage, obtained when comparing each quantitative measure obtained using the
corresponding assistant in the AGP and with Diagen for each type of participants, for all, and
the average improvement considering all the metrics. In each figure, a positive value means
that the assistants of the AGP perform better than Diagen, and a negative value means that
Diagen outperforms the corresponding assistant. Finally, we have included in Appendix E
tables with all the information represented in the graphics, the specific values for each
quantitative measure obtained during the evaluation, and the results of a subjective evaluation
with general questions about the evaluated assistants and Diagen.

For the DMA assistant, we proposed the evaluators to test two different steps or cases.
In the first one, they were requested to create a class model with two atomic attributes. Both
attributes were related to the database. In this case, it was expected that the evaluators used
the assistant described in section 4.2.1 (page 89). However, during the evaluation we
observed a big difference between the time used by experts and novices/intermediates to
fulfil the task. For that reason, we repeated the available strategies of the assistant to the
participants. After the evaluation, we reviewed the videos of each tester and confirmed that
some of the novice and intermediate testers did not use the available accelerations but create
each attribute using an alternative, not accelerated, method. Nevertheless, as we can see in
Figure 5.9, the AGP performs better reducing in average the design time by 56.6%, the
number of clicks in 30%, the keystrokes in 93.1%, and the number of keystroke errors (i.e.

Speed Up Strategies for the Creation of Multimodal and Multilingual Dialogue Systems

136

using the delete or backspace keys) in 96.3%. Finally, we can see that in average for all the
participants the proposed accelerations obtain a 69% improvement when compared with
Diagen.

Figure 5.9. Chart with the improvements obtained when evaluating the Data Model Assistant

for the creation of a class structure with database dependency

In the second step, the testers were asked to create a mixed class structure, including
two atomic attributes (both related with the database and with language dependency) and one
complex attribute (a list of embedded objects). This time, during the evaluation, and
reviewing later the video recordings, we observed that the participants used the available
wizard with accelerations to create the two atomic attributes and used the available
mechanism to create the complex one. Figure 5.10 shows the improvements for this
evaluation. Here we can see that there is a big improvement using the AGP for the number of
keystrokes and keystroke errors. This is mainly due that for this task the GDialogXML code
is more complex and the evaluators had to type much more, and the possibility of making
errors was also higher. Besides, we also observed that the improvements for the elapsed time
between the experts and novices was quite similar, which means that both were using better
the available accelerations. Considering that this task requires a greater and more complex
GDialogXML code we should expect bigger improvements in the elapsed time. However,
when we inspected the video recordings we observed that the participants were getting used
to the Diagen interface and therefore working faster with it. This behaviour was increasing
throughout all the evaluation and it is a collateral effect that should be kept in mind. Finally,
we observe that for the number of clicks there is a negative improvement (14.3%) for the
intermediate participants. In this case, the video recording showed that one of the
intermediate testers had some problems to create the complex attribute using the AGP, then
generated more clicks than the others do. As a future solution, we propose to extend this
assistant with a new wizard window specialized in creating complex attributes. Finally, the
global improvement in this case was 61.9%.

Chapter 5: Evaluation of the acceleration techniques

137

Figure 5.10. Chart with the improvements obtained when evaluating the Data Model

Assistant for the creation of a mixed class

For the DCMA assistant, we proposed the evaluators one single task. It consisted on
creating a function with two input arguments and one output argument. In this case, all the
parameters were related to the data model. Although this assistant includes very few
accelerations, Figure 5.11 shows that the design time can be reduced in 19.9%, and 16.6% in
general. From these results, we propose as future improvements to define a new mechanism
for defining the input/output parameters that could be especially useful for novice and
intermediate users in order to reduce the keystroke errors, number of clicks, and elapsed time.
Finally, it is important to mention that the participants were able to test the functionality of
creating and testing SQL statements using the wizard described in section 4.3.2 (page 93).
However, this process was not included in the evaluation because this kind of information is
not included in the GDialogXML syntax and therefore it cannot be generated by Diagen.

Figure 5.11. Chart with the improvements obtained when evaluating the Data Connector

Model Assistant for the definition of the prototype of a database function

Speed Up Strategies for the Creation of Multimodal and Multilingual Dialogue Systems

138

For the SFMA assistant, we proposed the testers to perform three steps. The first step
consisted of creating a state with one slot related to the database. Here the testers had the
option of creating the state using the proposal of automatic states with slots or the empty state
template and then defining the slot. Figure 5.12 shows the improvement results during this
step. In this case, the average improvement was 46.6%, and the elapsed time was reduced in
average 56.7%. Here, the video recordings showed that all, except one of, the participants
used the proposal of automatic states instead of using the empty state template.

Figure 5.12. Chart with the improvements obtained when evaluating the State Flow Model

Assistant for the creation of a state with one slot

For the second step, the evaluators were required to create a state with two slots, where
both slots had to be set as mixed initiative. Besides, it was necessary to create a transition to
other state. This step allowed the testers to check the automatic unification of slots to be
requested using mixed-initiative dialogues and the automatic creation of an undefined state
when it is referred as a transition state (i.e., top-down design).

The inspection of the recorded videos showed that most of the participants quickly
created the state using the proposed states from the DMA. However, some of the novice
testers did not use the proposal of states creating the state using the empty template and
defining the slots one by one. Another fact we discovered inspecting the video recordings
was that the evaluators were spending a lot of time reviewing the final state created using the
AGP in order to check if it corresponded to the one specified by the evaluation. Although this
behaviour is normal, we observed that for Diagen, since a lot of XML text was generated,
they did not spend so much time in that revision. Therefore, the improvements should be
greater in a normal case. In any case, according to Figure 5.13, the average improvement
using the proposed accelerations in this assistant was 42%.

Chapter 5: Evaluation of the acceleration techniques

139

Figure 5.13. Chart with the improvements obtained when evaluating the State Flow Model

Assistant for the creation of a state with mixed initiative slots and one transition

Finally, the third step was the creation of a connection between two states. This step
allowed the testers to check some of the functionalities included in the graphical user
interface (see section 4.4.1 and Figure 4.6, page 96). Although the final improvement was
38.1%, as we can see in Figure 5.14, it is obvious, considering the number of clicks, that for
the participants it was not enough and should be simplified. This conclusion was also
corroborated by the final subjective questionnaire, where most of the participants, and
especially experts, agreed that the procedure to create the connections using the GUI should
be changed by another one similar to the one existing in most graphics editors, i.e.,
connecting two blocks using anchor points. Although, they also considered that if the number
of connections had been high then the proposed method would be better appreciated.

Figure 5.14. Chart with the improvements obtained when evaluating the State Flow Model

Assistant for connecting two states

Speed Up Strategies for the Creation of Multimodal and Multilingual Dialogue Systems

140

For the RMA assistant we proposed the evaluators three different tasks. The first one
was the creation of a menu-based dialogue (see section 3.3.2, page 63). In this case, it is
expected that the final user can answer, using language independent concepts, three different
options: PersonalInformation, GeneralInformation, or Transaction. According to Figure
5.15, the participants were requested to fulfil the dialogue GetTopLevelCategoryByName
defining the three different options. In order to get the user answer the dialogue
DGet_CategoryName had to bee selected. Then, depending on the user’s selection, which is
stored in the slot CategoryName, the system will call different dialogues:
Personal_Information, General_Information, or Transactions. Although, at first sight, this
process looks complicated, using the proposals of dialogues (section 4.5.2, page 103) and the
automatic DGet dialogues (section 4.5.1, page 101) the complete dialogue flow can be
created in less than one minute.

Figure 5.15. Proposed flow for the evaluation of a menu-based dialogue in the RMA

According to Figure 5.16, the average improvement was 81.5%, reducing the design
time in more than an 88%. We also observe a high improvement in the number of keystrokes
and keystroke errors since the XML code is more complex.

Figure 5.16. Chart with the improvements obtained when evaluating the Retrieval Model

Assistant for creating a menu-based dialogue

Chapter 5: Evaluation of the acceleration techniques

141

Although the improvements of the AGP in this step are extremely high, we observe that
the improvements in the number of clicks are not as remarkable. For this reason, we propose
to improve the graphical interface in future releases of the platform. For instance, allowing
the specification of several concepts at the same time or adapting the proposal window to the
dialogue type (i.e., menu-based, sequence, while, etc.) in order to generate complex dialogue
flows to be used as a template instead of using small items to build it.

In the second step, the participants were asked to create a dialogue
(SFM_GetLoansCategoryByName) with over-answering and an IF-Then-Else condition.
Figure 5.17 shows the flow proposed for this task. In this case, the designer has to use a DGet
dialogue (DGet_LoansType) to fill in a compulsory slot (LoansType) and an optional slot
(HouseLoansType). In the proposed flow, in case that the final user wants to obtain
information about house loans, the compulsory slot will be set to the concept
HOUSE_LOANS, and the system will jump to another dialogue
(GetHouseLoansSubCategoryByName) where the other slot will be filled in
(HouseLoansType) to save the subcategory of available house loans (e.g., for building, for
repairing, for buying, etc). However, since in the current edited dialogue we define this slot
as optional, it should be possible for the final user to fill it in using the over-answering
capabilities of the DGet dialogue (DGet_LoansType). In case this slot is already filled in, it
will not be requested in the posterior dialogue.

On the other hand, according to the figure, it is also possible that the final user does not
want information about house loans but about other loans. In that case, the proposed flow is
to call to a database access function (PGetInformationByCategory) that receives two input
parameters (InfoCategory and InfoSubCategory) and returns a single string parameter. In the
example, the first input parameter is set to ‘LOANS’, and the subcategory parameter is set to
the concept stored in the compulsory slot. Then, the returned information is assigned to a
local string variable (InfoText). Finally, the local variable is used as input to a DSay dialogue
(DSay_InfoText) that plays the retrieved information to the final user. The goal of this step
was to allow the evaluators to use the following accelerations: the dialogue proposals window
(section 4.5.2, page 103), the automatic matching of arguments between actions (section
4.5.3, page 105), the procedure for including compulsory and optional slots (section 4.5.4,
page 106), and the possibility of defining different programming structures (section 3.3.2,
page 63).

Figure 5.17. Proposed flow for evaluating a dialogue with aver-answering and conditional

actions

Speed Up Strategies for the Creation of Multimodal and Multilingual Dialogue Systems

142

According to Figure 5.18, all the quantitative measures are positive with an overall
average improvement of 88%. According to the Table E.1 in Appendix E, the average
elapsed time when using Diagen was 1493 seconds (around 25 minutes), in comparison to the
140 seconds (2½ minutes) when using the AGP. In this case, the elapsed time is one order of
magnitude greater than using the RMA. The main reasons for these values is the big
complexity of the GDialogXML syntax when codifying the optional and compulsory slots
and the low number of accelerations included in Diagen to codify conditional actions. In
addition, the high number of keystrokes and keystroke errors confirms these reasons.

Figure 5.18. Chart with the improvements obtained when evaluating the Retrieval Model

Assistant for creating a dialogue with over-answering and a conditional structure

The third task we proposed to the participants, see Figure 5.19, was the creation of a
mixed-initiative dialogue (DGet_MI_Template) including the creation of a global variable
(Amount) to save the information returned by a DGet dialogue (GetTransactionAmount).
Then, the next step is to access the database using the function PerformTransaction that
receives the credit and debit accounts and the transaction amount, returning if the transaction
is performed or not. The next step in this demo version is to jump to a dialogue for asking the
user if another transaction or service is desired. In a more realistic dialogue, a conditional
loop should be required to guarantee that the transaction is performed or to notify the user if
that is not the case and try again. However, this demo flow was enough to test the
accelerations provided by the assistant for defining mixed-initiative dialogues (section 4.5.4,
page 106), for matching variables (section 4.5.3, page 105), the dialogue proposals window
(section 4.5.2, page 103), and for defining local/global variables.

According to the table Table E.1 in Appendix E, the average time for defining the flow
using the AGP was 94 seconds (around 1½ minutes). In this case, the recording videos
showed that the participants used all the available accelerations, although they spent some
more time in creating the local variable since this was a new process that is not highly
accelerated and that they had not practiced before. Unfortunately, we cannot provide a
quantitative comparison between the AGP and Diagen, since the evaluation of this step with

Chapter 5: Evaluation of the acceleration techniques

143

Diagen could not be carried out. The reason was that at this time of the evaluation the testers
were tired, and some of them reluctant to continue, after evaluating the previous task (i.e.,
dialogue with over-answering and conditional actions) with Diagen. Although we tried to
motivate them, at the end we gave up because we thought that their results would not be
accurate because of the lack of motivation, and also because this step is relatively similar to
the previous one although it would have required more time to perform given its higher
complexity. For that reason, we concluded that, in any case, the objective measures would
show, again, the superiority of the platform over Diagen.

Figure 5.19. Proposed flow for a dialogue with mixed-initiative and the creation of a global

variable

For the MERA-Speech assistant, we proposed a two steps task. The first step was the
creation of a DSay dialogue for presenting a list of objects. In this case, the proposed
dialogue provides information about the rates for selling or buying different international
currencies. The average time used by the evaluators to configure this dialogue was only 89
seconds using only 17 clicks. Thanks to the different accelerations included in this assistant,
the evaluators did not need to type in any information avoiding keystroke errors and reducing
considerably the elapsed time. The last step was to automatically fill-in all the DGet
dialogues included in the design. In this case, as we mention in section 4.6.2 (page 113), the
assistant automatically proposes the strategy to fill in all the dialogues and automatically
creates all the internal actions for the handling of errors in the speech recognition system.
This acceleration allowed the participants to spend in average only 4 seconds, which they
spent reviewing the proposed profile (simple or full) for each dialogue and clicking in the
button to start the fill in process, in any case, without requiring any typewriting.

Finally, Figure 5.20 provides an overview of the average improvement considering all
the tasks per assistant. As we can see, the accelerations proposed in this thesis produces an
average improvement of 65.5% for defining the data model structure (DMA), a 16.6% for
defining the prototypes of the database access functions (DCMA), 42.2% in the definition of

Speed Up Strategies for the Creation of Multimodal and Multilingual Dialogue Systems

144

the finite state model of the application (SFMA), and a 84.8% for defining all the actions of
each state of the dialogue flow (RMA). This way, we obtained an overall average
improvement of 52.3% that corresponds to a 56.5% improvement in the elapsed time, 13.4%
for the number of clicks, 84% in the number of keystrokes, and 55.2% in the number of
keystroke errors. These results are consistent with the number and scope of the accelerations
described in this thesis. We can also observe that the improvements were greater in the
assistants where the more complex structures and actions are required; this way, we
accelerate the design and guide the designer in the steps where it is more needed.

Figure 5.20. Chart with the average improvement by assistant considering all tasks

Although these results are good, we are sure that they could be better since after
reviewing all the videos recorded during the evaluation, we found out that the evaluators
spent too much time reviewing each step which incremented the elapsed time measured by
the evaluation system. In addition, when we were carrying out the evaluation, we observed
that the evaluators were quickly used to the Diagen interface since the mechanism for
codifying the different steps and tasks in GDialogXML syntax were very similar (see section
3.4.6.3, page 72). In contrast, when evaluating the assistants of the AGP, the evaluators were
required to learn a different methodology and accelerations at each assistant making more
difficult its use. Finally, we also found that some of the evaluators did not use all the
available accelerations of the assistants, but they resorted to other methodologies less
straightforward.

5.2.3 Subjective survey

At the end of the two sessions of the evaluation, the evaluators were requested to fill-in
a subjective survey about the different assistants and accelerations evaluated in this section.
This survey was similar to the one used during the subjective evaluation described in section
5.1 (page 125), but including new specific questions about the accelerations (see Table 5.3),
and including open questions to provide comments and suggestions.

In this survey, the participants were asked to answer a 4-item questionnaire per
assistant with general questions about the appearance of the assistant, its level of
intuitiveness, how quickly it was to learn it, and if the functionality of the assistant was
enough. Then, they also answered to a 12-item questionnaire with specific questions about

Chapter 5: Evaluation of the acceleration techniques

145

the accelerations included in the AGP. In most questions users had to rate the relevant
attribute or characteristic using a 10-point scale (1=minimum, 10=maximum).

Figure 5.21 shows the results of the general questions about the different assistants
evaluated. In this case, we observed that these results are consistent, and better in all the
cases, with the evaluation presented in section 5.1.2 (see Figure 5.6, page 130). The
improvements are mainly due to the incorporation of new accelerations proposed in this
thesis, together with the correction of some bugs, and the simplification of some procedures.

Figure 5.21. Chart with the results of the subjective evaluation for general questions about the

assistants

On the other hand, Table 5.3 shows the questionnaire used to evaluate the main
accelerations included in each assistant. The evaluated accelerations correspond to the ones
used during the objective evaluation. This way, the participants had the possibility of using
and experimenting with them, therefore their results are relevant since they are given in the
heat of the moment. According to the table, all the accelerations were positively assessed
with an average value of 9.0, with the maximum scores in the following accelerations:
automatic generation of action proposals (section 4.5.2, page 103) and the easiness to define
the state flow model (section 4.4, page 94). Finally, it is also important to highlight the last
question since the participants showed an unquestionable preference for the AGP in contrast
to using Diagen.

Finally, the survey included a section for comments and suggestions of the subjects
with respect to the accelerations of each assistant. A summary of the main comments for each
assistant is described next.

• DMA: A comment from one of the evaluators summarizes the most important
acceleration in this assistant: “The creation of classes using the database
information is extremely useful”. However, there are some aspects of the graphical
interface that can be improved such as drag and drop capabilities, copy and paste,
and the direct edition of the attributes using the boxes in the workspace instead of
using buttons and boxes on the toolbar.

Speed Up Strategies for the Creation of Multimodal and Multilingual Dialogue Systems

146

Assistant Specific Questions About the
Accelerations Novice Interm. Expert Av. All

DMA
Facility to create the data model structure

using information from the DB
(No useful at all – Very useful)

8.5 9.3 9 8.9

DCMA
Facility to define and test the database

access functions
(No useful at all - Very Useful)

8.8 9.3 9 9.0

SFMA Facility to design the state flow model
(Very Difficult - Very Easy) 9.8 8.7 9.5 9.3

RMA

Facility to define global or local variables
(Very difficult - Very Easy) 8.0 8.0 9.5 8.3

Facility to define dialogues with Mixed-
Initiative

(Very Difficult - Very Easy)
9.3 8.0 10 9.0

Facility to create dialogues with Over-
Answering

(Very Difficult - Very Easy)
9.3 8.3 9.5 9.0

Acceleration for passing arguments
between actions

(No useful at all - Very Useful)
9.3 8.0 9.5 8.9

Automatic generation of action proposal
for each dialogue

(No useful at all – Very Useful)
9.5 10.0 10 9.8

Tooltips to preview complex actions
(No useful at all – Very Useful) 8.0 9.0 9 8.6

MERA-
Speech

Acceleration for the management of the
presentation of lists of objects

(No useful at all - Very Useful)
9.3 9.3 8 9.0

Quick configuration of error handling
(nomatch, noinput, etc.)

(No useful at all - Very Useful)
9.3 8.7 8.5 8.9

Diagen

Comparison of Speed development
between using Diagen or the assistants of

the AGP
(0=I Prefer Diagen – 10=I Prefer AGP)

9.5 10.0 10.0 9.8

Table 5.3. Subjective evaluation results for specific questions about the accelerations

• DCMA: This assistant was considered easy to use since the menus were clear and
simple. The most valuable accelerations were the automatic creation of SQL
statements and the automatic proposal of data model classes/attributes and
tables/fields when defining the arguments. One of the participants suggested to
improve the process of defining the input/output parameters through a graphical
interface instead of the text-based interface currently implemented.

• SFMA: The most valuable accelerations were the proposals of states from the
classes and database functions, as well as the automatic unification of slots as
mixed-initiative. One suggestion for this assistant was to implement a new
mechanism for creating complex states in order to avoid the unification step

Chapter 5: Evaluation of the acceleration techniques

147

required when the designer selects two or more proposals of states in the auxiliary
window. Another suggestion was to implement an easiest method, for instance
using a right-click menu, to define the first state in the model instead of opening the
state for edition (currently the designer has to specify it before saving the model
since this information is compulsory to organize sequentially the states in the
canvas). Finally, the procedure for connecting states was considered as non-
intuitive at all, although it is easy, some evaluators have shown a preference for
implementing a similar mechanism as in other graphical tools where two or more
objects are connected using anchor points and drawing the connection line.

• RMA: In this assistant, the best accelerations were the window with the proposal
of actions, the automatic creation of variables when passing arguments between
actions, and the intuitive mechanism for creating conditional actions. The only
suggestions were related with the graphical interface, for instance changing the
position of some buttons in the assistants to make them easy to access, to avoid
modal windows that prevent the designer from performing other tasks such as
creating variables or editing other actions, since the mouse or keyboard focus
cannot be redirected to other windows, etc.

• MERA-Speech: This assistant was highly appreciated since the steps when
defining the presentation of lists were very clear and intuitive for all the
participants. The automatic creation of the error handling was highly appreciated,
although some evaluators requested the possibility of pre-visualizing and
performing fine-tuning on the automatic flow created by the assistant.

• Diagen: Although this assistant does not include too many accelerations, the
evaluators considered the process of creating any section of GDialogXML code
through different pop-up windows, and pre-defined templates (see section 3.4.6.3,
page 72), as easy, simple, and fulfilling most of their requirements. However,
during the objective evaluation two main problems were detected: 1.) The
information collected through the different pop-up windows can be lost in case of
problems. Besides, sometimes it is confusing for the designer to follow the process
of completing many nested items. 2) The templates were not enough for most
designers, especially those unfamiliar with the GDialogXML syntax. The proposed
solutions were 1.) The creation of a window listing all the actions that the designer
checks using the pop-up windows. The action table would allow the designer to go
back to an incomplete step before accepting the whole set of actions and
GDialogXML code. 2) The templates have to be complemented by new pop-up
windows and contextual help allowing more complex structures, and providing
default or previously defined values. In addition, several other accelerations such as
auto-completion, tags in colours, and reducing the number of times they need to
delete and overwrite some default messages included in some of the templates.

5.3 Conclusions

With the objective of evaluating the performance of each of the assistants that make up
the platform, as well as the accelerations proposed in this thesis we carried out a subjective
and objective evaluation. In detail, we proposed for the objective evaluation the collection of
different metrics such as elapsed time, number of clicks, keystrokes, and keystroke errors in
order to measure the performance of each acceleration and assistant, as well as a parallel
GDialogXML editor included in the platform. Then, a comparison between the assistants
with accelerations and the GDialogXML editor was carried out. The results of this evaluation

Speed Up Strategies for the Creation of Multimodal and Multilingual Dialogue Systems

148

confirm that the design time can be reduced in more than a 56% and the number of
keystrokes in 84%. Besides, the subjective evaluation showed that all the accelerated
assistants obtained a global score between 8.0 and 9.0. Therefore, both evaluations confirm
the designer-friendless of the platform, as well as its usability, and the contribution of the
proposed accelerations to reduce the design time and to simplify the design process.

In relation with the accelerations included to create the data model structure the
objective and subjective evaluation showed that the proposed accelerations helped to reduce
the design in a 65.5%, to increase the subjective overall rating of the assistant from 8.1 to 8.3,
and to score the new procedure for creating the data model structures with an 8.9.

In relation with the assistant that defines the prototypes of the database access
functions, the objective evaluation showed an average improvement of 16.6% when
compared to Diagen, which resulted in a reduction of 19.9% in the design time. The
subjective evaluation also presents an increase in the overall rating from 7.9 to 8.3. The
assistant for generating the SQL statements was rated with a 9.0.

In relation with the assistant where the state flow model is generated, the objective
evaluation showed an average improvement of 42.2% when compared to Diagen, which
resulted in a reduction of 62.1% in the design time and 78.5% in the number of keystroke
errors. The subjective evaluation also presents an increase in the overall rating from 7.7 to
9.0. In this case, the improvements made to the graphical interface, and the state proposals
and mixed initiative slots contributed the most to this new perception of the assistant.

In relation with the retrieval modelling assistant, i.e., the assistant that defines the
actions to be done in each state, the subjective evaluation showed that the accelerations
included in this assistant were scored in average with an 8.9, and the assistant with an 8.6.
The objective metrics showed that the proposed accelerations contribute to reduce the design
time by an 89.4%.

In relation with the assistant that defines the specific details for the speech modality, the
automatic generation of the dialogue flow required for confirmation handling and the wizard
for defining the dialogue flow for the presentation of lists of retrieved results after querying
the backend obtained high subjective marks with an 8.9 and 9.0 respectively. Although the
objective evaluation could not be completed with comparisons between the AGP and Diagen,
given the high complexity of the GDialogXML models, the obtained results confirm that the
accelerations are quite remarkable. Besides, the overall score given by the participants in the
evaluation for this assistant was 9.0.

149

66 DDEEVVEELLOOPPMMEENNTTSS AANNDD IIMMPPRROOVVEEMMEENNTTSS

AAPPPPLLIIEEDD TTOO TTHHEE RRUUNNTTIIMMEE SSYYSSTTEEMM

Besides all the previously described acceleration strategies applied to the design
platform and its assistants, as well as all the efforts made to generate and provide the final
service in different languages, throughout the thesis we also worked in improving two
important components of the runtime system, namely an automatic language identification
(LID) system and an automatic speech-to-sign language translation system. The former is
important since it allows the identification of the final user’s language at the beginning of the
dialogue in order to load the correct acoustic and language models to be used during the call.
The later is also important because it provides a mechanism for accelerating the specification
of system prompts for different modalities, and to allow that the same service can be provided
to different kinds of final users without requiring too much effort or specific knowledge from
the designer. Both systems were selected in our effort to improve the multilingual and
multimodal capabilities of the final service.

Unlike the acceleration strategies presented in the previous section, where different
kind of heuristic, rule-base, and contextual information were used to accelerate the design, in
this section the proposed improvements will be mainly based on using statistical information.
This approach has the advantage that different automatic algorithms are applied in order to
create the models used by the language identification system and the machine translation
system without requiring too much participation from the designer, this way reducing also the
design time and contributing to guarantee the multimodal and multilingual capabilities of the
design and runtime platform.

This chapter is divided into two main sections. The first one presents an innovative and
successful language modelling technique based on using an n-gram ranking of frequencies for
providing long-span information to a state-of-the-art LID system based on the PPRLM
technique. In this work, two main objectives were considered: a) to accurately identify the
language, and b) to use a reduced audio segment in order to identify the language as soon as
possible. These factors are quite important since they help to guarantee the user satisfaction,
to provide reliable speech recognition results, and to allow a quick setup of the service.

The second section describes a successful technique for improving an automatic
machine translation system that can be used to translate the previously defined prompts for
the service into an animated representation in the sign language. In this case, the goal was the
creation of an adaptation technique that can be applied to the target language model that is
used by the machine translation system during the process of generating the translated
sentence, in order to guarantee that the candidate sentences are grammatically and
syntactically correct. Our main contribution lies on using retrieved counts from online
resources to adapt the original counts of the n-grams that appear in the target language, as
well as the creation of the list of n-grams to be queried on the Web. Apart from being
innovative, the proposed technique is especially interesting for applications where the
training data is scarce to estimate properly the language model used during the decoding
process for translating sentences from one language into the other.

Speed Up Strategies for the Creation of Multimodal and Multilingual Dialogue Systems

150

6.1 Language Identification System

As mentioned in the state of the art (section 2.3, page 36), many methodologies for
language identification have been proposed. Among them, the most widely used and
successful technique is PPRLM. In PPRLM, several parallel phone recognizers and language
models are used during the identification process. This section describes a novel approach for
language identification based on a text categorization technique, namely an n-gram frequency
ranking, and the incorporation of different acoustic information. In our system, we use a
parallel phone recognizer, the same as in PPRLM, but instead of using as phonotactic
constraints the traditional n-gram language models (PPRLMNG) we use a new language
model which is created using a ranking with the most frequent n-grams (PPRLMRANK),
keeping only a fraction of them. The objective is to select the n-grams that are more
discriminative between languages. Then the distance between the ranking for the input
sentence and the ranking for each language is computed, based on the difference in relative
positions for each n-gram. The final objective of this ranking is to be able to model reliably a
longer span than the obtained using the traditional n-gram models used in PPRLMNG, namely
5-gram instead of trigram, because for using this ranking it is not necessary to use any kind of
smoothing technique, so it requires less training data for a reliable estimation. The results
show that this approach overcomes PPRLMNG thanks to the inclusion of n-grams of higher
order (i.e., 4-gram and 5-gram) in the classifier. Besides, two alternatives are shown: a
ranking with absolute values for the number of occurrences, and a ranking with
discriminative values. In addition, we have also combined this technique with other sources
of information (feature vectors in our classifier) such as acoustic scores at sentence and
phoneme level, as well as phoneme duration, which in previous research experiments have
also proved to be relevant and provide additional improvements.

6.1.1 System Description

6.1.1.1 Database corpus
The database used for carrying out the experiments described in this thesis is a

continuous speech database, which consists of very spontaneous conversations between
controllers and pilots. For speech recognition it is a very difficult database, noisy and very
spontaneous, as in “Lufthansa four two seven nine start up approved clear to Frankfurt
standard departure somosierra one echo three six left squawk one zero two three report
parking position”. A big drawback with this database is that all speakers are native Spanish.
Therefore, many of them do not reflect all the phonetic variations in English, and they mix
Spanish words for names, airports, greetings, and goodbyes even when the rest of the
sentence is in English.

The database consists of approximately 9 hours of speech for Spanish, consisting of
4998 sentences, and 7 hours for English corresponding to 3132 sentences. Since the proposed
technique has to be applied to dialogue systems, only sentences with a minimum of 0.5 s and
a maximum of 10 s (with an average duration of 4.5 s) were considered. This restriction is
important since many of the techniques reported in the literature take advantage of using
longer sentences (e.g. with an average duration of 30 s).

6.1.1.2 Parallel phone recognizer followed by language modelling (PPRLM)
As mentioned in the state-of-the-art (see section 2.3.1, page 39), the most widespread

and successful technique for LID is Parallel Phone Recognition followed by Language

Chapter 6: Developments and improvements applied to the runtime system

151

Modelling (PPRLM) [Zissman, 1996], which classifies languages based on the statistical
characteristics of the allophone sequences. The technique consists of two stages: First, a
phone recognizer takes the speech utterance and outputs the sequence of allophones
corresponding to it, without using any phonotactic constraint during the Viterbi decoding.
Then, the sequence of allophones is used as input to a language model (LM) module that
scores the probability that the sequence of allophones corresponds to the language. In order to
recognize different languages the system is made up of N parallel phone recognizers and M
language models modelled for the M different languages to recognize. In theory, PPRLM
allows having phone recognizers modelled for languages different from the languages that
have to be identified. However, the performance of the system increases if there is a match
between the input language and the language of the acoustic models, because in that case, it is
possible to model explicitly the phonetic variations of each language.

During the classification step, the unknown utterance is transcribed using each of the N
parallel recognisers. Then a score is calculated for each of the N transcriptions using the M
language models as represented in Figure 6.1. In our system, N and M are equal to two,
corresponding to the Spanish and English languages.

Figure 6.1. PPRLM scores used for the LID system

Finally, an overall score is calculated through an average between both scores obtained
for the same language using Eq. 6.1. In this way, the target language is the one that obtains
the highest overall score.

2

SC3 SC1
_;

2

SC2 SC0
_





 ENGSCSPASC

Eq. 6.1

Regarding the language models, in most PPRLM systems it is frequent to use back-off
n-gram models or independent n-gram language models of different orders interpolated
linearly using the deleted interpolation technique (see Eq. 6.2) In this equation, weights α1,
α2, and α3 correspond to the unigram, bigram and trigram model respectively; α0 stands for
the zero-gram or equally distributed probability model. Although this technique alleviates the
data sparcity problem, it still exists, as described in [Cordoba et al, 2003][Cordoba et al,
2006c], where a PPRLM system using trigrams, PPRLMNG in our notation, performs slightly
better than another one using 4-grams.

Speed Up Strategies for the Creation of Multimodal and Multilingual Dialogue Systems

152

011221312)()|(),|(),,(pwpwwpwwwpwwwS oiiiiiiiii ⋅+⋅+⋅+⋅= −−−−− αααα

Eq. 6.2

One problem with this approach was that the weights of the n-grams, i.e. α0, α1, α2, and
α3, were difficult to integrate in our approach, the Gaussian classifier which is described in
the following section, as the scores for the unigram, bigram, and trigram models were
independent in our feature vector. For that reason, in [Cordoba et al, 2007b] a different
formulation was proposed (see Eq. 6.3).

λ
σ

σ
Original
iFinal

i =

Eq. 6.3

In this case, instead of multiplying each feature by its weight in the distance measure, it
was proposed to divide the variance of the Gaussian distribution of each score by a
corresponding λi weight (Eq. 6.3). For low values of λi, the final variances are increased, so
the distances are smoothed (which is good for less discriminative features). This smoothing
weight is quickly adjusted with good results and allowed us to maintain the models
independent in our feature vector.

6.1.1.3 Gaussian classifier for LID
In spite of all its advantages, as it is described in [Ramasubramaniam et al, 2003], the

general PPRLM approach has a flaw: there is the possibility of having a different bias in the
log-likelihood score for the languages considered. This is even more evident when the phone
recognizers have a different number of units, therefore the language with fewer units will
have higher probabilities in the LM score (think of the unigram case), and the classifier will
tend to select that language. Since in our system we have 61 allophones for English, and 49
allophones for Spanish, in [Cordoba et al, 2006c] we proposed to use a Gaussian Mixture
Model (GMM) classifier instead of the usual decision formula applied in PPRLM. The
advantage of the Gaussian classifier is that it does not suffer from the bias problem, as it does
not use an absolute discriminant function. Besides, we can increase the number of Gaussians,
in order to better model the distribution that represents our classes, following the classical
HMM modelling approaches (i.e., Gaussian splitting and Lloyd re-estimation after each
splitting with a maximum of iterations).

Therefore, with all the scores provided by every LM in the PPRLM module, we prepare
a score vector. Now, the recognized language is not the one with the largest average score.
Instead, the distance between the input vector of LM scores and the Gaussian distributions for
every language is computed, and the distribution that is closer to the input vector is the one
selected as identified language. Therefore, the LID problem can be treated as a conventional
N-class classification problem (for N languages) in the score space of dimension D (D scores
considered in our system). Each class is represented by a Gaussian density Ν(µl, Σl), where µl
and Σl are the mean and covariance of class l. They are estimated from the training data of P
vectors of class l using Eq. 6.4. Here, we have considered the weighted Euclidean distance (Σ
diagonal) instead of a full covariance matrix as we are aware of the insufficient training data
to estimate the full matrix.

Chapter 6: Developments and improvements applied to the runtime system

153

∑
=

=
P

p
pll x

P 1
,

1µ
t

lpl

P

p
lpll xx

P
)()(1

,
1

, µµ −−=Σ ∑
=

Eq. 6.4

A test utterance is classified as language l* based on its score vector ν using Eq. 6.5.

Nldd llll ,...,1),,,(),,(** =Σ≤Σ µνµν Where)()(),,(1
ll

t
llld µνµνµν −Σ−=Σ −

Eq. 6.5

Finally, an important conclusion presented in [Cordoba et al, 2006c] is that, instead of
using absolute values for the scores, it is important to use differential scores as a
normalization mechanism. This differential score is the difference between the score obtained
by the LM of the same language of the acoustic models considered (Spa-Spa or Eng-Eng) and
the score obtained by the other ‘competing’ language(s): SC0 – SC1 and SC3 – SC2 in Figure
6.1. In this case, we applied it to unigram, bigram and trigram separately, with six features in
total that are listed in Table 6.1

Phonemes-SPA

SCO-SC1 for unigram

SCO-SC1 for bigram

SCO-SC1 for trigram

Phonemes-ENG

SC3-SC2 for unigram

SC3-SC2 for bigram

SC3-SC2 for trigram

Table 6.1. Differential score vector

Table 6.2 shows the results using PPRLMNG and a Gaussian classifier for the optimum
combination of weights. This system will be the baseline for the remaining of this chapter.
More details about the baseline system can be found in [Cordoba et al, 2003] and [Cordoba et
al, 2006c]. However, to show the benefits of the proposed technique we will first show the
results using a mono-Gaussian classifier and afterwards we will present the results for the
multi-Gaussian classifier.

Gaussians LID
Error rate (%)

1 3.69
2 3.74
3 3.75
4 3.75

Table 6.2. LID error rate results for PPRLMNG

Speed Up Strategies for the Creation of Multimodal and Multilingual Dialogue Systems

154

6.1.1.4 General conditions of the experiments
The LID system uses a front-end with PLP coefficients derived from a mel-scale filter

bank (MF-PLP), with 13 coefficients including c0 and their first and second-order
differentials, giving 39 parameters per frame. For the phone recognizers, we have used
context-independent continuous HMM models. For Spanish, we have considered 49 different
allophones and, for English, 61 different allophones. All models use 10 Gaussians densities
per state per stream.

In order to increase the reliability of the results presented in the next sections, we
performed a cross-fold validation, dividing all the available material in 9 subsets. Using in
each pass:

• 4 blocks for estimating the acoustic models and the Gaussian distribution for the
LMs and the ranking,

• 3 blocks for estimating the language models for PPRLM, the n-gram ranking or
the n-gram probabilities, and the Gaussian distribution for the acoustic scores and
duration,

• 1 block for the test-set and parameter fine-tuning,

• 1 block for the validation set.

Besides, this block distribution is consistent with the one proposed in [Cordoba et al,
2006c] where it was checked that the acoustic models and the Gaussian mixtures for the LMs
can be trained using the same data as it does not participate in the LM estimation, and the
same can be applied for the mixture estimation of acoustic scores with the data used to train
the LMs. Moreover, this distribution provides more robust and effective models since the
Gaussian mixtures are estimated on different sets of the training data allowing that the
distribution of the scores matches better the one that will be obtained in the evaluation set.

Another issue that we also considered when splitting the database into these blocks was
that since this database consists of conversations between controllers and pilots, and that the
same controller uttered a large group of sentences which were sequential in the database until
there was a shift change, it was possible that the system made some kind of speaker
modelling instead of language modelling, i.e., the models could be capturing the specific
characteristics of a predominant controller instead of the language used. For that reason, we
decided to create the lists using a random selection procedure, namely Fisher-Yates, which
assures the maximum dispersion in speaker selection. In previous experiments, [Cordoba et
al, 2006c], this random selection resulted in an important improvement of 16.6% in average
and 5% in the minimum, showing that in fact there was some sort of implicit speaker
modelling.

6.1.2 Proposed Technique: n-gram Frequency Ranking

As we have described before, one of the main problems with our current PPRLMNG
system is the existence of data sparcity problem and the inability to use longer span
information (n-grams of higher order than trigram). In spite of all our efforts to alleviate these
problems, they remain as we described in [Cordoba et al, 2006c], where our system using
trigrams performs better than when we using 4-grams. In this section, we describe our efforts
to reduce both problems [Cordoba et al, 2007a].

Chapter 6: Developments and improvements applied to the runtime system

155

6.1.2.1 Base system: all n-grams in one ranking
In [Cavnar and Trenkle, 1994], an interesting technique that combines local information

(n-grams) and long-span information (collected counts from the whole utterance) is
described. In general terms, during training the technique proposes the creation of a ranked
template with the N (typically 400) most frequents n-grams (up to n-grams of order five) of
the character sequences in the train corpus for each language sorted by occurrence and then
orthographically in case two or more n-grams contain the same occurrence (e.g., positions 10
and 11 in Figure 6.2).

During the evaluation, a dynamic ranked template is created for the phoneme sequence
of the recognized sentence following the same procedure. Then a distance measure is applied
between the input sentence template and each language dependent template previously
trained. The distance for a given ranking T is calculated using Eq. 6.6.

∑
=

−=
L

i

T
ii

T wposwposabs
L

d
1

)(1

Eq. 6.6

Where L is the number of n-grams generated for the input sentence. If an n-gram does
not appear in the global ranking (meaning that it has not appeared in training or it is not in the
top n-grams selected) it is assigned a maximum distance: the size of the ranking. The selected
language is the one that presents the higher correlation between templates (i.e., the lower
distance).

Figure 6.2. Example and calculation of distance score using a ranking of n-grams as proposed

by [Cavnar and Trenkle, 1994]

Figure 6.2 shows an example of one of the templates created in our system for English
and the template created for the unknown sentence. Although this technique is very simple, it
provides good results for language recognition of written texts (up to 93%, depending of the
length of the sentence to be recognized and the size of the template).

In order to start with our experiments we decided to follow the original proposed
technique and use it as our baseline system. Here, we used the same input as PPRLMNG: the
sequence of allophones generated by the phone recognizer, but with the difference of using
this ranking instead of the interpolated n-gram based LM module considered in PPRLMNG. In
addition, the combination of PPRLMNG with the proposed technique, PPRLMRANK, allowed
us to include longer span information (4-gram and even 5-gram) into the language model.
However, as the information used by the classification system is very similar to PPRLMNG

Speed Up Strategies for the Creation of Multimodal and Multilingual Dialogue Systems

156

(i.e. frequency of occurrence of n-grams), we were afraid that results could be at most
similar, but as we will show in the next sections, the proposed technique improves clearly
PPRLMNG. In any case, we will also have four independent rankings, as we had four LMs in
PPRLMNG (see Figure 6.1), trained using the same blocks used to train the acoustic models
(section 6.1.1.4). In this first experiment, L was also set to the top 400 n-grams, as proposed
by [Cavnar and Trenkle, 1994], but the LID rate was 7.5% error rate, which is higher than the
obtained using PPRLMNG (Table 6.2), therefore we decided to research other alternatives.

Our first variation from [Cavnar and Trenkle, 1994] is the application of what we called
the “golf score”. As the number of occurrences of the n-grams in the input sentence is very
low, most n-grams have the same number of occurrences and should have the same position
in the ranking. It is the same as a ranking in golf (the sport): all players with the same number
of strokes share the same position. It meant a relative improvement of 5% (from 7.5% to
6.4%). Figure 6.3 shows an example of the modification applied to the original template
using the proposed “golf” score.

Figure 6.3. Example of the modification of a ranking template using the “golf score”

Then, we applied our Gaussian classifier to these scores as we did with PPRLMNG
using the differential scores described in section 6.1.1.3. In Figure 6.4, we can see the results,
with the optimum number of Gaussians, of using the ‘golf’ ranking and varying the ranking
size. In this case, our best results are obtained using rankings with 3,000 n-grams.

Figure 6.4. LID error rate results varying the ranking size and using the ‘golf’ ranking

Chapter 6: Developments and improvements applied to the runtime system

157

6.1.2.2 N-gram specific rankings
After examining the ranking templates created following the original proposal, we

arrived to the conclusion that they were not optimum for our task since the top positions were
always devoted to the unigrams and bigrams that we already knew that were less
discriminative for language identification. For instance, in PPRLMNG, the optimum result is
always obtained applying the highest weight to the trigrams. Therefore, we decided to have
different rankings for each n-gram order. This introduces a small change in our Gaussian
classifier, we now have 10 features in our vector, the same 6 features in Table 6.1 for
unigram, bigram, and trigram, and 4 new features for 4-gram and 5-gram.

Table 6.3 shows an example of the n-gram specific ranking used in this section. The
table shows the first five positions in the ranking for the given n-gram order and the number
of occurrences of the respective sequence of phonemes. The table also shows an example of
the “golf technique” in the four-grams w_^_n_t and w_^_n_z, highlighted in yellow. In this
case, both n-grams occur 165 times and both are ranked in position 3, however the next 4-
gram, t_u:_w_^, is ranked in position 5, since there is no rank 4.

Rank Phoneme
N-Grams Counts Rank

Phoneme
N-

Grams
Counts

[1-gram] [2-gram]
1 n 4293 1 w_^ 1531
2 r 4125 2 ^_n 1279
3 k 3301 3 z_'i 701
4 s 2984 4 t_u: 600
5 t 2883 5 .._n 544

[3-gram] [4-gram]
1 w_^_n 1125 1 u:_w_^_n 268
2 u:_w_^ 324 2 z_'i_r_ou 208
3 'i_r_ou 302 3 w_^_n_t 165
4 z_'i_r 269 3 w_^_n_z 165
5 ou_w_^ 196 5 t_u:_w_^ 161
 [5-gram]
 1 t_u:_w_^_n 133
 2 w_^_n_t_u: 115
 3 w_^_n_z_'i 112
 4 n_t_u:_w_^ 104
 5 ^_n_t_u:_w 103

Table 6.3. Example of an n-gram specific count-based ranking for English.

According to Table 6.4, the ranking size for unigram and bigram is different between
languages. For that reason, it was necessary to include an additional normalization in the
distance measure. In this case, we divide it by the number of items in the set for that n-gram
order. In the table, the difference in the ranking size for the unigrams corresponds to
phonemes that occur in one language but not in the other (i.e. compare the size between
ENG_ENG and CAST_CAST). However, even when using the same phoneme set (i.e.
ENG_CAST and CAST_CAST) there are differences, this is mainly due to specific
phonemes that users cannot easily pronounce in the other language.

Speed Up Strategies for the Creation of Multimodal and Multilingual Dialogue Systems

158

 Number of Elements
Phone Set ENG CAST

Lang. Model ENG CAST ENG CAST
[1-gram] 61 48 56 49
[2-gram] 2550 1842 2836 1977
[3-gram] 3000 3000 3000 3000
[4-gram] 3000 3000 3000 3000
[5-gram] 3000 3000 3000 3000

Table 6.4. Ranking size for the different n-grams and languages

In Table 6.5, we can see the results using this approach. Now, the ranking size
presented in the table is the maximum allowed in the ranking creation algorithm, because for
unigram and bigram there are less than 3000 different items. The results show a high
improvement with this approach, which is due to the fact that there is more information as
more n-grams are considered globally in the system, and that the new information is
estimated more reliably. Nevertheless, the performance of this method is still below
PPRLMNG results (Table 6.2).

Ranking size One ranking
+ ‘golf’

Specific ranking
+ ‘golf’

Improvement (%)

1000 6.11 4.46 27.0

2000 5.11 3.96 22.5

3000 4.39 3.82 13.0

4000 4.42 3.96 10.4

Table 6.5. LID error rate results with n-gram specific ranking

6.1.2.3 Measure of separation between distributions
One of the main difficulties we suffered in the LID experiments is that they were very

time consuming, as we had to modify many weights (one for each n-gram) and we were using
the cross-fold validation technique. During the experiments with PPRLMNG, we had the same
problems, however at that time we just considered up to trigrams, but with the new proposed
technique, that we were confident we could use up to 5-grams, the combination of weights
was increased. Therefore, we decided to restrict the weights considered in the experiments
using, for each feature, information regarding the separation between the pdf distributions for
each candidate language. In order to do it, we applied Eq. 6.7 that is usually used in feature
selection algorithms to reduce the dimensionality of the input vectors. Moreover, from our
experience, we have also found that there is a very strong correlation among this measure of
separation between the Gaussian distributions and the results in LID. When using the
formula, a high value means that the feature is especially discriminative between languages.
In the equation, μ1 and μ2 are the mean values for the feature considering Spanish and English
input sentences respectively, and σ1 and σ2 are the respective covariances.

2
2

2
1

21

σσ
µµ −

Eq. 6.7

Chapter 6: Developments and improvements applied to the runtime system

159

Table 6.6 shows the separation which is obtained with PPRLMNG and PPRLMRANK for
each n-gram considered.

Order PPRLMNG PPRLMRANK

trigram 10.57 8.42

4-gram - 6.41

bigram 8.54 5.35

5-gram - 4.43

unigram 3.17 2.06

Table 6.6. Comparison of feature discrimination between PPRLMNG and PPRLMRANK

Therefore, the discriminative power of PPRLMNG is higher, especially for the trigram,
but the nice thing of PPRLMRANK is that we also obtain a nice discrimination with the 4-gram
and 5-gram that could not be used in PPRLMNG due to insufficient training data. In addition,
the table helps to understand and confirm the results in Table 6.2 and Table 6.5, where
PPRLMNG outperforms our ranking proposal.

6.1.2.4 N-gram discriminative ranking
After considering the discriminative power offered by higher order n-grams (see Table

6.6) and that the specific n-gram rankings were not working as well as we could expect, we
considered another solution. In this case, inspired in the work of [Nagarajan and Murthy,
2004], where better LID results could be obtained using the most discriminative units, we
decided to give more relevance (higher positions) in the ranking to the items that are actually
more specific to the language that is being identified, i.e. n-grams with a high frequency in
one language but with zero or low frequency in the competing languages. In order to do it, we
applied document/topic classification techniques.

The first option was to use the tf-idf (see section 2.2.1.3, page 31), which has been
widely used for topic classification in many different fields. However, as we only have two
languages, it only discriminates n-grams that appear in one language but not in the other, and
very few n-grams in our database fulfil that. Therefore, we proposed a variation to tf-idf. In
this case, after the original global rankings are created, we have the number of occurrences of
each n-gram: n1(w) = occurrences of n-gram w in the current language, and n2(w) =
occurrences of n-gram w in the competing language (it would be the average in the
competing languages to extend this measure to multiple languages).

∑∑
∈∀∈∀

==
21 :

22
:

11)()(
TwwTww

wnNwnN

Eq. 6.8

Being, in Eq. 6.8, N1 the sum of all occurrences for the current language and N2 for the
competing language, and T1 and T2 the ranking templates created for each language. As the
number of total occurrences will be different for each language and n-gram order, before the
subtraction a normalization is needed to have comparable amounts (see Eq. 6.9).

Speed Up Strategies for the Creation of Multimodal and Multilingual Dialogue Systems

160

21

21
1

)()(
NN
Nwnwn

+
×

=′
 21

12
2

)()(
NN

Nwnwn
+
×

=′

Eq. 6.9

Using these normalized values we considered several alternative formulae with the
same philosophy as tf-idf for the final number of occurrences considered for the ranking
(which we will call n1’’) and studied the separation between the Gaussian distributions for
each language obtained using each formula before diving into the LID experiments (see
Table 6.7). To summarize, only the average separation for all 5 n-grams is presented. First,
we proposed a purely discriminative solution Eq. 6.10:

)()(
)()()(

21

21
1 wnwn

wnwnwn
′+′
′−′

=′′

Eq. 6.10

According to the table, with this formulation there is a nice improvement over the non-
discriminative ranking. The next proposal was to include an item frequency term in the

formula (see Eq. 6.11

), but in this case we lost part of the discriminative power. For that reason, we decided
to reduce the effect of the first term by taking its logarithm or the square root obtaining
higher improvements.

)()(
)()(

)()(
21

21
11 wnwn

wnwnwnwn
′+′
′−′

×′=′′

Eq. 6.11

Formula Average Separation

Original – no discriminative 6.15

)()(
)()()(

21

21
1 wnwn

wnwnwn
′+′
′−′

=′′

6.75

)()(
)()()()(

21

21
1 wnwn

wnwnwnwn
′+′
′−′

×′=′′

6.48

)()(
)()())(log()(

21

21
11 wnwn

wnwnwnwn
′+′
′−′

×′=′′

6.82

)()(
)()())(()(

21

21
11 wnwn

wnwnwnsqrtwn
′+′
′−′

×′=′′

7.01

2
21

21
11))()((

)()()()(
wnwn
wnwnwnwn

′+′
′−′

×′=′′ 7.13

Table 6.7. Average feature discrimination (several formulas)

Chapter 6: Developments and improvements applied to the runtime system

161

Finally, the last formula in Table 6.7, proposed by my advisor, provided the best
classification power, probably because it normalizes the values between 1 and -1. Here one
means that the n-gram appears in the current language but not in the other competing ones
(n2’=0), indicating that it is especially relevant for that language; -1 meaning just the opposite
(n1’=0), so the n-gram does not appear in the current language.

Table 6.8 shows that the discrimination for the ranking trigram is now very similar to
the PPRLMNG trigram, and with a light improvement for the 4-grams. In addition, results are
better than those obtained in Table 6.6.

6.1.2.5 Threshold
One factor that has to be also addressed with these measures is that they are very prone

to overtraining, i.e. n-grams that just appear once or twice in training for one language and
never for the competing language(s) will be at the top position of the list, even though they
are probably irrelevant.

Therefore, we decided to apply a threshold: if (n1’+ n2’) < θng, send the item to the last
position in the ranking. After applying a greedy algorithm, the optimum thresholds were θ1g=
6, θ2g= 4, θ3g= 3, θ4g= 2, θ5g= 2 for unigram, bigram, trigram, 4-gram, and 5-gram
respectively.

Order PPRLMNG Discriminative
PPRLMRANK

trigram 10.57 9.71

4-gram - 6.61

bigram 8.54 7.12

5-gram - 4.25

unigram 3.17 2.19

Table 6.8. Comparison of feature discrimination between PPRLMNG and discriminative
PPRLMRANK

6.1.2.6 Results using the discriminative PPRLMRANK system
In Table 6.9 (third column), we can see the LID error rate results using the proposed

technique (in parenthesis the relative improvement in comparison to PPRLMNG). For
simplicity, the table only presents the results for a ranking size equal to 3000. We can see
that, even with one Gaussian, results are better than PPRLMNG. However, when the number
of Gaussians grows the improvements are lower. Probably, the reason is that we now have a
10-feature vector instead of six with PPRLMNG, so it is more difficult to estimate reliably
several Gaussians with our training database. The improvement over PPRLMNG for the best
results is 13.0% (3.21 versus 3.69). Over the non-discriminative ranking, it is 16.0% (3.21
versus 3.82) (see Table 6.5).

Speed Up Strategies for the Creation of Multimodal and Multilingual Dialogue Systems

162

Gaussians PPRLMNG Discriminative
PPRLMRANK

1 3.69 3.21 (13.0%)

2 3.74 3.22 (13.9%)

3 3.75 3.32 (11.5%)

4 3.75 3.24 (11.4%)

Table 6.9. LID error rate results for PPRLMNG versus discriminative PPRLMRANK

6.1.2.7 Longer span of the technique
We also checked the relevance of including 4-grams and 5-grams in the proposed

technique for LID. According to Table 6.10, considering only up to 4-gram or up to trigram
results are worse than using all n-grams. Therefore, we are clearly taking advantage of longer
span information using the proposed technique.

Order LID error
rate results

Up to 5-gram 3.21

Up to 4-gram 3.36

Up to trigram 3.65

Table 6.10. LID error rate results for including incrementally long-span information

6.1.2.8 Accumulative improvements
Figure 6.5 shows the accumulative improvements obtained with the modifications

proposed in this thesis (from section 6.1.2.2 to 6.1.2.5) to the basic ranking described in
section 6.1.2.1 which clarifies the relevance of each alternative proposed.

Figure 6.5. Accumulative LID error rates reductions over the original ranking technique

Chapter 6: Developments and improvements applied to the runtime system

163

6.1.3 Incorporation of additional information

One drawback with PPRLM is that the basic technique only takes into account
information regarding the allophone sequence. As we mentioned in the section 2.3 (page 36),
other techniques such as the “GMM tokenizer” provide a good performance using both
acoustic and “sequence of sounds” information. Unfortunately, the addition of new
information cannot be included using the basic PPRLM formula (see Eq. 6.1). However, this,
and other sources of information, can be included taking advantage of the Gaussian classifier.

Since previous experiments from my advisor, published in [Cordoba et al, 2006c] and
[Cordoba et al, 2007b], proved that the fusion of PPRLMNG and acoustic scores provided
better results using different feature vectors in the Gaussian classifier, we decided to check if
the fusion of the n-gram discriminative ranking proposed in this thesis with these acoustic
scores could also be used to improve the system. This section describes in detail the new
sources of information as proposed in the papers, the results reported in the papers using them
alone or in combination with PPRLMNG, as well as the experiments we did in the thesis for
combining them with our proposed technique.

6.1.3.1 Inclusion of the sentence acoustic score
The first additional information is the acoustic score at the sentence level, normalized

by the number of frames, obtained by the phone recognizers for both languages. Since the
values of the acoustic score were not homogeneous at all and the estimated distributions had
a big overlap between the languages that we wanted to classify, all experiments using those
scores provided worse results. The solution proposed in the papers was to use the difference
between the score for the Spanish phone recognizer and the score for the English phone
recognizer as feature value (“differential scores” according to section 6.1.1.3, page 152). This
approach can be extended to several languages using Eq. 6.12. Here, the differential score is
the difference between the acoustic score of the current language and the average acoustic
score from the n-1 different languages. In this case, the overlap between the estimated
distributions reduced drastically.

∑
≠∀−

−
n

ij
ji ScoreAc

n
ScoreAc _

1
1_

Eq. 6.12

In order to estimate the acoustic score distributions we utilized the same set used to
train the language models because those sentences have not been used to train the phone
models. This way we trained the Gaussian distributions for allophone sequence scores and
acoustic scores separately, as they use different training data for the estimation (it is very
similar to the treatment of different feature vectors in HMM models).

Gaussians PPRLMNG PPRLMNG
+ Sent. Acoustic

Discriminative
PPRLMRANK

Discriminative
PPRLMRANK

+ Sent. Acoustic

1 3.69 3.21 (13.0%) 3.21 (13.0%) 2.79 (13.1%)

Table 6.11. Comparison of LID error rate results for including the sentence acoustic score to
the PPRLMNG and the discriminative PPRLMRANK systems

Speed Up Strategies for the Creation of Multimodal and Multilingual Dialogue Systems

164

As we can see in Table 6.11 (fifth column), the results are outstanding, obtaining even
better results than the fusion of PPRLMNG + sentence acoustic scores (third column), which
provided improvements (given in the column in parenthesis) in average of 13.0%. On the
other hand, when comparing PPRLMNG with the proposed technique PPRLMRANK + sentence
acoustic scores the results are in average 24.4% better. Finally, the inclusion of acoustic
information is even better than only using the discriminative PPRLMRANK technique (fourth
column). In this case, the relative improvements (given in parenthesis) are 13.1% in average
when compared to the third column. Finally, we also did experiments with the fusion of all
three models (i.e. PPRLMNG + Discriminative PPRLMRANK + sentence acoustic) and we
obtained a minimum of 2.66%, which is a nice additional improvement (4.7%) over
“Discriminative PPRLMRANK + acoustic”.

6.1.3.2 Inclusion of the acoustic score for each phoneme
After obtaining promising results with the incorporation of acoustic information at the

sentence level, we now considered to add the acoustic score for each individual phoneme,
also proposed in previous papers, taking into account that this feature could also have a
strong variation depending on the language. Using the Gaussian classifier, we modelled the
distribution for the acoustic score of each phoneme. For each input sentence, we have its
corresponding sequence of phonemes using the Spanish and English phone recognizers.
Figure 6.6 shows the procedure to create the vector with the acoustic score for each phoneme.

Figure 6.6. Example of the procedure to create the vector with the acoustic score for each

phoneme

In the example, number 1 shows the N frames of a recognized sentence using the
English phoneme set. In the figure, the first three frames correspond to phoneme /‘a/. Number
2 shows the recognized sentence using now the Spanish phoneme set. Observe that since we
are using different phoneme sets the number of frames assigned to each phoneme may be
different as well as the identity of the phonemes itself. Considering that in the previous
experiments we found that the “differential scores” approach was a better option because
these scores have a strong variability, we decided to apply the same concept here. In order to
do it, a new score is calculated for each frame as SCnew_i = SCEnglish_i – SCSpanish_i. In the
figure, numbers 3 and 4 correspond to the new calculated differential scores considering each
language. It is important to highlight that although the score changes for each frame, the
recognized phonemes remain without change (i.e., the same number of frames and sequence).

The next step is to create the score vector in number 5. In this case, we have to compute
the average differential score (μi in the figure) for each phoneme appearing in the sentence

Chapter 6: Developments and improvements applied to the runtime system

165

(averaging the new calculated differential score over all frames belonging to that phoneme)
obtaining a feature vector with as many features as the total number of phonemes in the
system for all languages. Obviously, phonemes not appearing in the sentence do not
contribute to the final score in the classifier (in the figure they obtain a 0 value). It is also
important to explain that each average value for the new vectors, numbers 5 and 6, are
different even when they share the same number of dimensions, i.e., total number of
phonemes in both sets, since the number of frames assigned to a given phoneme and the
average differential scores are different for each language.

In order to reduce the size of the feature vector it was necessary to group some
allophonic variations. The first approach was to consider 34 different phonemes for each
language, but even then, the vector was too large, so the estimations were unreliable. Then, it
was decided to apply a feature selection algorithm to reduce the dimensionality, by using the
same approach described in section 6.1.2.3 (page 158), applying Eq. 6.7, in order to
determine which features were more discriminative. The next step was to test the system
using the first 24, 30, and 35 features, keeping at the end 30 features as the optimum. To get
an idea of the information provided by the incorporation of the acoustic score for each
phoneme, we should mention that using the same equation, the discrimination for the
sentence acoustic score is 6.84, whereas for the 30 features of the acoustic score for each
phoneme it ranges from 3.52 to 0.54. Finally, according to the reported papers, using only
this feature it is possible to obtain an 8.17% error rate in LID that is slightly better than using
the sentence acoustic score (8.20%), see Table 6.12.

6.1.3.3 Inclusion of the duration for each phoneme
Finally, following the previous reported work, we also considered that phoneme

duration could also be different depending on the input language and included this feature
vector into the Gaussian classifier. In this case, we modelled the Gaussian distribution for the
average duration of each phoneme in the system. For each input sentence, we computed the
average duration for each phoneme resulting in that the feature vector had as many features
as the number of phonemes.

However, it is important to mention that this feature presents an important problem
because the duration produced by the recognizer is too difficult to normalize. The
“differential scores” approach would be to subtract the average duration for the competing
language, but, as the phoneme sets are different for each language, this subtraction is not
possible. Therefore, two normalizations were considered: a) Subtract the average phoneme
duration of the competing language; b) Subtract the phoneme duration of the competing
language for the phoneme that had the largest part in common with the current one, so it will
be the most probable “competing” phoneme. In the previous experiments (b) was the best
option. Later, the feature vector was reduced using the same feature selection technique as in
the previous section, keeping 22 features as the optimum value. Unfortunately, the reported
results using only this new feature vector showed that the LID error result was 32.31%,
which was clearly a bad result confirming that there were still normalization problems, see
Table 6.12. In spite of these previous results, we decided to test this feature in combination
with our technique.

6.1.3.4 Individual features
When mixing several sources of information differences are less evident. Therefore, we

will first show in Table 6.12 the results of each source independently. The results show that
the n-gram ranking provides a 13.0% improvement over PPRLM and prove that the phoneme

Speed Up Strategies for the Creation of Multimodal and Multilingual Dialogue Systems

166

duration is the least discriminative feature, which can be due to problems in the
normalization.

Gaussians PPRLMNG Disc.
PPRLMRANK

Sentence
Acoustic

Phoneme
Acoustic

Phoneme
Duration

1 3.69 3.21 8.20 8.17 32.31

Table 6.12. LID error rate results for individual feature vectors

6.1.3.5 Combination of all features
Finally, Table 6.13 shows the results when combining several feature vectors and the

relative improvements over the PPRLMNG and the PPRLMRANK base systems considering
also the discriminative power of each feature according to Table 6.12.

Row Feature vectors LID
Rate

Improvements
PPRLMNG

Improvements
PPRLMRANK

1 PPRLMNG + Sentence Acoustic 3.21 13.0% -

2 PPRLMNG + Phoneme Acoustic 3.13 15.2% -

3 PPRLMNG + Phoneme Duration 3.68 2.7% -

4 PPRLMNG + both Acoustics 3.05 17.3%

5 PPRLMNG + both Acoustics + Duration 3.25 11.9%

6 PPRLMRANK + Sentence Acoustic 2.79 - 13.1%

7 PPRLMRANK + Phoneme Acoustic 2.78 - 13.4%

8 PPRLMRANK + Phoneme Duration 3.08 - 4.1%

9 PPRLMRANK + both Acoustics 2.67 - 16.8%

10 PPRLMRANK + both Acoustics
+ Durations

2.59 - 19.3%

11 PPRLMNG + PPRLMRANK 2.85 22.8% 11.2%

12 PPRLMNG + PPRLMRANK
+ Sentence Acoustic

2.66 27.9% 17.1%

13 PPRLMNG + PPRLMRANK
+ both Acoustics

2.54 31.2% 20.9%

14 PPRLMNG + PPRLMRANK
+ both Acoustics + Durations

2.52 31.7% 21.5%

Table 6.13. LID error rate results for feature vector combinations

Chapter 6: Developments and improvements applied to the runtime system

167

From the results reported in Table 6.13, we can see in rows 1 and 2 that in the
PPRLMNG system the acoustic information at phoneme level provides a better improvement
than the information at sentence level as the individual results predicted. According to row 3,
the fusion of PPRLMNG and phoneme duration only provides a low improvement as
expected, although it is worse than the obtained using the acoustic information. Considering
rows 4 and 9, in both systems, PPRLMNG and PPRLMRANK, both acoustic scores improve the
identification rate. This is expected since both scores are complementary. However, when we
compare rows 5 and 10 we can see the results for combining all the scores; in this case, the
PPRLMNG systems obtains slight worse results when compared with only the acoustic
information. However, for the PPRLMRANK the results are slightly betters.

The results reported in rows 6 to 9 show that the fusion of the PPRLMRANK and the
acoustic features provides similar improvements like in PPRLMNG. However, these
improvements are a bit lower probably because they begin from a better system. If we
consider now row 11, we observe that the fusion of PPRLMNG and PPRLMRANK provides a
nice improvement, which is surprising, as they use the same source of information, i.e. the n-
grams. Observing rows 12 and 13, we can see that the fusion of PPRLMNG + PPRLMRANK +
Acoustic scores provides further improvements, which shows again that they all provide
complementary information. Finally, row 14 shows that our best system is the fusion of all
the scores acoustic and durations and both PPRLM systems.

6.1.3.6 Evaluation of the Multi-Gaussian Classifier
After finishing the definition of the proposed technique and all the features that make

up the input vector to the backend classifier, we decided to check if we could get higher
improvements using a Multi-Gaussian classifier applying different number of mixtures to the
different features proposed previously and growing up from one to four mixtures. The reason
for growing up to only four mixtures was to avoid overtraining (see Table 6.2) and to reduce
the time required to train the models and optimize the weights for all the features in the input
vector.

Table 6.14 shows the LID error rate results using a multi-Gaussian classifier, where the
number of mixtures has been selected to provide the maximum LID rate. From rows 1-5 we
show the results for each feature separately. It is interesting to observe that in most of the
cases, the optimal number of Gaussians is 1, except for the phoneme acoustic and phoneme
duration where the high variability of these features is better modelled by a higher number of
Gaussians. In general, the improvements using the multi-Gaussian classifier are small when
compared to the mono-Gaussian classifier. The only exception is for the phoneme duration
where the multi-Gaussian allows a considerable improvement of 21.5%.

From rows 6 to 8 we can see the results for combining the PPRLMNG system with the
different acoustic and duration features. In this case, we observe that increasing the number
of Gaussians provides improvements to the LID rate. In any case, none of these combinations
provides better results than the ones obtained using the PPRLMRANK approach proposed in
this thesis.

In rows 9-10 we observe the results for combining the PPRLMRANK and the acoustic
and duration features. In this case, the multi-Gaussian classifier provides slightly
improvements as in the previous case.

Finally, we decided to check if the combination of our proposed technique with the
traditional PPRLM system could provide any improvements when increasing the number of
Gaussians. Row 12 shows that unfortunately the improvement is almost insignificant.
However, it confirms that both systems provide complementary information.

Speed Up Strategies for the Creation of Multimodal and Multilingual Dialogue Systems

168

Row Feature vectors
Optimal
Num. of

Gaussians

LID Rate
MonoGaussian

LID Rate
MultiGaussian

1 PPRLMNG 1 3.69 3.69 (0%)

2 Sentence Acoustic 1 8.20 8.20 (0%)

3 Phoneme Acoustic 4 8.17 7.85 (3.97%)

4 Discriminative PPRLMRANK 1 3.21 3.21 (0%)

5 Phoneme Duration 4 32.31 25.37 (21.5%)

6 PPRLMNG + Sentence Acoustic 4-1 3.21 3.06 (4.67%)

7 PPRLMNG + Phoneme Acoustic 3-4 3.13 3.10 (0.98%)

8 PPRLMNG + Phoneme Duration 1-4 3.68 3.49 (5.16%)

9 PPRLMRANK + Sentence Acoustic 3-2 2.79 2.91 (-3.94%)

10 PPRLMRANK + Phoneme Acoustic 1-4 2.91 2.70 (2.88%)

11 PPRLMRANK + Phoneme Duration 1-4 3.08 3.09 (-0.32%)

12 PPRLMNG + PPRLMRANK 4-2 2.85 2.84 (0.35%)

Table 6.14. LID error rate results using the Multi-Gaussian classifier

6.1.3.7 Analysis of Confidence Intervals
In order to assess the reliability of the LID rates presented in the previous sections we

analysed them considering the 95% confidence interval given by Eq. 6.13.

()
n

ppInterval −
±=

10096,1
2

Eq. 6.13

In this equation, p is the obtained LID rate and n is the number of sentences used in the
test set. Since we have used a cross-fold validation, n is equal to the total number of available
sentences in the database, in this case, 8130. Unfortunately, even using the cross-fold
validation the total number of sentences is small, therefore the confidence intervals are quite
big.

In this section, we will compare the most interesting combinations of the presented
systems with the different sources of information considered, checking if there is an overlap
in the confidence intervals or not. Since the multi-Gaussian experiments did not provide
significant improvements, we will only compare the mono Gaussian systems.

Figure 6.7 shows the comparison of LID error results obtained using the PPRLMNG,
PPRLMRANK, and the combination of both systems. In this figure, we can see that there is an
overlap in the results for PPRLMNG and PPRLMRANK. For that reason, we cannot be sure that
both systems are significantly different. We have to take into account that the total number of
sentences is small, even though we use the cross-fold validation technique.

Chapter 6: Developments and improvements applied to the runtime system

169

However, the last bar shows that when both techniques are combined the new system
provides better results than considering PPRLMNG alone. In this case, the new system
provides better results thanks to the contribution of the information provided by the
PPRLMRANK system, which, as we have already said is a very nice contribution of the
proposed technique.

3,69

3,21

2,85

2,25

2,75

3,25

3,75

4,25
LI

D
 E

rr
or

 R
at

es
 R

es
ul

ts
 (%

)

Methods

LID Error Rates + Confidence Intervals
PPRLM and Ranking

PPRLM Ranking PPRLM + Ranking

Figure 6.7. LID error rate results and confidence intervals considering the PPRLMNG,
PPRLMRANK, and the fusion of both systems

6.1.4 Conclusions

In this section, we have demonstrated that the n-gram Frequency Ranking approach
proposed in this thesis can overcome PPRLMNG thanks to the longer span that can be
modelled. In our first attempt, we started from a widely known technique for LID on written
text. Later, we introduced several new ideas and important changes to the original technique
in order to obtain considerable improvements when compared with a state-of-the-art LID
system, i.e. PPRLMNG.

In relation with the ranking technique the first conclusion we arrived to was that the
ranking size should be increased as much as possible when that number of different n-grams
is available. In our case, it was set to 3000. Another conclusion is that instead of using a
common ranking for all n-grams it should be better to use n-gram specific rankings.
Moreover, we have also demonstrated that the selection of the most discriminative n-grams to
create the rankings provides better results, which are able to overcome PPRLMNG (13%
relative improvement). In this case, we have proposed different formulations in order to
normalize the results and to provide better results than the widely used tf-idf metric.

On the other hand, we have also demonstrated that the measure of separation between
pdf distributions is a good tool to reduce the number of experiments and to anticipate which
features are going to be actually discriminative for the LID task.

Taking advantage of the incorporation of a Gaussian classifier to discriminate between
the languages, we also included different acoustic and duration based information that
resulted in an additional improvement (16.8% improvement) in the LID rates, showing that
all the features proposed provide complementary information. Nevertheless, when

Speed Up Strategies for the Creation of Multimodal and Multilingual Dialogue Systems

170

considering the discriminative power of each of the acoustic and duration information
included, we found that the acoustic score for each phoneme is a slightly better feature than
the sentence acoustic score, and the phoneme duration is the less contributing. Surprisingly,
the combination of the baseline PPRLMNG system, the new proposed technique, and the
acoustic and duration information, all combined, provided a new improvement of 31.2%
when compared with the baseline system and with a 20.9% when compared with using only
the discriminative ranking.

On the other hand, the results with a multi-Gaussian classifier did not produce
considerable improvements when compared with the mono-Gaussian classifier. This is
mainly due to the size of our current database and possibly to the homogeneity of some of the
features used.

Finally, the analysis of confidence intervals showed that the combination of the
proposed discriminative ranking system with the traditional PPRLMNG systems provides
significant improvements when compared to a system that only uses the traditional approach.
Unfortunately, when we compared the best system using the PPRLMNG system (i.e.
combined with acoustic information) and our best LID system (a combination of all sources,
the PPRLMNG, the proposed PPRLMRANK, plus acoustic and duration information), we did
not obtain a significant difference, although it has to be taken into account that the database
size is small.

6.2 Automatic Translation of Dialogue Prompts into the Sign
Language

This section describes in detail the work done for improving the multimodal and
multilingual capabilities of the runtime system developed for this thesis, and for allowing the
design of new kind of services and target population without too much effort for the designer.
Specifically, a statistical machine translation system is proposed in order to allow the
automatic translation of the prompts of the system into an animated representation using a 3D
avatar. The goal of this new system is to extend the number of modalities supported by the
platform but, especially, to allow the design of services for a new target population, i.e. deaf
people. Since, in general, the designers do not know the sign language, the language of deaf
people, this translation system alleviates this problem providing an automatic way to convert
previously defined written or spoken prompts into their representation in the sign language.

Unfortunately, as we have pointed in the state-of-the-art (section 2.4.4, page 50),
currently most of the commercial and research automatic translation systems are based on
statistical approaches that require a huge number of parallel texts to be trained. However, as
we have also indicated, currently most of the available sign language (SL) corpora consist of
only a few hundred sentences that are too small or too general for training purposes. In
addition, it is too hard to find such kind of corpus available from online content.

Therefore, since we wanted to include in this thesis an automatic translation system and
considering that we also had a small corpora to train the translations models, we decided to
address the problem of data sparseness, proposing a new language model adaptation
technique. In our proposal, reported in [D’Haro et al, 2008], the idea is to create a new
language model (LM) that adapts the original target LM used by the Machine Translation
(MT) system. In our experiments, the source language corresponds to the Spanish sentences
defined as system prompts in the platform, and the target language corresponds to the

Chapter 6: Developments and improvements applied to the runtime system

171

translation of the Spanish sentences into a written representation of the corresponding
Spanish Sign Language (LSE) signs (i.e., glosses).

The experiments reported in this section were done using a restricted domain corpus
that consists of written sentences containing information about procedures and requirements
needed to apply or renew the National Identity Document (DNI).

6.2.1 Runtime System for the Speech-to-Sign Language Translation
System

Figure 6.8 shows the main components of the speech-to-Sign Language system used in
this thesis. The system is made up of three main modules. The first module is a state of the art
recognizer developed in our group [Cordoba et al, 2001] that captures the acoustic signal of
the spoken utterance of the non-deaf users, and produces the sequence of words with the
maximum a posteriori probability given by the acoustic and language models. The acoustic
models provide the knowledge about acoustics, phonetics, microphone and environment
variability, gender and dialect differences among speakers, etc.

Figure 6.8. Spoken Language to Sign Language translation system

The recognizer uses context-dependent continuous Hidden Markov Models (HMMs)
built using decision-tree state clustering with more than 1,800 states and 7 mixture
components per state. These models were trained with more that 40 hours of speech and 4000
different speakers using the SpeechDat database in order to make it robust against the great
range of final users of the service. Although SpeechDat is a telephone speech database, the
acoustic models could be used in a microphone application because Cepstral Mean
Normalization (CMN) and Cepstral Variance Normalization (CVN) techniques were used to
compensate the channel differences. As front-end, our recognizer uses PLP coefficients
derived from a Mel-scale filter bank (MF-PLP), with 13 coefficients including the energy
coefficient, c0, and their first and second-order differentials, giving 39 parameters for each 10
ms frame. The speech recognizer uses a set of 45 allophone units of the Spanish language and
16 silence and noise models for detecting acoustic sounds (non-speech events like
background noise, speaker artifacts, filled pauses, etc.) that appear in spontaneous speech.

Speed Up Strategies for the Creation of Multimodal and Multilingual Dialogue Systems

172

On the other hand, the language models provide the knowledge about what constitutes a
possible sentence, what words are likely to co-occur, in what sequence, the domain, the
speaker style, and the lexical and grammatical complexity and variations of spoken language.
In our system, we use a statistical n-gram based language model of order two (i.e., bigrams)
due to the data sparseness, as there are only 266 sentences to train the model, which is too
small considering the size of the vocabulary and the amount of different n-grams. Although
the recognition system can generate a N-best list of recognized sentences sorted by similarity
to the spoken utterance, in our work we only use the optimal word sequence. Finally, the
recognizer also generates a confidence measure with values ranging from 0.0 (lowest
confidence) to 1.0 (highest confidence) for each recognized word in the word sequence
[Ferreiros et al, 2005].

The second module corresponds to a statistical phrase-based machine translation (SMT)
system, which translates the recognized utterance into a sequence of semantic symbols, i.e.,
glosses, representing the grammar structure and sequence that follow the Spanish Sign
Language. In order to generate the translation, the system uses three different models: the
lexicon model, the alignment model, and the language model. The lexicon model provides the
probability of translating one word into another and helps to disambiguate between words
reducing problems due to homonymy or polysemy. The alignment model provides the
probability of mapping words/group of words in the source sentence and words/group of
words in the target sentence, considering in this case several factors such as phrase length,
positions of the words, contexts, previous alignments, etc. Finally, the language model is used
to provide knowledge about the well formedness of the translated sentence, evaluating also
the syntactic and semantic structure of the candidate sentences. In sections 6.2.4 and 6.2.5
(page 174 and 177) we provide a more detailed description of the translation system and the
language model used in our system.

Finally, the third module is the animated agent or avatar. The avatar is the responsible
for providing the graphical output in the sign language for the deaf users. In order to do it, the
avatar receives as input a gesture sequence, i.e., the translated sentence using glosses as
words. Then, the system searches each gloss in a predefined dictionary that codifies the
sequence of movements of the avatar to play the sign. In our system, the selected avatar was
VGuido, created during the European project eSIGN (see section 2.4.4 and 3.5.2, page 50 and
75). In our case, we took advantage of the possibility of including this avatar in our runtime
platform as an ActiveX. This toolkit also includes the eSIGN Editor environment that was
used to define and store the signs using HamNoSys and SiGML notation. A more detailed
description of this system can be found in [San-Segundo et al, 2008].

6.2.2 Bilingual Corpus

For our task, the translation system was focused on a limited domain, composed by
sentences spoken by an officer when assisting deaf people in applying for, or renewing, the
National Identity Document (DNI). In this context, a speech-to-sign language MT system is
very useful because most of the officers do not know the Spanish Sign Language (LSE). The
corpus consists of 416 sentences selected from spoken dialogues between officers and
hearing users.

The main features of the corpus are summarized in Table 6.15. For both text-to-sign
and speech-to-sign translation the same test set was used. In order to train the language model
for the target language, it was necessary to create a dictionary of text symbols called glosses
that represent each sign to be animated by the avatar. The dictionary was defined by a sign

Chapter 6: Developments and improvements applied to the runtime system

173

language expert who analyzed each Spanish sentence and translated them into a sequence of
glosses using the Spanish sign language grammar. For instance, a sentence like “tú tienes que
pagar 20 euros de tasa'' is translated into the following glosses: “FUTURO TÚ VEINTE
EURO TASA PAGAR OBLIGATORIO”, or the sentence “el DNI debe ser renovado cada
cinco años” is translated into “CADA CINCO PLURAL AÑO RENOVAR DNI TÚ
OBLIGATORIO”. In these examples, each sign has been represented by a gloss written in
capital letters. The final size of the glosses dictionary was around 320. Observe the ordering
of the glosses and the semantic-like representation.

As it is also shown in Table 6.15, the size of the vocabulary in comparison to the
overall amount of running words in the training set is very high (17%). In addition, the
perplexity of the test set is high considering the small size of the vocabulary. Both values are
unquestionable signs of data scarcity, which is likely to cause a high dispersion when
estimating the parameters of the statistical translation models.

Training Spanish LSE

Sentences Pairs 266

Number of Words 3153 2952

Vocabulary 532 290

Dev and Test Spanish LSE

Sentences Pairs 150

Number of Words 1776 1688

OOV 90 30

Vocabulary 427 250

Perplexity (3-grams) 15.4 10.7

Table 6.15. Corpus statistics summary

In these circumstances, the high amount of unknown words in the test set (OOVs, Out-
of-vocabulary) represents another important issue. In this task, there are 90 OOVs out of 532
(16.9%). Since the current statistical system does not use any morpho-syntactic parser to
analyze the unknown words, it can hardly cope with them. So far, in the literature only naïve
methods have been implemented to face the translation of OOVs. The usual adopted solution
displays the unknown input word itself, without any change, in the output language. This
solution is successful on the assumption that most of the unknown words are proper names,
numbers, etc. That is, OOVs correspond to tokens that can be transcribed in the same way in
any language. However, in this task, most of the OOVs correspond to non-proper names,
which indeed do not match any symbol in the Sign Language. Therefore, the usual solution
was not totally useful under this framework, and thus, new solutions had to be proposed in
future developments. In [San-Segundo et al, 2007], we presented some solutions to this

Speed Up Strategies for the Creation of Multimodal and Multilingual Dialogue Systems

174

problem, although they were not applied in the present thesis, considering only the usual
solution of maintaining the same word in both languages.

Finally, the sentences were randomly divided into three sets, with 266 phrases for
training. With the remaining sentences, we created three-fold cross validation sets leaving 50
sentences for development and 100 for test each time. For both text-to-sign and speech-to-
sign translation experiments the same test and development sets were used.

6.2.3 Speech Recognition Results

As we have mentioned, one of our goals with this system is the possibility of
automatically translating written or spoken prompt sentences defined in the platform. In the
former case, 416 sentences were collected from spoken dialogues between officers and
hearing users when applying or renewing the DNI document as we have described in the
previous section. 15 speakers were recorded (eight men and seven women), each one uttering
50 sentences from the test and development sets, obtaining 750 utterances in total. This way,
each test sentence was uttered by five different speakers. The objective of recording all these
speakers was to obtain realistic results, as the speech recognizer must be speaker
independent.

WER (%) Ins (%) Del (%) Sub (%)

26.39 3.53 6.92 15.95

Table 6.16. Speech recognition results.

Table 6.16 shows the recognition results using the system described in section 6.2.1 and
a bigram language model. The WER is high which is probably due to the low number of
sentences available to train the model. The main reasons for these poor recognition results are
also the big influence of the OOV rate (see Table 6.15) over the WER results (16.9% vs.
26.39%), the poorly trained LM, and the fact that some speakers uttered some sentences with
a low volume. Without these problems, the same recognition system has a 4.2% WER in a
similar task [Cordoba et al, 2005].

6.2.4 Statistical Machine Translation System

As we have described in the state-of-the-art, in automatic language translation, the goal
is to translate a text, given in some source language, into a target language. Given a source
string, in Spanish for this task, J

J fff 11 = , it must be translated into a target string, in
Spanish Sign Language, I

I eee 11 = . Among all possible target strings, the system will
choose the string with the highest probability that is given by Bayes decision rule:

{ } { })Pr()|Pr(maxarg)|Pr(maxargˆ 111111
11

IIJ

e

JI

e

I eeffee
II

⋅==

Eq. 6.14

Chapter 6: Developments and improvements applied to the runtime system

175

Here,)|Pr(11
IJ ef is the string translation model, whereas)Pr(1

Ie is the probability given
by the target LM. The arg max operation denotes the search problem, i.e. the generation of
the output sentence in the target language. We must observe that the language and the
translation models provide independent information, so they can be trained individually. The
following paragraphs describe the method to create the translation model and the next section
will describe the adaptation technique used to train reliable language models.

As we mentioned in the state-of-the-art, currently one of the most widely statistical
machine translation approaches is the phrase-based translation method reported by [Koehn et
al, 2003]. The training process is carried out in three steps:

• Word alignment: The goal is to calculate the best correspondence, i.e.
alignments, between the words in the source language and the words, i.e. glosses, in
the target language. In our current system, the alignment was trained using the open
source software GIZA++ 65 [Och and Ney, 2003] optimizing the alignments on the
development set. During the training, we set the following parameters: 5 iterations
for the IBM-1 model, 0 iterations for IBM-2 model, and 3 iterations for IBM-3 and
IBM-4. Since model IBM-5 is more complex and requires more time and data to
train, we did not use it. The automatic classes of words used by models 3 and 4 was
trained using the open source program MKCLS [Och, 1999], and the number of
classes was set to 50.

Figure 6.9. Example of an alignment template and phrase alignments for a Spanish to Spanish

Sign Language sentence pair

• Phrase extraction: In this step, all phrase pairs that are consistent with the word
alignment are collected. During the training process of the translation model, the
maximum phrase size was fixed to seven. In order to perform this process we used

65 http://code.google.com/p/giza-pp/

http://code.google.com/p/giza-pp/�

Speed Up Strategies for the Creation of Multimodal and Multilingual Dialogue Systems

176

the program ‘phrase-extract’ included in the Pharaoh 66 toolkit, setting as heuristic
to create the phrases the grow-diag-final algorithm. This algorithm creates an initial
phrase based on using reliable alignment points after intersecting the word
alignments created from the source-to-target language and the target-to-source
language. Then, the algorithm adds less reliable neighbouring points based on using
the union between both parallel word alignments. Finally, the algorithm prunes the
inconsistent alignments based on the interactions of the EM algorithm and the
maximum phrase size. Figure 6.9 shows an example of an alignment template used
for the creation of the phrase table where the maximum phrase size was set to three
to simplify the selection of the source n-grams that needed to be used to query the
Web in our proposed technique (see section 6.2.5, steps 1 and 2).

• Phrase scoring: In this step, the phrase translation probabilities,)(ii efp and

)(ii fep , and lexical weights, i.e., the probability of the phrase given the word
alignment, are computed for all phrase pairs using the program ‘phrase-score’
included in the Pharaoh toolkit. Although in our proposed adaptation technique we
only use the phrase translation probabilities, the algorithm calculates both at the
same time.

• Minimum Error Training: After training the phrase table, the next step is to
optimize the values of the different parameters used during the decoding process.
The weights are optimized on the BLEU score using the sentences that appear in the
development set. Specifically, the algorithm optimizes the weight for the language
model, the phrase translation model, the distortion model, and the word penalty.
The two former correspond to the phrase translation model trained in the previous
step and the language model trained using the SRILM toolkit [Stolcke, 2002] using
a baseline trigram model or through the proposed technique in the next section. The
two latter correspond to a factor, α in Eq. 6.15, that modifies the phrase translation
probability as a function of the relative distance between the positions of the current
and previous translation phrases (i.e., starti and endi-1), and a weight w that
penalizes too short sentences. Eq. 6.15 shows the formula used to select the best
translation sentence.

)(
1

1

||
111

11

11

)()|(maxarg)|(maxargˆ
I

ii

II

elengthI
LM

I

i

endstart
ii

e

JI

e

I wepefpfepe ⋅⋅







⋅== ∏

=

− −α

Eq. 6.15

Finally, during the evaluation, the optimized weights are used for the Pharaoh decoder
in order to produce the N-best translations; in our case, we selected only the first candidate.
Then, different programs provided by the toolkit allow the calculation of the different quality
metrics explained in section 2.4.3 (page 47), in our case: WER, PER, BLEU, and NIST.

66 http://www.isi.edu/licensed-sw/pharaoh/

http://www.isi.edu/licensed-sw/pharaoh/�

Chapter 6: Developments and improvements applied to the runtime system

177

6.2.5 Proposed Adaptation Technique

According to the Bayes decision rule, Eq. 6.14, the target language LM,)Pr(1
Ie , is used

for ensuring that the translated sentences are well formed and fluent. In order to obtain good
results, it is necessary that the target language model is reliably trained using a large corpus
to provide good estimations of the occurrences of the different n-grams that appear in the
training data. However, in most applications it is difficult to have or to obtain such kind of
corpus available. In addition, since our corpus contains only a few sentences, the target
language model could not be estimated properly. Therefore, it was obvious that some kind of
adaptation technique had to be applied to overcome this problem. Therefore, we had to find
solutions for two problems: the first one was the creation of the background corpus to adapt
with the in-domain data, and the second one, the selection of a successful technique for
performing the adaptation.

In order to solve the first problem, we considered that an interesting solution for the
small corpus available was to start creating a background corpus for the source language and
then to apply the translation model,)|Pr(11

IJ ef , to translate the new collected sentences into
the target language obtaining this way new target data to adapt with.

In section 2.2.1.5 (page 34), we described several methodologies for gathering new
training data. Among the proposed techniques, an interesting alternative method to generate
the background corpus is to collect Web frequency counts using information retrieval (IR)
techniques. [Keller and Lapata, 2003] and [Zhu and Rosenfeld, 2001] report different
experiments that confirm that LMs estimated using Web frequency counts can be used for
adaptation purposes providing comparable or better results than the ones obtained retrieving
full sentences from online pages, and with the big advantages of reducing the system latency
and avoiding the incorporation of undesirable sentences.

However, before continuing we have to solve one important issue: how to create the list
of selected keywords to retrieve from the Web. In this case, we first decided to create a list of
target n-grams for which we wanted to obtain more reliable counts. Obviously, we wanted to
include all the n-grams from all orders, especially trigrams. However, if the number of n-
grams is too high we have to impose some threshold in order to reduce the number of
selected n-grams. In our case, after considering different possibilities, we set a threshold
based on the phrase translation probability)(ii efp , i.e., the probability of translating one
target-side n-gram (LSE) into a source-side n-gram (Spanish). Our goal is to consider a given
target n-gram only if the retrieved source-side n-gram is highly correlated with it. In order to
obtain the translation probability, we took advantage of the phrase translation table created
during the training of the statistical machine translation system (see section 6.2.4). During
this process, the phrase table is created using the Pharaoh toolkit, modifying the maximum
phrase size from the default value of seven to three in order to simplify the selection of the n-
grams to be used to query the Web.

After solving the first problem, we focused on finding the adaptation framework. In this
case, we were especially interested in methodologies operating at the count level since the
proposed methodology for creating the background corpus relies on retrieving Web
frequency counts instead of full sentences. In [Bellegarda, 2004] several methods to
overcome this problem are described. In most cases, the adaptation consists of building two
LMs, one trained from the in-domain corpus and another one from a background corpus (out-
of-domain, or less specific corpus which is expected to be bigger than the in-domain one),
and then applying an adaptation formula that modifies the well estimated background model

Speed Up Strategies for the Creation of Multimodal and Multilingual Dialogue Systems

178

using information from the in-domain model. Among the best adaptation techniques proposed
in the literature we decided to use the Maximum A-Posteriori (MAP) [Bacchiani et al, 2006]
method. In this technique, the adaptation is made at the frequency count level using Eq. 6.16.

)()(
)()()|(

22

11
i

Ni
Oi

Ni
I

i
Ni

Oi
Ni

I

qq wCwC
wCwChwp

+−+−

+−+−

⋅+⋅
⋅+⋅

=
βα
βα

Eq. 6.16

Here, CI and CO are the frequency counts for the in-domain and out-of-domain corpora
respectively, α and β are weight factors, estimated empirically to reduce the bias of the
estimators and to apply a different weight to each component model.

The next step was to retrieve the frequency counts from the Web for the selected
source-side n-grams and converting them back into target-side n-grams. In this case, we again
used the phrase translation table but in the opposite direction,)(ii fep , i.e., the probability of
translating a source-side n-gram into a target-side n-gram. After that, it was possible to apply
the adaptation framework, MAP, using the original target-side n-grams counts and the
‘translated’ n-grams retrieved from Internet, in order to generate a new language model that
could be used to adapt with the original one. Finally, with the new adapted LM we were able
to evaluate the quality of the new translated sentences.

Figure 6.10. Flow diagram of the proposed adaptation technique

Chapter 6: Developments and improvements applied to the runtime system

179

Figure 6.10 shows the process of the methodology proposed in this thesis. According to
this figure, the adaptation is done in three steps:

1. Backward: To start with, the system uses the phrase pairs table created independently
during the training of the translation probability Pr(f1

J |e1
I) (Eq. 6.14). The table

consists of a list of n-gram pairs that are consistent translations between the source
and target language, with their probabilities)(ii efp and)(ii fep , and lexical weights
[Koehn et al, 2003]. Using this table, the system creates the list of source-side n-
grams, used in the next step, that satisfy)(ii efp ≥ θ. Here, the threshold θ is used to
reduce the number of n-gram pairs to query the Web and to guarantee that the source-
side n-grams are reliable translations of the target-side n-grams that we wanted to
improve. After experimenting with different values and options, θ was finally set to
1/ni, where ni is the number of reverse translations for if . However, it could be fixed
as a function of the corpus size and the translation model quality. The final list
consisted of 1270 source-side n-grams (410 unigrams, 497 bigrams, and 362
trigrams).

2. Information Retrieval (IR): Using the n-gram list, the system queries the internet to
obtain Web frequency counts using the Google-API 67. In this case, we had to deal
with some limitations of the API; mainly, we were limited to perform only 100
queries at day per registered keyword, and considering that the total number of n-
grams in the list was 1270, we decided to ask Google for a less restrictive license. In
this case, the new keyword allowed us to perform 10,000 queries at day. This way, we
were able to perform the retrieving process in just one day. Then, a new source LM
was created interpolating the original LM (in-domain) and the MAP-adapted source
LM created applying Eq. 6.16 between the retrieved source-side n-gram counts and
the original counts.

3. Forward: Finally, the translation table is applied again, but on the opposite direction,
to obtain the n-gram frequency counts on the target side. The conversion is done
taking each n-gram pair in the list, if , multiplying the retrieved Web count, Nweb(if),
by the phrase translation probability,)(ii fep , and summing up all the contributions

that satisfy)(ii fep ≥ δ to obtain the counts for the target n-gram, CO(ēi) (see Eq.
6.17). Then, Eq. 6.16 is applied to merge the counts from the original target-side
corpus with the ‘translated’ counts. Finally, as in step 2, a new LM is created from the
linear interpolation of the original target-side LM and the MAP-adapted target LM.

∑
∑

≥∀

≥∀=

δ

δ

)|(:

)|(:

)|(

)|(*)(
)(

iii

iii

fepe
ii

fepe
iii

Web

i
O

fep

fepfN
eC

Eq. 6.17

67 http://code.google.com/apis/ajaxsearch/

http://code.google.com/apis/ajaxsearch/�

Speed Up Strategies for the Creation of Multimodal and Multilingual Dialogue Systems

180

Table 6.17 shows an example, in English, of the phrase table used to create the n-gram
list, as well as the process followed to create the new adapted counts. In this case, for the
target-side trigram: “YOU MUST DELIVER” there are three suitable translations (ni) on the
source-side. Given the condition,)(ii efp ≥ θ =1/ni = 0.333, the system only selects the n-
grams pairs one and three during the backward step. For the bigram: “YOU MUST”, ni=4
then given the condition)(ii efp ≥ θ = ¼ =0.25, the system would select n-grams pairs b and d
to create the list of n-grams to query the Web.

The next step is to retrieve the counts from the Web that are presented in column 5 in
the table. Observe that the system only retrieves the counts of the n-grams that fulfil the
condition)(ii efp ≥ θ. With these counts, we also create a new MAP-adapted source-side LM
that interpolated with the original source-side LM allowed us to obtain the perplexity results
shown in Table 6.18. For the source side, the weight factors from Eq. 6.16 were optimized on
the dev sets (cross-fold) running a downhill simplex algorithm, resulting in the following
average values for the source side: βs = 0.000417 and αs = 36.7. The interpolation weight was
set to λs = 0.51.

Source (if) Target (ei))|(ii fep)(ii efp Web
Counts

Original
Counts

Final
Counts

1.) you must deliver
TRIGRAM:

YOU
MUST

DELIVER

0.5 1.0 135000

12 587 2.) you must bring 0.1 0.2)(ii efp < θ

3.) you have to
provide 0.4 0.5 80420

a.) you should

BIGRAM:
YOU

MUST

0.18 0.071)(ii efp < θ

76 3664
b.) you have to 0.364 0.739 148000

c.) you need 0.046 0.143)(ii efp < θ

d.) you must 0.410 0.952 179000

Table 6.17. Example of n-grams in the phrase translation table

During the forward step, we use Eq. 6.17 in order to convert the retrieved counts into
‘translated’ counts. In this case, in the example the original count for the trigram gloss is 12,
for the bigram gloss is 76, and setting the MAP weights (α and β) to the optimum values
obtained using the development data (in this case αt = 48 and βt = 0.0001), the out-of-domain
target-side trigram count is

CO
MAP (YOU MUST DELIVER) = 





+
+

+∗
4.05.0

4.0*804205.0*135000*0001.01248 = 587,

And the bigram adapted count is

Chapter 6: Developments and improvements applied to the runtime system

181

CO
MAP (YOU MUST) = 





+
+

+
410.0364.0

410.0*179000364.0*148000*0001.076*48 = 3664.

Using these adapted values, we can train a new target LM using the SRILM toolkit 68 in
order to generate the MAP-adapted target-side LM.

Finally, the MAP-adapted target-side LM is interpolated with the original target-side
LM using an interpolation value calculated optimized on the dev sets (cross-fold) running the
downhill simplex algorithm. In this case, the interpolation weight was set to λt = 0.52.

6.2.6 Language Model Experiments

Table 6.18 shows the perplexity results provided by the baseline LMs and the adapted
ones for the train, development, and test sets. The results for the test and development sets
correspond to the averaged perplexities for the three-fold cross validation. The baseline LMs
are backoff trigram with Good-Turing discount. The perplexities on both sides correspond to
the adapted LMs. Values in parenthesis are relative improvements over the baseline
perplexities.

 Train Dev Test

 Source Target Source Target Source Target

Baseline 5.65 5.02 15.34 10.8 15.37 10.7

Adapted 3.01
(46.7%)

3.16
(37.1%)

11.92
(22.4%)

8.75
(18.7%)

12.45
(18.9%)

9.04
(15.5%)

Table 6.18. Perplexity (PPL) results using the corresponding LM

According to these results, the proposed adaptation reduces perplexities in both sides,
with improvements over 15%, so a nice reduction in WER can be expected, according to the
rule of thumb for reductions in perplexity (see section 2.2.1, page 25)

In spite of the good improvements in both sides, we can also observe that the
improvements are higher on the source side than on the target side. In this case, the reduction
in the target side is due to process of ‘translating’ the counts, i.e., the forward step, since the
translation table introduces some mismatch that reduces the improvement on the target side
from 18.9% to 15.5% in the test set.

6.2.7 Machine Translation Experiments

As we have explained before, one interesting characteristic of the Bayes decision rule
used for the translation system, Eq. 6.14, is that the language and the translation models
provide independent information, so they can be trained individually. Consequently, in the
experiments presented in this section the proposed language models were not used at all

68 http://www.speech.sri.com/projects/srilm/

http://www.speech.sri.com/projects/srilm/�

Speed Up Strategies for the Creation of Multimodal and Multilingual Dialogue Systems

182

during the process of creating the translation model, therefore the effect of the language
models can only be measured in the evaluation step.

It is also important to mention that for training the phrase-based translation model we
considered only the sentences from the training set and optimized it on the development set,
using clean sentences and not the recognized texts. This fact is important since the translation
model is created assuming that the input text is syntactically and grammatically correct. The
reasons for using the clean text was that we did not have recordings for the train sentences
but only for the test and development data, and because we wanted to separate the effects of
the speech recognition errors from the translation model. Finally, in order to create the
translation model we set the maximum phrase size, in the Pharaoh toolkit, to the default value
of seven in order to look for better alignments.

Table 6.19 shows the averaged MT results for the text-to-sign and speech-to-sign
experiments on the test set for the three different conditions that we have considered:

• Exp 1: In this case, the system uses the original language model generated
considering only the sentences from the training set. This is the baseline system.

• Exp 2: For this experiment, the language model is generated with the proposed
technique considering only the training set.

• Exp 3: Finally, in this experiment the language model is trained considering all
available sentences, i.e., using train, development, and test sets, without including
any adaptation. Since this model has all the available information, it corresponds to
the top performance that it is possible to obtain only due to the LM component and
without the effect of OOVs.

 WER PER BLEU NIST

Text-to-Sign

Exp 1 34.74 29.59 0.50 6.30

Exp 2 33.79
(2.73%)

29.1
(1.68%)

0.51
(2.61%)

6.36
(1.06%)

Exp 3 32.62
(6.1%)

28.06
(5.48%)

0.55
(9.91%)

6.57
(4.23%)

Speech-to-Sign

Exp 1 42.87 38.94 0.43 5.65

Exp 2 42.53
(0.78%)

38.57
(0.95%)

0.44
(3.75%)

5.70
(0.89%)

Exp 3 41.43
(3.36%)

37.8
(2.9%)

0.47
(9.96%)

5.86
(3.62%)

Table 6.19. Average Machine translation results for the test set (Exp 1-3)

In order to assess the quality of the obtained translations, the four usual evaluation
measures in machine translation have been taken into account (see section 2.4.3, page 47):

Chapter 6: Developments and improvements applied to the runtime system

183

• WER (Word Error Rate),

• PER (Position Independent WER),

• BLEU (BiLingual Evaluation Understudy),

• NIST

The former two are error measures (the higher the value, the worse the quality) whereas
the latter two are accuracy measures (the higher, the better). We have used BLEU and NIST
scores since they present high correlation with human translation. In our case, since the target
corpus in the sign language was manually created by experts, we considered important to try
to obtain similar translations to the ones created by the experts (see section 6.2.2) when
translating new sentences.

According to the table, for the text-to-sign MT system, the results show that the
proposed technique is able to reach approximately half (2.73%) of the maximum
improvement (6.1%) in WER that it is possible to obtain due only to the LM component.
Considering the high ratio of OOVs (10,4%) and the small size of the training data, the result
is outstanding.

From these experiments, it is possible to guess that the quality of the translation model
limits significantly the improvement reached by better LMs. This intuition was confirmed
when we tested an optimal MT system, i.e. trained using all the available sentences. In this
case, the WER for Exp3 was 13.06% instead of the 32.62% presented in the table, the WER
for Exp2 was 15.3%, and the baseline, Exp1, was 16.0%. In this case, using a better phrase
translation model, the proposed adaptation also produces a relative improvement of 4.4 %
over the baseline. In this case, the improvement is low, but this is not surprising at all since
we are using a better translation model. Therefore, during the optimization of the different
weights for the decoder, the language model receives a smaller weight compared to the
translation model.

The second part of the table shows the results for the speech-to-sign language
translation. Here, we observe that, unfortunately, the improvements are lower. The most
probable explanation is that the speech recognition introduces errors that are not modelled by
the translation model since we trained it using clean text. In addition, the decoder does not
take advantage of the better estimated and high order n-grams ‘translated’ from the Web
counts because most of the n-grams in the translated sentence do not correspond to the ones
re-estimated with our technique.

6.2.8 Conclusions

In this section, we have described the incorporation of an automatic machine translation
system that can be used to convert the previously defined written or spoken prompts of a
dialogue application into animated prompts in the sign language. This way, the design
platform is extended to support new modalities and a new kind of final users, in this case deaf
people.

Then, we have presented a successful technique to adapt the target-side language model
used for a machine translation system especially in situations where there are very scarce
resources to obtain reliable models. The technique uses information from the source
language, Spanish in our task, and from the independently trained phrase-based translation
matrix in order to create a new LM, estimated using Web frequencies, which adapts the
counts of the target-side language model through the Maximum A Posteriori method (MAP).

Speed Up Strategies for the Creation of Multimodal and Multilingual Dialogue Systems

184

For the evaluated task, the proposed technique provided a relative improvement of
18.9% and 15.5% in perplexity over the base system for the source and target language
respectively. In this case, the difference between both improvements were mainly due to the
mismatch introduced by the translation table used to convert the frequencies retrieved from
the Web into frequencies on the target side.

In relation with the machine translation experiments, the results for the text-to-sign
experiment showed that the proposed adaptation provides a 2.73% relative reduction on WER
that is near to half the performance that it is possible to achieve when only the LM is
optimized. However, the results for the speech-to-sign experiments did not produce
considerable improvements, which was probably due to the effect of recognition errors in the
Web counts for the n-grams with errors and to the fact that the translation model was trained
using only clean texts instead of using recognized sentences, so it does not model the effect
of the recognition errors.

185

77 CCOONNCCLLUUSSIIOONNSS AANNDD FFUUTTUURREE WWOORRKK

In this chapter, we present a summary of the main conclusions (more details can be
found at the end of each chapter), future work, and contributions of this thesis. Since in this
thesis we have tackled a wide number of topics and systems, we have organized this chapter
according to the three main components discussed in this dissertation: the dialogue design
platform, the language identification system, and the machine translation system.

A first contribution of this thesis is the analysis of the state-of-the-art regarding
platforms for the design of dialogue applications. In the thesis, we have described most
commercial and research platforms to find out their characteristics, positive aspects, and
limitations, in order to contribute with new ideas to the field and to be able to offer a
complete, innovative, and up to date alternative development platform.

The main conclusions for all systems presented in the thesis are detailed below.

7.1 CONCLUSIONS

7.1.1 Dialogue Platform

In this thesis, we have described all the accelerations included in a multimodal and
multilingual design platform in order to speed up the design and guide the designer through
all the steps required to create dialogue services. The proposed accelerations are, in most
cases, innovative without a direct correspondence to the ones offered by the current
commercial and research platforms.

Different types of accelerations have been proposed according to the requirements,
capabilities, and available information at each assistant that makes up the platform. The
proposed accelerations take advantage of heuristic information extracted from the contents of
the backend database and from an object-oriented representation of the data model structure,
in order to generate different kinds of proposals that simplify the process of creating and
completing the dialogue flow. Other accelerations consist of different wizard windows or
simplified processes that help designers to complete, create, or debug models (e.g.,
grammars, prompts, SQL commands) required by the design and runtime platform in order to
provide the service.

In order to study the usability and acceptability of the different assistants of the
platform, as well as the proposed accelerations we carried out a subjective and objective
evaluations with participants from different countries, mother tongues, and levels of
experience in programming dialogue applications. The results showed that the proposed
accelerations reduced the design time by more than 56%, and obtained a subjective score that
ranges from 8.0 to 9.0. In addition, the whole platform was rated with an average score of 8.0
that also confirmed the high performance of the platform and its assistants.

The first process required to provide the accelerations was the automatic extraction of
heuristic information from the database. In order to correct some limitations of the connecting
database driver, mistakes in the definition of the fields in the database, and to allow a correct

Speed Up Strategies for the Creation of Multimodal and Multilingual Dialogue Systems

186

mapping between the field types supported by the platform and the ones supported by the
database we defined a set of regular expressions that were able to correct an 89.6% of the
errors.

In relation with the accelerations included to create the data model structure we have
proposed a new assistant that simplifies the definition of the object-oriented classes taking
advantage of the heuristic information and previous data model libraries.

In relation with the assistant that defines the prototypes of the database access
functions, we proposed an automatic process for generating and debugging SQL statements
used by the real-time system based on the analysis of the input/output and the type of the
parameters defined in the function prototypes. Another acceleration, proposed and
implemented by the partners of the GEMINI project, allowed the definition of relations
between the function arguments and the data model structure, which is used in the following
assistants trough different kind of automatic proposals that simplify the design.

Regarding the state flow model assistant, the main accelerations included in this thesis
were the automatic generation of different state proposals that can be used to quickly create
complex states, together with the possibility of using an automatic analysis of the feasibility
of the slots defined in a given state of being requested using mixed initiative or direct
dialogues.

By far, the retrieval modelling assistant is the assistant with the highest number of
accelerations. Here, we have proposed several automatic dialogues and templates that can be
used to obtain or present information to the final user, the incorporation of an innovative
auxiliary window where the designer can find all the actions that are considered relevant for
the dialogue being edited, and an automatic procedure to help the designer to connect the
input/output parameters of different actions and dialogues with the local/global variables that
contain or will contain the information for/from those actions and dialogues. Finally, we have
also designed a simple procedure, not present in most design platforms, to define dialogues
with mixed-initiative and over-answering capabilities. The subjective evaluation showed that
the accelerations included in this assistant were scored in average with an 8.9, and the
assistant with an 8.6. The objective metrics also showed that the proposed accelerations
contributed to reduce the design time by an 89.4%.

Considering the assistant that defines the specific details for the speech modality, the
proposed accelerations were the automatic generation of the dialogue flow required for the
confirmation handling of the user answers, together with an assistant where the dialogue flow
for providing the information contained in a list of retrieved results after querying the
backend database can be specified. This assistant, given its simplicity and the high level of
acceleration offered was rated during the subjective evaluation with a 9.0 score.

Finally, other assistants in the platform were also accelerated in order to allow the quick
definition of language dependent prompts and grammars used by the speech recognizer. In
this case, we proposed an automatic procedure for creating stochastic grammars from a finite
state grammar in JSGF format. Other accelerations proposed by the partners of the GEMINI
project included the possibility of automatically creating pronunciation dictionaries and an
assistant for creating prompts in different languages using the prompts for the default
language as template.

Chapter 7: Conclusions and future work

187

7.1.2 LID System

In this thesis, we have proposed a new language model for applying phonotactic
constraints to a PPRLM-based LID system. The proposed technique is based on using a
frequency ranking of discriminative n-grams that outperforms the traditional approach based
on using a deleted interpolation between n-grams of different orders. In our case, we obtained
an accumulative relative improvement of 13.0% (from 3.69% to 3.21%).

Our first contribution was the introduction of several new ideas and important changes
to the original n-gram frequency ranking proposed in the literature for LID on written text.
For instance, we have arrived to the conclusion that the ranking size should be increased as
much as possible when that number of different n-grams is available. In our case, it was set to
3000. Besides, we have demonstrated that instead of using a common ranking for all n-grams
it should be better to use n-gram specific rankings as it provides better results. Finally, the
selection of the most discriminative n-grams was an important factor to obtain better LID
results; in this case, we proposed new formulations based on the widely used tf-idf metric in
order to normalize the results.

Besides, we have also demonstrated that the fusion with the traditional PPRLM
approach and the incorporation of different acoustic and duration based information in
addition to the proposed n-gram frequency ranking resulted in additional improvements in the
LID rates. In this case, we obtained an accumulative relative improvement of 31.7% (from
3.69% to 2.52%)

On the other hand, we have also demonstrated that the measure of separation between
pdf distributions of the Gaussian classifier is a good tool to reduce the number of experiments
and to anticipate which features are going to be actually discriminative for the LID task.

Finally, it is important to highlight that one of the critical aspects that had contributed
the most to obtain these large improvements was the incorporation of the Gaussian classifier.
In this case, the Gaussian classifier allowed us the fusion of different sources of information,
as well as a reduction of the bias/normalization problem present in traditional classifiers.
Unfortunately, the size of our current database did not allow us to exploit all the possibilities
of our multi-Gaussian classifier since the results with a variable number of Gaussian mixtures
did not produce considerable improvements in the LID rate.

7.1.3 Machine Translation System

Finally, in this thesis we have also proposed a successful adaptation technique that
takes advantage of the possibility of obtaining better estimations from the source-side
language of the translation system and from the phrase-based translation model in order to
create a new LM for the target-side that can guarantee better translations. In our proposal, the
new LM was estimated using Web frequencies that adapted the counts of the target-side
language model through the Maximum A Posteriori method (MAP). The proposed technique
was evaluated on a restricted domain where deaf people could obtain information for
applying or renewing the National Identity Document. Our proposed technique provided
improvements in perplexity and translation for speech-to-sign language and text-to-sign
language. Unfortunately, the results for the speech-to-sign language translation did not
produce considerable improvements probably due to the effect of recognition errors that did
not take advantage of the high order n-gram counts retrieved and adapted from the Web.

Speed Up Strategies for the Creation of Multimodal and Multilingual Dialogue Systems

188

7.2 FUTURE WORK

In this section, we will describe the main course of action proposed for each system
described in the thesis, following the same order as for the conclusions.

7.2.1 Dialogue Platform

Considering the good results that we obtained during the subjective and objective
evaluations, the growing demand of better and more complex dialogue systems, and to
broaden the functionality of this kind of tools, several interesting ideas can be considered in
order to improve the platform. This section describes all these ideas that we will classify by
the different assistants considered in the thesis. In general, the proposals shown in this section
do not necessarily correspond to improvements on the graphical interface although according
to the comments of the participants of the subjective and objective evaluations it would be
nice to have them.

7.2.1.1 Data model assistant (DMA)
To allow the automatic creation of complex data model structures created for each table

in the database and to allow the possibility of including complex attributes using the
relationships defined in the database between different fields and tables. Here, the assistant
could also use the heuristics in order to select by default the most probable tables and fields
to be used as attributes in the new classes.

To include a new XML tag that specifies when a given attribute in a class will be used
in the following assistants to provide or to obtain information to/from the user. The idea is to
accelerate the definition of the input/output parameters when defining the database access
functions, to reduce the number of proposed dialogues, states, and slots in the SFMA and
RMA assistants. In addition, the assistant could automatically propose the content of this tag
based on the contents of the database table and field used to generate the class and the
attribute.

7.2.1.2 Data connector model assistant (DCMA)
To improve the process of defining the input/output parameters of the function

prototypes through a graphical interface and a toolbar with objects instead of the text-based
interface currently implemented.

To extend the capabilities of generating and integrating the SQL statements and the
script used to connect the database with the VoiceXML server at runtime. This can be critical
if the complexity of the generated SQL statements is increased.

7.2.1.3 State flow model assistant (SFMA)
To extend the possibilities of the current toolbar in the main window in order to provide

more generic templates that allow the creation of different kinds of states (e.g., template for
single slot state, mixed slot states, complex states, etc.) and to provide a palette of different
actions that can provide a simpler mechanism for connecting two or more states through the
graphical interface.

Chapter 7: Conclusions and future work

189

To study the possibility of merging this assistant and the RMA given that both share
many functionalities. However, in order to take advantage of the predefined separation of
both assistants (i.e., the RMA uses the information provided by the SFMA to generate action
proposals for each dialogue and to automatically create DGet/DSay dialogues) we propose
the creation of a unified two layered assistant that the designer can switch to according to the
design process. This way, using the first layer the designer specifies the same information as
in the SFMA, and in the second layer the same information as in the RMA. Although the
process seems easy, we will have to deal with the possibility of switching between layers
without requiring a complete definition of the whole dialogue flow or state information.

7.2.1.4 Retrieval model assistant (RMA)
To reduce the number of automatic generated dialogues in order to simplify the main

interface. The results of the subjective and objective evaluation showed that most of the
proposed dialogues in this window were not used at all. In this case, we propose the
incorporation of heuristic information to remove the less likely used dialogues to obtain or
provide information. For instance, a field with too many words is a clear candidate to provide
information instead of requesting it. Besides, the proposed tag in the DMA assistant should
also contribute to this process.

7.2.1.5 Modality extension retrieval assistant for speech (MERA-Speech)
In this assistant, the main proposal is to allow advanced designers to get access to the

automatic flow proposed for the DGet and DSay dialogues making possible the modification
of the default behaviour for the proposed dialogues.

In addition, it is expected to include new confirmation profiles for the DGet dialogues
depending on the number and type of the slots to be requested to the user. In this case, the
incorporation of heuristic information should also contribute to extend the current profiles.

7.2.1.6 User modelling assistant (UMA)
For this assistant we plan the incorporation of an innovative methodology for proposing

the default values for the confidence levels used by each DGet dialogue. In this case, we
propose to use the heuristics of the database and a set of rules that can be used to modify the
values specified by the designer in the first stages of the design (i.e., in the ADA assistant).

7.2.1.7 Common improvements or extensions to other assistants
For all the assistants, the number of libraries available could be increased. Most of the

commercial platforms include a set of common libraries such as yes/no, phone numbers,
SSN, credit card numbers, time of day, etc., as well as more complex libraries for proper
names, alpha-numeric spelling, addresses, etc.

New strategies to reduce design time in the generation of grammars and prompts can be
implemented. For instance, allowing the semi-automatic translation of prompts for the default
language to the other languages supported by the platform. Besides, the incorporation of
heuristic information from the database could be used to automatically accelerate the
generation of the pronunciation vocabularies and to support dynamic grammars. Finally, we
also suggest the possibility of creating/importing/exporting the speech grammars in JSGF
format into/from other standard formats in order to allow the platform to reuse grammars
created with other development platforms.

The current two modalities could be merged so that they can work at the same time
using the X + V standard.

Speed Up Strategies for the Creation of Multimodal and Multilingual Dialogue Systems

190

The incorporation of a new assistant to debug the service in text mode, i.e. without a
complete underlying speech recognizer or synthesizer. This assistant will be especially
important for the RMA and MERA-Speech assistants.

7.2.2 LID System

In this thesis, we have proposed the incorporation of a long-span language model
technique that was combined with different acoustic and duration information into a multi-
Gaussian classifier. However, we found problems with the acoustic and duration information
mainly due to normalization problems. We could research a new normalization approach to
include the duration of each phoneme into the feature vector. In our current approach, we
found that this feature did not produce a good separation of the Gaussian distributions
therefore producing bad results for the LID, although intuitively it should provide additional
and complementary information to discriminate among languages.

Another work we want to propose is to explore new techniques to reduce the size of the
feature vector used as input for the Gaussian classifier. Currently we have applied an
automatic clustering of the allophones for each language, but we should also try other
approaches as selecting the most discriminative ones. In [Lucas-Cuesta et al, 2008], we have
started experiments using Linear Discriminative Analysis (LDA) obtaining promising results.

Finally, we could merge our current system with a classical GMM-based system that
uses Shifted Delta Cepstral (SDC) coefficients to better model temporal information. The
combination of these systems provides also good results according to the literature.

7.2.3 Machine Translation System

In this thesis, we have proposed the incorporation of a new adaptation technique for the
language model used in the decoder for scoring the translation candidates. This approach was
based on the Bayes decision rule where the main components are the translation model and
the language model. However, most of the current decoders combine the translation and
language models via a log-linear model that allows the incorporation other arbitrary features
as well. As our current decoder also supports the log-linear combination, we propose the
incorporation of new models based on automatic word-classes or POS-based models.
Besides, instead of using the traditional linear interpolation for combining the background
and the adapted language models we propose to explore other techniques such as the
geometric interpolation or unigram rescaling.

We also propose to carry out new experiments to test the proposed technique on a
larger database in order to check the effect of the available number of sentences for training
over the performance of the method and the number of queries to retrieve using Google.
Besides, experiments with other languages can show the effect of the Google index on
different languages.

We could update our current translation system from the Pharaoh toolkit to the more
recent Moses toolkit 69. The advantage of this new toolkit is that it allows the incorporation of
morphological, syntactic, or semantic information through a more complex feature vector
representing different levels of annotation. The toolkit allows many possibilities such as

69 http://www.statmt.org/moses/

http://www.statmt.org/moses/�

Chapter 7: Conclusions and future work

191

including only words, in this case producing the same phrase-based models we have used in
this thesis, including words plus POS tags, including morphemes, including lemmas, etc. In
addition, the toolkit implements new tools for better decodings, support for new language
models including also the possibility of combining them in different ways, support for
confusion network decoding, etc., which we believe can provide new ways to improve our
current approach and obtain a better translation model.

Finally, we propose to extend the current database of signs in order to allow the
creation of new services without requiring too much effort for the designer.

Speed Up Strategies for the Creation of Multimodal and Multilingual Dialogue Systems

192

193

BBIIBBLLIIOOGGRRAAPPHHYY

PUBLICATIONS GENERATED BY THE THESIS

[Cordoba et al, 2007a] Cordoba, R., D’Haro, L. F., Fernandez-Martinez, F., Macias-
Guarasa, J., and Ferreiros, J. 2007. Language Identification based on n-gram Frequency
Ranking. Interspeech 2007, pp. 354-357.

[Cordoba et al, 2007b] Cordoba, R., D’Haro, L. F., Fernandez-Martinez, F., Montero, J. M.,
and Barra, R. 2007. Language Identification using several sources of information with a
multiple-Gaussian classifier. Interspeech 2007, pp. 2137-2140.

[Cordoba et al, 2006a] Cordoba, R., Ferreiros, J., San-Segundo, R., Macías-Guarasa, J.,
Montero, J. M., Fernández, F., D’Haro, L. F., and Pardo, J. M. 2006. Cross-Task and
Speaker Adaptation in a Speech Recognition System for Air Traffic Control. IEEE
Aerospace and Electronic Systems Magazine, Vol. 21, No 9, pp. 12-17.

[Cordoba et al, 2006b] Cordoba, R., D’Haro, L. F., San-Segundo, R., Macías Guarasa, J.,
Fernández, F., and Plaza, J. C. 2006. A Multiple-Gaussian Classifier for Language
Identification Using Acoustic Information and PPRLM scores. Actas IV Jornadas en
Tecnología del Habla, pp. 45-48.

[Cordoba et al, 2006c] Cordoba, R., San-Segundo, R., Macías-Guarasa, J., Montero, J. M.,
Barra, R., D’Haro, L. F., Plaza, J. C., and Ferreiros, J. 2006. Integration of acoustic
information and PPRLM scores in a multiple-Gaussian classifier for Language
Identification. IEEE Odyssey 2006: The Speaker and Language Recognition Workshop,
pp.1-8.

[Cordoba et al, 2004a] Cordoba, R., Fernández, F., Sama, V., D’Haro, L. F., San Segundo, R.,
Montero, J. M., Macías, J., Ferreiros, J., and Pardo, J. M. 2004. Realización de sistemas
de diálogo en una plataforma compatible con VoiceXML: Proyecto GEMINI.
Procesamiento del lenguaje natural Nº 33, pp. 103-110. ISSN:1135-5948.

[Cordoba et al, 2004b] Cordoba, R., Fernández, F., Sama, V., D’Haro, L. F., San-Segundo, R.,
and Montero, J. M. 2004. Implementation of Dialogue Applications in an Open-Source
VoiceXML Platform. Intern. Conf. on Spoken Language Processing (ICSLP), pp. I-257-
260.

[D’Haro et al, 2008] D’Haro, L. F., San-Segundo, R., Cordoba R., Bungeroth, J., Stein, D., and
Ney, H. 2008. Language Model Adaptation for a Speech to Sign Language Translation
System Using Web Frequencies and a MAP framework. Interspeech 2008, pp. 2119-
2202.

[D’Haro et al, 2006] D’Haro, L. F., Cordoba, R., Ferreiros, J., Hamerich, S.W., Schless, V.,
Kladis, B., Schubert, V., Kocsis, O., Igel, S., and Pardo, J. M. 2006. An advanced
platform to speed up the design of multilingual dialogue applications for multiple
modalities. Speech Communication Vol. 48, Issue 8, pp.863-887.

Speed Up Strategies for the Creation of Multimodal and Multilingual Dialogue Systems

194

[D’Haro et al, 2004a] D’Haro, L. F., Cordoba, R. de, San-Segundo, R., Montero, J. M.,
Macías-Guarasa, J., and Pardo, J. M. 2004. Strategies to reduce Design Time in
Multimodal/Multilingual Dialogue Applications. Intern. Conf. on Spoken Language
Processing (ICSLP), pp. IV-3057-3060.

[D’Haro et al, 2004b] D’Haro, L. F., Cordoba, R., Ibarz, I., San-Segundo, R., Montero, J. M.,
Macías-Guarasa, J., Ferreiros, J., and Pardo, J. M. 2004. Plataforma de Generación
Semiautomática de Sistemas de Diálogo Multimodales y Multilingües: Proyecto
GEMINI. Revista de Procesamiento del Lenguaje Natural No 33, pp. 119-126. ISSN:
1135-5948.

[Hamerich et al, 2004a] Hamerich, S. W., Cordoba, R. de, Schless , V., D’Haro, L. F.,
Kladis, B., Schubert, V., Kocsis, O., Igel, S., and Pardo, J. M. 2004. The Gemini
Platform: Semi-Automatic Generation of Dialogue Applications. Intern. Conf. on
Spoken Language Processing (ICSLP), pp. IV-2629-2632.

[Hamerich et al, 2004b] Hamerich, S. W., Schubert, V., Schless, V., Cordoba, R., Pardo, J.
M., D’Haro, L. F., Kladis, B., Kocsis, O. and Igel, S. 2004. Semi-Automatic Generation
of Dialogue Applications in the Gemini Project. 5th SIGdial Workshop on Discourse
and Dialogue, pp 31-34.

[Lucas-Cuesta et al, 2008] Lucas, J.M., Cordoba, R., and D’Haro, L. F. 2008. Applying feature
reduction analysis to a PPRLM-multiple Gaussian language identification system. V
Jornadas de Tecnología del Habla, pp. 29-32.

[San-Segundo et al, 2008] San-Segundo, R., Barra, R., Cordoba, R., D’Haro, L. F.,
Fernández Martinez, F., Ferreiros, J., Lucas, J.M., Macías-Guarasa, J., Montero, J. M.,
and Pardo, J. M. 2008. Speech to sign language translation system for Spanish. Speech
Communication Vol. 50, pp.1009–1020, ISSN: 0167-6393.

[San-Segundo et al, 2007] San-Segundo, R., Pérez, A., Ortiz, D., D’Haro, L. F., Torres, M. I.,
Casacuberta, F. 2007. Evaluation of Alternatives on Speech to Sign Language
Translation. Interspeech 2007, pp 2529-2532.

[San-Segundo et al, 2006] San-Segundo, R., Barra, R., D’Haro, L. F., Montero, J. M.,
Cordoba, R., and Ferreiros, J. 2006. A Spanish speech to Sign Language translation
system for assisting deaf-mute people. Interspeech 2006, pp. 1399-1402.

[Vilar et al, 2006] Vilar, D., Xu, J., D’Haro, L. F., and Ney, H. 2006. Error analysis of
statistical machine translation output. Intern. Conf. on Language Resources and
Evaluation (LREC), pp. 697–702.

Bibliography

195

GENERAL BIBLIOGRAPHY REFERRED IN THE THESIS

[Abdel-Fattah, 2005] Abdel-Fattah, M. A. 2005. Arabic Sign Language: A perspective.
Journal of Deaf Studies and Deaf Education 10: 2, pp. 212-221.

[Allen et al, 2001] Allen, J., Byron, D., Dzikovska, M, Ferguson, G., and Galescu, L. 2001.
Towards Conversational Human-Computer Interaction. AI Magazine, 22(4). pp. 27–
37.

[Allen et al, 1999] Allen, J., Guinn, C., and Horvitz, E. 1999. Mixed-Initiative Interaction.
IEEE Intelligent Systems, 14(5), pp. 14–23.

[Almeida et al, 2002] Almeida, L., Amdal, I., Beires, N., Boualem, M., Boves, L., den Os, E.,
Filoche, P., Gomes, R., Knudsen, J. E., Kvale, K., Rugelbak, J., Tallec, C., and
Warakagoda, N. 2002. Implementing and evaluating a multimodal and multilingual
tourist guide. Intern. CLASS Workshop on Natural, Intelligent and Effective Interaction
in Multimodal Dialogue Systems, pp. 1-7.

[Araki and Tachibana, 2006] Araki, M., and Tachibana, K. 2006. Multimodal Dialogue
Description Language for Rapid System Development. 7th SIGdial Workshop on
Discourse and Dialogue. pp 109-116.

[Atherton, 1999] Atherton, M. 1999. Welsh today BSL tomorrow. Deaf Worlds 15(1), pp. 11-
15.

[Bacchiani et al, 2006] Bacchiani, M., Riley, M., Roark, B., and Sproat, R. 2006. MAP
adaptation of stochastic grammars. Computer Speech and Language, Volume 20(1),
January 2006, pp 41-68.

[Balci et al, 2007] Balci, K, Not, E., Zancanaro, M., and Pianesi, F. 2007. Xface open source
project and SMIL-agent scripting language for creating and animating embodied
conversational agents. ACM Multimedia 2007, pp. 1013-1016.

[Banerjee and Lavie, 2005] Banerjee, S. and Lavie, A. 2005. METEOR: An Automatic Metric
for MT Evaluation with Improved Correlation with Human Judgments. Workshop on
Intrinsic and Extrinsic Evaluation Measures for MT and/or Summarization (ACL-
2005), pp. 65-72.

[Bangalore and Riccardi, 2000] Bangalore, S. and Riccardi, G. 2000. Stochastic finite-state
models for spoken language machine translation. NAACL-ANLP 2000 Workshop on
Embedded machine translation systems - Vol. 5, pp. 52-59.

[Beasley et al, 2001] Beasley, R., Farley, K. M., O’Reily, J., and Squire, L. H. 2001. Voice
Application Development with VoiceXML. Sams Publishing, 400 p. ISBN: 0-672-
32138-6.

[Bellegarda, 2004] Bellegarda, J. R. 2004. Statistical language model adaptation: review and
perspectives. Speech Communication, vol. 42, pp. 93–108.

[Bellegarda, 2000a] Bellegarda, J. R., 2000. Exploiting latent semantic information in
statistical language modelling. Proc. IEEE 88 (8), pp. 1279–1296.

[Bellegarda, 2000b] Bellegarda, J. R., 2000. Large vocabulary speech recognition with multi-
span statistical language models. IEEE Trans. Speech Audio Proc. 8 (1), pp. 76–84.

Speed Up Strategies for the Creation of Multimodal and Multilingual Dialogue Systems

196

[Bennett et al, 2002] Bennett, C., Llitjós, A. F., Shriver, S., Rudnicky, A. and Black, A. W.
2002. Building VoiceXML-Based Applications. Intern. Conf. on Spoken Language
Processing (ICSLP), pp. 2245-2248.

[Besling and Meier, 1995] Besling, S., Meier, H-G. 1995. Language model speaker adaptation.
European Conference on Speech Communication and Technology (Eurospeech),
pp.1755-1758.

[Bieledfeld, 1994] Bielefeld, B. 1994. Language identification using shifted delta cepstrum.
14th Annual Speech Research Symposium.

[Bigi et al, 2004] Bigi, B., Huang Y., and De Mori, R. 2004. Vocabulary and Language Model
Adaptation using Information Retrieval. Intern. Conf. on Spoken Language Processing
(ICSLP), pp.1361–1364.

[Birch et al, 2007] Birch, A., Osborne, M., and Koehn, P. 2007. CCG Supertags in Factored
Statistical Machine Translation. 2nd Workshop on Statistical Machine Translation, pp.
9–16.

[Blei et al, 2003] Blei, D., Ng, A., and Jordan, M. 2003. Latent Dirichlet Allocation. Journal of
machine Learning Research 3, pp. 993-1022.

[Bohus and Rudnicky, 2003] Bohus, D., and Rudnicky, A. I. 2003. RavenClaw: Dialogue
Management Using Hierarchical Task Decomposition and an Expectation Agenda. 8th
European Conference on Speech Communication and Technology (Eurospeech), pp.
597-600.

[Broman and Kurimo, 2005] Broman, S. and Kurimo, M. 2005. Methods for Combining
Language Models in Speech Recognition. Interspeech, pp. 1317-1320.

[Brown et al, 1993] Brown, P.F., Della Pietra, and Mercer, R. L. 1993. The mathematics of
statistical machine translation: Parameter estimation. Computational Linguistics, Vol
19, No. 2, pp. 263-311.

[Brown et al, 1992] Brown, P. F., Della Pietra, V. J., de Souza, P. V., Lai, J. C. and Mercer, R.
L. 1992. Class-based n-gram models of natural language. Computational Linguistics,
18(4), pp. 467 - 479.

[Bungeroth et al, 2006] Bungeroth, J., Stein, D., Dreuw, P., Zahedi, M., and Ney, H. 2006. A
German Sign Language Corpus of the Domain Weather Report. 5th Intern. Conf. on
Language Resources and Evaluation (LREC), pp 2000-20003.

[Casacuberta and Vidal, 2006] Casacuberta, F. and Vidal, E. 2006. Learning finite-state
models for machine translation. Machine learning, pp. 69-91. Ed. Springer Netherlands,
ISSN 0885-6125.

[Cassell et al, 2002] Cassell, J., Stocky, T., Bickmore, T., Gao, Y., Nakano, Y., Ryokai, K.,
Tversky, D., Vaucelle, C., and Vilhjálmsson, H. 2002. MACK: Media lab Autonomous
Conversational Kiosk. Imagina: Intelligent Autonomous Agents, Monte Carlo, Monaco.

[Cavnar and Trenkle, 1994] Cavnar, W. B. and Trenkle, J. M. 1994. N-Gram-Based Text
Categorization. 3rd Symposium on Document Analysis and Information Retrieval, pp.
161-175.

[Chelba and Jelinek, 2000] Chelba, C., and Jelinek, F. 2000. Structured language modelling.
Computer, Speech, and Language 14 (4), pp. 283–332.

Bibliography

197

[Chen et al, 1998] Chen, S. F., Beeferman, D., and Rosenfeld, R. 1998. Evaluation metrics
for language models. DARPA Broadcast News Transcription and Understanding
Workshop, pp. 275–280.

[Chen and Goodman, 1998] Chen, S. F. and Goodman, J. 1998. An Empirical Study of
Smoothing Techniques for Language Modelling. TR-10-98, Computer Science Group,
Harvard University.

[Chen, 2004] Chen, Y. 2004. EVITA-RAD: an Extensible Enterprise VoIce PorTAl – Rapid
Application Development tool. Interspeech 2004, pp. 3053-3056.

[Chiu et al, 2007] Chiu, Y.-H., Wu, C.-H., Su, H.-Y., and Cheng, C.-J. 2007. Joint Optimization
of Word Alignment and Epenthesis Generation for Chinese to Taiwanese Sign
Synthesis. IEEE Trans. Pattern Analysis and Machine Intelligence, 29(1):28–39.

[Chou and Juang, 2003] Chou, W., and Juang, B. H. eds. 2003. Pattern recognition in
Speech and Language Processing. CRC Press. 416 pps. ISBN 0849312329.

[Christopoulos and Bonvillian, 1985] Christopoulos, and C. Bonvillian, J., 1985. Sign
Language. Journal of Communication Disorders, 18, pp. 1-20.

[Chung, 2004] Chung, G. 2004. Developing A Flexible Spoken Dialogue System Using
Simulation. 42nd Annual Meeting on Association for Computational Linguistics (ACL),
pp. 63-70.

[Clarkson and Robinson, 1997] Clarkson, P. and R., Robinson, A. J. 1997. Language model
adaptation using mixtures and an exponentially decaying cache. Intern. Conf. on
Acoustics, Speech, Signal Processing (ICASSP), pp. 799–802.

[Cole et al, 2003] Cole, R., Van Vuuren, S., Pellom, B., Hacioglu, K., Ma, J., Movellan, J.,
Schwartz, S., Wade-Stein, D., Ward, W., and Yan, J. 2003. Perceptive Animated
Interfaces: First Steps toward a New Paradigm for Human Computer Interaction. IEEE
Transactions on Multimedia: Special Issue on Human Computer Interaction, Vol. 91(9),
pp. 1391-1405.

[Cole, 1999] Cole, R., 1999. Tools for research and education in speech science. Intern.
Conf. of Phonetic Sciences (ICPhS), pp. 1277-1280.

[Cordoba et al, 2005] Cordoba, R., Macías-Guarasa, J., Sama, V., Barra, R., and Pardo, J. M.
2005. New Advances in Cross-Task and Speaker Adaptation for Air Traffic Control
Tasks. Revista de Procesamiento del Lenguaje Natural Nº 35, pp. 21-27. ISSN:1135-
5948.

[Cordoba et al, 2003] Cordoba, R., Prime, G., Macías-Guarasa, J., Montero, J. M., Ferreiros,
J., and Pardo, J. M. 2003. PPRLM Optimization for Language Identification in Air
Traffic Control Tasks. Eurospeech, pp. 2685-2688.

[Cordoba et al, 2002] Cordoba, R., Montero, J. M., Gutiérrez Arriola, J. M., Vallejo, J. A.,
Enríquez, E., and Pardo, J. M. 2002. Selection of the most significant parameters for
duration modelling in a Spanish text-to-speech system using neural networks. Computer
Speech and Language, Vol.16(2), pp 183-203.

[Cordoba et al, 2001] Cordoba, R., San-Segundo, R., Montero, J. M., Colás, J., Ferreiros, J.,
Macías-Guarasa, J., and Pardo, J. M. 2001. An Interactive Directory Assistance Service
for Spanish with Large-Vocabulary Recognition. 7th European Conference on Speech
Communication and Technology (Eurospeech). Vol. II, pp. 1279-1282.

Speed Up Strategies for the Creation of Multimodal and Multilingual Dialogue Systems

198

[Dagan et al, 1993] Dagan, I., Church, K., and Gale, A. 1993. Robust bilingual word
alignment for machine-aided translation. Workshop on very large corpora, pp. 1-8.

[Denecke, 2002] Denecke, M. 2002. Rapid Prototyping for Spoken Dialogue Systems. 19th Int.
Conf. on Computational Linguistic (COLING'02). pp. 1-7.

[Deerwester et al, 1990] Deerwester, S., Dumais, S.T., Furnas, G. W., Landauer, T. K.,
Harshman, R., 1990. Indexing by latent semantic analysis. Journal of the American
Society for Information Science, Vol 41, pp. 391–407.

[Doddington, 2002] Doddington, G. 2002. Automatic Evaluation of Machine Translation
Quality Using N-gram Co-Occurrence Statistics. 2nd Intern. Conf. on Human Language
Technology Research, pp. 138 – 145.

[Dybkjær and Dybkjær, 2006] Dybkjær, H. and Dybkjær, L. 2006. DialogDesigner: tools
support for dialogue model design and evaluation. Language Resources and
Evaluation, Vol. 40 (1), pp. 87-107.

[Dybkjær and Dybkjær, 2005] Dybkjær, H. and Dybkjær, L. 2005. DialogDesigner – A Tool
for Rapid System Design and Evaluation. 6th SIGdial Workshop on Discourse and
Dialogue, pp. 227-231.

[Eberman et al, 2002] Eberman, B., Carter, J., and Goddeau, D. 2002. Building VoiceXML
Browsers with OpenVXI. 11th Intern. Conf. on World Wide Web, pp. 713 – 717.

[Engberg-Pedersen, 2003] Engberg-Pedersen, E. 2003. From pointing to reference and
predication: pointing signs, eyegaze, and head and body orientation in Danish Sign
Language. Pointing: where language, culture, and cognition meet. Edited by Sotaro
Kita, Mahwah, NJ: Lawrence Erlbaum Associates, pp. 269-292. ISBN:0805840141.

[Federico, 1996] Federico, M. 1996. Bayesian estimation methods for N-gram language model
adaptation. Intern. Conf. on Spoken Language Processing (ICSLP), pp. 240–243.

[Feng et al, 2003] Feng, J., Bangalore, S., Rahim, M. 2003. WEBTALK: Mining Websites for
Automatically Building Dialogue Systems. Workshop on Automatic Speech
Recognition and Understanding (ASRU '03). pp. 168-173.

[Ferreiros et al, 2005] Ferreiros, J., San-Segundo, R., Fernández, F., D’Haro, L.F., Sama, V.,
Barra, R., and P. Mellén. 2005. New Word-Level and Sentence-Level Confidence
Scoring Using Graph Theory Calculus and its Evaluation on Speech Understanding.
Interspeech, pp 3377-3380.

[Flippo et al, 2003] Flippo, F., Krebs, A., and Marsic, I. 2003. A framework for Rapid
Development of Multimodal Interfaces. 5th Intern. Conf. on Multimodal Interfaces, pp.
109 – 116.

[Galescu et al, 1998] Galescu, L., Ringger, E. K., and Allen, J. F. 1998. Rapid language
model development for new task domains. ELRA First Intern. Conf. on Language
Resources and Evaluation (LREC), pp. 807-812.

[Gauvain et al, 2004] Gauvain, J. L., Messaoudi, A., and Schwenk, H. 2004. Language
Recognition using Phone Lattices. Intern. Conf. on Spoken Language Processing
(ICSLP), pp. I-25-28.

[Georgila et al, 2004] Georgila, K., Fakotakis, N., and Kokkinakis, G. 2004. A graphical tool
for handling rule grammars in Java speech grammar format. 4th Intern. Conf. on
Language Resources and Evaluation.

Bibliography

199

[Gildea and Hofmann, 1999] Gildea, D., and Hofmann, T.,1999. Topic-based language
modelling using EM. Eurospeech, pp. 2167-2170.

[Glass and Weinstein, 2001] Glass, J. and Weinstein, E. 2001. SPEECHBUILDER:
Facilitating Spoken Dialogue System Development. European Conference on Speech
Communication and Technology (Eurospeech), pp. 1335-1339.

[Gleason and Zissman, 2001] Gleason, T. P., and Zissman, M.A.. 2001. Composite
background models and score standardization for Language Identification Systems.
Intern. Conf. Acoustics, Speech, Signal Processing (ICASSP), pp. 529-532.

[Good, 1953] Good, I. J. 1953. The population frequencies of species and the estimation of
population parameters. Biometrika, 40(3 and 4), pp. 237–264.

[Goodman, 2001] Goodman J. T. 2001. A bit of progress in language modelling. Computer
Speech and Language, Vol. 15(4), pp. 403-434(32).

[Granström et al, 2002] Granström, B., House, D., Beskow, J., 2002. Speech and Signs for
Talking Faces in Conversational Dialogue Systems. Multimodality in Language and
Speech Systems. Kluwer Academic Publishers, pp 209-241.

[Gustafson et al, 2000] Gustafson, J., Bell, L., Beskow, J., Boye, J., Carlson, R., Edlund, J.,
Granström, B., House, D., and Wiren, M. 2000. AdApt – A multimodal conversational
dialogue system in an apartment domain. Intern. Conf. on Spoken Language Processing
(ICSLP). pp. II -134–137.

[Gustafson et al, 1998] Gustafson, J., Elmberg, P., Carlson, R. and Jonsson, A. 1998. An
educational dialogue system with a user controllable dialogue manager. Intern. Conf.
on Spoken Language Processing (ICSLP), pp. 33-37.

[Hamerich, 2008] Hamerich, S. W. 2008. From GEMINI to DiaGen: Improving
Development of Speech Dialogues for Embedded Systems. 9th SIGdial Workshop on
Discourse and Dialogue - Association for Computational Linguistics (SIGdial - ACL),
pp. 92-95.

[Hamerich et al, 2003] Hamerich, S. W., Wang, Y.-F., Schubert, V., Schless, V., and Igel, S.
2003. XML-Based Dialogue Descriptions in the Gemini Project. Berliner XML-Tage,
pp. 404-412.

[Heeman, 1999] Heeman, P. 1999. POS Tags and Decision Trees for Language Modelling.
Joint SIGDAT Conference on Empirical Methods in Natural Language Processing and
Very Large Corpora, pp 129-137.

[Heidel et al, 2007] Heidel, A., Chang, H-a., and Lee, L-S. 2007. Language Model Adaptation
Using Latent Dirichlet Allocation and an Efficient Topic Inference Algorithm.
Interspeech, pp.2361-2364.

[Herrero-Blanco and Salazar-García, 2005] Herrero-Blanco, Á., and Salazar-García, V. 2005.
Non-verbal predicability and copula support rule in Spanish Sign Language. Casper De
Groot & Kees Hengeveld (eds.) Morphosyntactic Expression in Functional Grammar
(Functional Grammar Series, 27). Berlín: Mouton de Gruyter, pp. 281-315.

[Hofmann, 1999] Hofmann, T. 1999. Probabilistic Latent Semantic Indexing. 22nd Annual
International SIGIR. Conference on Research and Development in Information
Retrieval (SIGIR-99), pp.50-57.

Speed Up Strategies for the Creation of Multimodal and Multilingual Dialogue Systems

200

[Hurtado et al, 2005] Hurtado L. F., Blat F., García F., Grau S., Griol D., Sanchis E., Segarra
E., and Torres F. 2005. Sistema de diálogo para el Proyecto DIHANA. Revista del
Procesamiento del lenguaje natural Nº 35, pp. 453-454.

[Hutchins, 2005] Hutchins, J. 2005. Towards a definition of example-based machine
translation. Workshop on Example-Based Machine Translation, pp.63-70.

[Ito et al, 2006] Ito, A., Shimada, K., Suzuki, M., and Makino, S. 2006. A User Simulator
based on VoiceXML for evaluation of spoken dialogue systems. Interspeech, pp 1045-
1048.

[Iyer and Ostendorf, 1999] Iyer, R. and Ostendorf, M. 1999. Modelling long distance
dependence in language: Topic mixture vs. dynamic cache models. IEEE Trans. Speech
Audio Processing, vol. 7, pp. 30–39.

[Jelinek and Mercer, 1980] Jelinek, F. and Mercer, R.L. 1980. Interpolated estimation of
Markov source parameters from sparse data. Gelsema, E.S and Kanal, L.N. (Eds).
Workshop on Pattern Recognition in Practice, pp. 381-397.

[Jelinek et al, 1991] Jelinek, F., Roukos, S., Merialdo, B., and Strauss, M. 1991. A dynamic
language model for speech recognition. DARPA Workshop on Speech and Natural
Language, pp. 293–295.

[Jelinek, 1990] Jelinek, F. 1990. Self-organized language modelling for speech recognition.
Readings in speech recognition, pp. 450 - 506.

[Jemni and Elghoul, 2007] Jemni, M., and Elghoul, O. 2007. Towards Web-Based automatic
interpretation of written text to Sign Language. 1st Intern. Conf. on ICT and
Accesibility (ICTA) 2007, pp. 43-48.

[Jiang, 2005] Jiang, H. 2005. Confidence measures for speech recognition: A survey. Speech
Communication, Vol. 45, Issue 4, April 2005, pp 455-470.

[Johnston et al, 2007] Johnston, M., D’Haro, L.F., Levine, M., and Renger, B. 2007. A
Multimodal Interface for Access to Content in the Home. 45th Annual Meeting of the
Association for Computational Linguistics (ACL), pp. 376-383.

[Johnston et al, 2002] Johnston, M., Bangalore, S, Vasireddy, G., Stent, A., Ehlen, P.,
Walker, M., Whittaker, S. Maloor, P. 2002. MATCH: An architecture for multimodal
dialogue systems. 40th Annual Meeting of the Association for Computational
Linguistics (ACL), pp. 376–383.

[Jung et al, 2008] Jung, S., Lee, C., Kima, S., and Geunbae Lee, G. 2008. DialogStudio : A
Workbench for Data-driven Spoken Dialogue System Development and Management.
Speech Communications, 50 (8-9), pp. 683-697.

[Jurafsky and Martin, 2008] Jurafsky, D., and Martin, J. 2008. Speech and Language
Processing: An introduction to natural language processing, computational linguistics,
and speech recognition. Prentice Hall; 2nd edition, 1024 pages. ISBN: 0131873210

[Katsurada et al, 2003] Katsurada, K., Nakamura, Y., Yamada, H., and Nitta , T. 2003. XISL: a
language for describing multimodal interaction scenarios. 5th Intern. Conf. on
Multimodal interfaces. pp. 281–284.

[Katsurada et al, 2002] Katsurada, K., Ootani, Y., Nakamura, Y., Kobayashi, S., Yamada, H.,
and Nitta, T. 2002. A Modality Independent MMI System Architecture. Intern. Conf. on
Spoken Language Processing (ICSLP), pp. 2549-2552.

Bibliography

201

[Katz, 1987] Katz, S. 1987. Estimation of probabilities from sparse data for the langauge
model component of a speech recognizer. IEEE Transactions on Acoustics, Speech and
Signal Processing, ASSP-35(3), pp. 400–401.

[Keller and Lapata, 2003] Keller, F. and Lapata, M. 2003. Using the Web to obtain frequencies
for unseen bigrams. Computational Linguistics. Vol. 29(3), pp. 459-484.

[Klakow and Peters, 2002] Klakow, D., and Peters, J. 2002. Testing the correlation of word
error rate and perplexity. Speech Communication, Vol.38(1-2), September 2002, pp
19-28.

[Klemmer et al, 2000] Klemmer, S.R., Sinha, A K., Chen, J., Landay, J. A., Aboobaker, N.,
Wang, A. 2000. SUEDE: a Wizard of Oz prototyping tool for speech user interfaces. In:
CHI Letters, ACM Symposium on User Interface Software and Technology (UIST),
Vol. 2 (2), pp. 1–10.

[Kneser et al, 1997] Kneser, R., Peters J. and Klakow, D. 1997. Language Model
Adaptation Using Dynamic Marginals. European Conference on Speech
Communication and Technology (Eurospeech), Vol 4, pp. 1971-1974.

[Kneser, 1996] Kneser, R. 1996. Statistical Language Modelling Using a Variable Context
Length. 4th Intern. Conf. on Spoken Language Processing, Vol. 1, pp. 494-497.

[Kneser and Ney, 1995] Kneser, R. and Ney, H. 1995. Improved backing-off for m-gram
language modelling. IEEE Intern. Conf. on Acoustics, Speech and Signal Processing,
volume 1, pp 181–184.

[Kneser and Ney, 1993] Kneser, R. and Ney, H. 1993. Improved Clustering Techniques for
Class-Based Statistical Language Modelling. European Conference on Speech
Communication and Technology (Eurospeech), pp. 973-976.

[Knight, 1999] Knight, K. 1999. A statistical machine translation workbook. Unpublished.
Available online at http://www.isi.edu/~knight/#pubs [12/12/08].

[Koehn et al, 2006] Koehn, P., Federico, M., Shen, W., et al. 2006. Open source toolkit for
Statistical Machine Translation: Factored Translation Models and Confusion Network
Decoding. Final report of the 2006 Language Engineering Workshop. Available online
at http://www.clsp.jhu.edu/ws2006/groups/ossmt/ [12/12/2008]

[Koehn, 2005] Koehn, P. 2005. Europarl: A Parallel Corpus for Statistical Machine
Translation. MT Summit X.

[Koehn, 2004] Koehn, P. 2004. Pharaoh: a Beam Search Decoder for Phrase-Based
Statistical Machine Translation Models. 6th Conference of the Association for Machine
Translation in the Americas (AMTA-04), pp. 115-124.

[Koehn et al, 2003] Koehn, P., Och, F. J., and Marcu, D. 2003. Statistical Phrase-Based
Translation. Conference of the North American Chapter of the Association for
Computational Linguistics on Human Language Technology (HLT/NAACL). Vol. 1,
pp. 48-54.

[Komatani et al, 2003] Komatani, K., Ueno, S., Kawahara, T., and Okuno, H. G. 2003. User
Modelling in Spoken Dialogue Systems for Flexible Guidance Generation. European
Conference on Speech Communication and Technology (Eurospeech), pp. 745-748.

[Kuhn, 1988] Kuhn, R. 1988. Speech recognition and the frequency of recently used words: A
modified Markov model for natural language. 12th Intern. Conf. Computational
Linguistics, pp. 348–350.

http://www.isi.edu/~knight/#pubs�
http://www.clsp.jhu.edu/ws2006/groups/ossmt/�

Speed Up Strategies for the Creation of Multimodal and Multilingual Dialogue Systems

202

[Lamel et al, 2000] Lamel, L., Rosset, S., Gauvain, J. L., Bennacef, S., Garnier-Rizet, M., and
Prouts. B. 2000. The LIMSI ARISE System. Speech Communication, Vol 31(4): pp.
339-354.

[Larsson and Traum, 2000] Larsson, S. and Traum, D. 2000. Information state and dialogue
management in the TRINDI dialogue move engine toolkit. Natural Language
Engineering Special Issue on Best Practice in Spoken Language Dialogue Systems
Engineering, Cambridge University Press, U.K., pp.323-340.

[Lau et al, 1993] Lau, R., Rosenfeld, R., and Roukos, S., 1993. Trigger-based language
models: a maximum entropy approach. Intern. Conf. Acoustics, Speech, and Signal
Process (ICASSP), pp. 1145–1148.

[Lehtinen et al, 2000] Lehtinen, G., Safra, S., Gauger, M., Cochard, J.-L., Kaspar, B.,
Hennecke, M.E., Pardo, J.M., Cordoba, R., San-Segundo, R., Tsopanoglou, A.,
Louloudis, D., and Mantazas, M. 2000. IDAS: interactive directory assistance service.
Proc. COST249. ISCA Workshop on Voice Operated Telecom Services (VOTS), pp.
51–54.

[Levin et al, 2000] Levin, E., Narayanan, S. Pieraccini, R., Biatov, K., Bocchieri, E., Di
Fabbrizio, G., Eckert, W., Lee, S. Pokrovsky, A., Rahim, M., Ruscitti, P., and Walker,
M. 2000. The AT&T-DARPA communicator mixed-initiative spoken dialogue system.
Intern. Conf. on Spoken Language Processing (ICSLP). Vol. 2, pp. 122-125.

[Li and Lin, 2006] Li, Y-X, and Lin, N-W. 2006. Voice Composer: A Development Tool for
Voice Applications. International Computer Symposium, pp. 304-309.

[Li et al, 2006] Li, J., Yaman, S., Lee, C.-H., Ma, B., Tong, R., Zhu, D., and Li, H. 2006.
Language Recognition Based on Score Distribution Feature Vectors and
Discriminative Classifier Fusion. IEEE Odyssey 2006: The Speaker and Language
Recognition Workshop. pp. 1-5.

[López-Cozar and Araki, 2005] López-Cózar, R., and Araki, M. 2005. Spoken, Multilingual
and Multimodal Dialogue Systems: Development and Assessment. 262 pp. Published by
John Wiley & Sons, ISBN: 0-470-02155-1.

[López-Cozar et al, 2005] López-Cózar, R., Callejas, Z., Gea M., and Montoso, G. 2005.
Multimodal, Multilingual and Adaptive Dialogue System for Ubiquitous Interaction in
an Educational Space. ISCA Workshop (ITRW) on Applied Spoken Language
Interaction in Distributed Environments, ISSN 0908-1224.

[López-Cozar and Granell, 2004] López-Cózar, R., and Granell, R. 2004. Sistema de Diálogo
Basado en VoiceXML para Proporcionar Información de Viajes en Tren.
Procesamiento del lenguaje natural, Nº. 33, pp. 171-178.

[López-Moreno et al, 2008] López-Moreno, I., Ramos, D., González-Rodríguez, J., and
Toledano, D. T. 2008. Anchor-Model fusion for language recognition. Interspeech
2008, pp. 727-730.

[Ma et al, 2005] Ma, B., Li, H., and Lee, C-H. 2005. An acoustic segment modeling approach
to automatic language identification. Interspeech 2005. pp. 2829-2832.

[Ma et al, 2002] Ma, J., Yan, J., and Cole, R. 2002. CU animate tools for enabling
conversations with animated characters. Intern. Conf. on Spoken Language Processing
(ICSLP), pp. 197-200.

Bibliography

203

[Manning and Schütze, 1999] Manning, C. D., and Schütze, H. 1999. Foundations of
statistical natural language processing. MIT Press, Cambridge, MA. 680 pp. ISBN:
0262133601.

[Masataka, et al, 2006] Masataka, N, Ohnishi, T., Imabayashi, E., Hirakata, M., and Matsuda,
H. 2006. Neural correlates for numerical processing in the manual mode. Journal of
Deaf Studies and Deaf Education 11(2), pp. 144-152.

[McTear, 2004] McTear, M. 2004. Spoken Dialogue Technology: Towards the conversational
user interface. Published by Springer Ed. 432 pp. ISBN: 1-85233-672-2.

[McTear, 2002] McTear, M. 2002. Spoken Dialogue Technology: Enabling the
Conversational User Interface. ACM Computing Surveys, 34(1). pp. 90–169.

[McTear, 1999] McTear, M. 1999. Software to Support Research and Development of Spoken
Dialogue Systems. European Conference on Speech Communication and Technology
(Eurospeech), pp. 339-342.

[McTear, 1998] McTear, M. 1998. Modelling Spoken Dialogues with State Transition
Diagrams: Experiences with the CSLU Toolkit. Intern. Conf. on Spoken Language
Processing (ICSLP), pp. 1223-1226.

[Meurant, 2004] Meurant, L. 2004. Anaphora, role shift and polyphony in Belgian sign
language. Intern. Conf. on Theoretical Issues in Sign Language Research 8, pp. 113-
115.

[Mohri, 2000] Mohri, M. 2000. Minimization algorithms for sequential transducers.
Theorical Computer Science, Vol 234 (1–2), pp. 177–201.

[Monserrat and Gallardo, 2004] Monserrat, V., and Gallardo, B. 2004. V., Estudios
Lingüísticos sobre la lengua de signos española. Universidad de Valencia. Ed.
AGAPEA. ISBN: 8437055261.

[Montero et al, 2003] Montero, J. M., D’Haro, L.F., Cordoba, R., Vallejo, J. A., Gutiérrez-
Arriola, J., and Pardo, J. M. 2003. ANN F0 Modelling for Female-Voice Synthesis in
Spanish: restricted and non-restricted domains. 15th International Congress of Phonetic
Sciences (ICPS), pp. 563-566.

[Moore et al, 2006] Moore, R. C., Yih, W., and Bode, A. 2006. Improved discriminative
bilingual word alignment. 21th Intern. Conf. on Computational Linguistics and 44th
Annual Meeting of the ACL, pp. 513-520.

[Morrissey and Way, 2005] Morrissey, S., and Way, A. An Example-Based Approach to
Translating Sign Language. Workshop Example-Based Machine Translation (MT
X05), pp. 109-116.

[Nagarajan and Murthy, 2004] Nagarajan, T., and Murthy, H. A. 2004. Language
Identification Using Parallel Syllable-Like Unit Recognition. Intern. Conf. Acoustics,
Speech, and Signal Processing (ICASSP), pp. I-401-404.

[Navratil, 2001] Navratil, J. 2001. Spoken Language Recognition – A Step toward
Multilinguality in Speech Processing. IEEE Transactions on Speech and Audio
Processing, Vol. 9(6), pp. 678-685.

[Navratil and Zühlke, 1997] Navratil, and J. Zühlke, W. 1997. Double bigram-decoding in
phonotactic language identification. Intern. Conf. on Acoustics, Speech, Signal
Processing (ICASSP), Vol. 2, pp. 1115–1118.

Speed Up Strategies for the Creation of Multimodal and Multilingual Dialogue Systems

204

[Ney et al, 1994] Ney, H., Essen, U., and Kneser, R. 1994. On structuring probabilistic
dependences in stochastic language modelling. Computer, Speech and Language. Vol
8, pp. 138.

[Nigay and Coutaz, 1993] Nigay, L., and Coutaz, J. 1993. A design space for multimodal
systems - concurrent processing and data fusion. INTERCHI - Conference on Human
Factors in Computing Systems, pp. 172-178.

[Nyst, 2004] Nyst, V. 2004. Verbs of motion in Adamorobe Sign Language. Intern. Conf. on
Theoretical Issues in Sign Language Research 8. pp. 127-129.

[Och and Ney, 2004] Och, F.J., and Ney, H. 2004. The Alignment Template Approach to
Statistical Machine Translation. Computational Linguistics, Vol 30 (4), pp. 417-449.

[Och and Ney, 2003] Och, F.J., and Ney, H. 2003. A Systematic Comparison of Various
Statistical Alignment Models. Computational Linguistics, Vol. 29(1), pp. 19-51.

[Och and Ney, 2002] Och, F.J., and Ney, H. 2002. Discriminative training and maximum
entropy models for statistical machine translation. 40th Annual Meeting of the
Association for Computational Linguistics (ACL), pp 295–302.

[Och and Ney, 2000a] Och, F.J., and Ney, H. 2000. Improved Statistical Alignment Models.
38th Annual Meeting of the Assoc. for Computational Linguistics (ACL), pp. 440–447.

[Och and Ney, 2000b] Och, F. J., and Ney, H. 2000. A comparison of alignment models for
statistical machine translation. 18th Intern. Conf. on Computational Linguistics, pp.
1086-1090.

[Och, 1999] Och, F. J. 1999. An Efficient Method for Determining Bilingual Word Classes.
9th Conf. of the European Chapter of the Association for Computational Linguistics;
(EACL), pp. 71-76.

[Och et al, 1999] Och, F.J., Tillmann, C., and Ney, H. 1999. Improved alignment models for
statistical machine translation. Joinst SIGDAT Conf. on Empirical Methods in Natural
Language Processing and Very Large Corpora, pp 20-28.

[Oviatt et al, 2000] Oviatt, S. L., Cohen, P., Wu, L., Vergo, J., Duncan, L., Suhm, B., Bers, J.,
Holzman, T., Winograd, T., Landay, J., Larson, J., and Ferro, D. 2000. Designing the
user interface for multimodal speech and gesture applications: state-of-the-art systems
and research directions. Journal of Human Computer Interaction, Vol 15(4), pp. 263-
322.

[Padró and Padró, 2004] Padró Cirera, L., Padró, M. 2004. Comparing methods for language
identification. Procesamiento del lenguaje natural, Nº. 33, pp. 155-161.

[Papineni et al, 2002] Papineni, K., Roukos, S., Ward, T., and Zhu, W. J. 2002. BLEU: a
Method for Automatic Evaluation of Machine Translation. 40th Annual Meeting of the
Association for Computational Linguistics (ACL), pp. 311-318.

[Pardo et al, 1995] Pardo, J. M., Giménez de los Galanes, F. M., Vallejo, J. A., Berrojo, M.
A., Montero, J. M., Enríquez, E., and Romero, A. 1995. Spanish text-to-speech, from
prosody to acoustics. 15th International Congress on Acoustics, pp. 133–136.

[Pargellis et al, 2004] Pargellis, A. N., Kuo, H. J., and Lee, C. 2004. An automatic dialogue
generation platform for personalized dialogue applications. Speech Communication
Vol. 42, pp. 329-351.

[Parkhurst and Parkhurst, 2007] Parkhurst, S., and Parkhurst, D. 2007. Spanish Sign Language
Survey. SIL Electronic Survey Reports 2007-008, 85 p.

Bibliography

205

[Pereira and Riley, 1997] Pereira, F.C., and Riley, M., 1997. Speech recognition by
composition of weighted finite automata. Roche, E., Schabes, Y. (Eds.), Finite-State
Language Processing. MIT Press,Cambridge, MA, pp. 431–453.

[Polifroni and Walker, 2006] Polifroni, J. and Walker, M. 2006. Learning Database Content
for Spoken Dialogue System Design. Intern. Conf. on Language Resources and
Evaluation (LREC), pp. 143-148.

[Polifroni et al, 2003] Polifroni, J., Chung, G., Seneff, S. 2003. Towards the Automatic
Generation of Mixed-Initiative Dialogue Systems from Web Content. European
Conference on Speech Communication and Technology (Eurospeech), pp. 193–196.

[Polifroni et al, 2000] Polifroni, J., Seneff, S. 2000. Galaxy-II as an architecture for Spoken
Dialogue Evaluation. Intern. Conf. on Language Resources and Evaluation (LREC), pp.
725–730.

[Prillwitz et al, 1989] Prillwitz, S., R. Leven, H. Zienert, T. Hanke, J. Henning, et al. 1989.
Hamburg Notation System for Sign Languages – An introductory Guide. Intern. Studies
on Sign Language and the Communication of the Deaf, Volume 5. Institute of German
Sign Language and Communication of the Deaf, University of Hamburg.

[Pyers, 2006] Pyers J.E., 2006. Indicating the body: Expression of body part terminology in
American Sign Language. Language Sciences, Vol. 28, no 2-3, pp. 280-303. ISSN
0388-0001.

[Ramasubramaniam et al, 2003] Ramasubramaniam, V., Sai Jayram, A. K. V., and Sreenivas,
T. V. 2003. Language Identification using Parallel Phone Recognition. Workshop on
Spoken Language Processing, pp. 109-116.

[Reyes, 2005] Reyes, I. 2005. Comunicar a través del silencio: las posibilidades de la lengua
de signos española. Universidad de Sevilla, 310 p.

[Rodríguez, 1991] Rodríguez, M.A. 1991. Lenguaje de signos. Phd Dissertation.
Confederación Nacional de Sordos Españoles (CNSE) and Fundación ONCE. Madrid.
Spain.

[Rosenfeld, 2000] Rosenfeld, R. 2000. Two Decades of Statistical Language Modelling:
Where Do We Go from Here?. Proceedings of the IEEE, Vol. 88(8), pp. 1270-1278.

[Rosenfeld, 1996] Rosenfeld, R. 1996. A maximum entropy approach to adaptive statistical
language modelling. Computer Speech and Language, Vol. 10, pp. 187–228.

[Rudnicky and Xu, 1999] Rudnicky, A., and Xu W. 1999. An agenda based dialogue
management architecture for spoken language systems. IEEE Automatic Speech
Recognition and Understanding Workshop, pp. 337-340.

[Sai-Jayram et al, 2003] Sai Jayram, K. V., Ramasubramanian, V., and Sreenivas, T. V.
2003. Language Identification Using Parallel Sub-Word Recognition. Intern. Conf. on
Acoustics, Speech, and Signal Processing (ICASSP), pp. I-32-35.

[San-Segundo et al, 2001a] San Segundo, R., Montero, J. M., Colás, J., Gutiérrez, J. M.,
Ramos, J. M., and Pardo, J. M. 2001. Methodology for Dialogue Design in Telephone-
Based Spoken Dialogue Systems: A Spanish Train Information System. European
Conference on Speech Communication and Technology (Eurospeech), pp 2165-2168.

[San-Segundo et al, 2001b] San-Segundo, R. Pellom, B., Hacioglu, K., Ward, W., and Pardo,
J. M. 2001. Confidence measures for spoken dialogue systems. Intern. Conf. on
Acoustics, Speech, Signal Processing (ICASSP), pp 393-396.

Speed Up Strategies for the Creation of Multimodal and Multilingual Dialogue Systems

206

[Sarikaya et al, 2005] Sarikaya, R., Gravano, A., and Gao, Y. 2005. Rapid Language Model
Development Using External Resources for New Spoken Dialogue Domains. Intern.
Conf. on Acoustics, Speech, Signal Processing (ICASSP). Vol. 1, pp. 573- 576.

[Sato and Nagao, 1990] Sato, S., and Nagao, M. 1990. Towards memory-based translation.
13th conference on Computational linguistics, Vol. 3, pp. 247-252.

[Scholz, 2006] Scholz, K. W. 2006. Speech Service Creation: An overview of Speech
Services Creation Tools. NY/NJ Chapter Meeting, Avios Co. December 12, 2006.

[Schubert et al, 2005] Schubert, V, and Hamerich, S. W. 2005. The Dialogue Application
Metalanguage GDialogXML. European Conference on Speech Communication and
Technology (Eurospeech), pp. 789-792.

[Schwenk, 2007] Schwenk, H. 2007. Continuous space language models. Computer Speech
and Language, Vol. 21, Issue 3. pp 492-518.

[Seneff and Polifroni, 2000] Seneff, S., and Polifroni, J. 2000. Dialogue management in the
mercury flight reservation system. ANLP-NAACL Satellite Workshop, pp. 1-6.

[Sommers, 1999] Somers, H.L. 1999. Example-based machine translation. Machine
Translation 14 (2): 113-158.

[Stein et al, 2007] Stein, D., Dreuw, P., Ney, H., Morrisey, S., and Way, A. 2007. Hand in
hand: Automatic Sign Language to English Translation. TMI 2007, pp.214-220.

[Stein et al, 2006] Stein, D., Bungeroth, J., and Ney H. 2006. Morpho-Syntax Based
Statistical Methods for Sign Language Translation. 11th Annual conference of the
European Association for Machine Translation, pp. 169–177.

[Stolcke, 2002] Stolcke, A. 2002. SRILM – An Extensible Language Modelling Toolkit.
Intern. Conf. on Spoken Language Processing (ICSLP), 2, pp. 901–904.

[Stokoe, 1960] Stokoe, W., 1960. Sign Language structure: an outline of the visual
communication systems of the American deaf. Studies in Linguistics. Buffalo, Univ.
Paper 8.

[Strik et al, 1997] Strik, H., Russel, A., van den Heuvel, H., Cucchiarini, C., and Boves, L.
1997. A spoken dialogue system for the Dutch public transport information service.
Intern. Journal of Speech Technology, Vol. 2 (2), pp. 121-131.

[Sumita, 2001] Sumita, E. 2001. Example-based machine translation using DP-matching
between word sequences. Data-Driven Machine translation Workshop, 39th Annual
Meeting of the Assoc. for Computational Linguistics, pp. 1-8.

[Tam and Schultz, 2006] Tam, Y-C, and Schultz, T. 2006. Unsupervised Language Model
Adaptation Using Latent Semantic Marginals. Interspeech 2006. pp. 2206-2209

[Tam and Schultz, 2005] Tam, Y-C, and Schultz, T. 2005. Dynamic Language Model
Adaptation using Variational Bayes Inference. Interspeech 2005. pp. 5-8.

[Tillmann et al, 1997] Tillmann, C., Vogel, S., Ney, H., Zubiaga, A., and Sawaf, H. 1997.
Accelerated DP based search for statistical translation. European Conference on
Speech Communication and Technology (Eurospeech), pp. 2667–2670.

[Timmermans, 2005] Timmermans, N. 2005. The status of the sign language in Europe.
Council Of Europe Publishing, 164 pp. ISBN: 978-92-871-5720-1.

Bibliography

207

[Torres-Carrasquillo et al, 2002a] Torres-Carrasquillo, P. A., Reynolds, D. A., and Deller Jr.,
J. R. 2002. Language identification using Gaussian mixture model tokenization. Intern.
Conf. on Acoustics, Speech, Signal Processing (ICASSP), pp. I-757-760.

[Torres-Carrasquillo et al, 2002b] Torres-Carrasquillo, P. A., Singer, E., Kohler, M. A.,
Green R. J, et al. 2002. Approaches to Language Identification using Gaussian Mixture
Models and Shifted Delta Cepstral Features. Intern. Conf. on Acoustics, Speech, Signal
Processing (ICASSP), pp.89-92.

[Toth et al, 2002] Toth, A. R., Harris, T. K., Sanders, J., Shriver, S., and Rosenfeld, R. 2002.
Towards every-citizen’s speech interfaces: an application generator for speech
interfaces to databases. Intern. Conf. on Spoken Language Processing (ICSLP), pp.
1497–1500.

[Tsai, 2006] Tsai, M. J. 2006. VoiceXML dialogue system of the multimodal IP-Telephony –
The application for voice ordering service. Experts Systems with Applications 31, pp.
684-696.

[Turunen et al, 2004] Turunen, M., et al. 2004. AthosMail - A Multilingual Adaptive Spoken
Dialogue System for E-mail Domain. Workshop on Robust and Adaptive Information
Processing for Mobile Speech Interfaces. pp. 77-86.

[Uebler, 2001] Uebler, U. 2001. Multilingual speech recognition in seven languages. Speech
Communication, Vol. 35 (1), pp. 53-69.

[Vogel et al, 1996] Vogel, S., Ney, H., and Tillmann, C. 1996. HMM-based word alignment
in statistical translation. 16th Intern. Conf. on Computational Linguistics, pp. 836-841.

[Wahlster (Ed.), 2006] Wahlster, W. 2006. SmartKom: Foundations of Multimodal Dialogue
Systems. 644 p. ISBN: 978-3-540-23732-7.

[Wang, 2002] Wang, K. 2002. Salt: A Spoken Language Interface for Web-Based Multimodal
Dialogue Systems. Intern. Conf. on Spoken Language Processing (ICSLP), pp. 2241-
2244.

[Wang and Stolcke, 2007] Wang, W., and Stolcke, A. 2007. Integrating MAP, Marginals, and
Unsupervised Language Model Adaptation. Interspeech 2007, pp. 618-621.

[Wang and Acero, 2006] Wang, Y., and Acero, A. 2006. Rapid development of spoken
language understanding grammars. Speech Communication, Vol. 48(3-4), pp 390-416.

[Wang et al, 2003] Wang, Y.-F. H., Hamerich, S. W., and Schless, V. 2003. Multi-Modal and
Modality Specific Error Handling in the GEMINI Project. Workshop on Error Handling
in Spoken Dialogue Systems, pp. 139-144.

[Witten and Bell, 1991] Witten, I., and Bell, T. 1991. The zero-frequency problem:
Estimating the probability of novel events in adaptive text compression. IEEE
Transactions on Information Theory. 37(4), pp. 1085-1094.

[Yamada and Knight, 2001] Yamada, K., and Knight, K. 2001. A syntax-based statistical
translation model. 39th Annual Meeting of the Assoc. for Computational Linguistics
(ACL), pp. 523-530.

[Yin et al, 2006] Yin, B., Ambikairajah, E., and Chen, F. 2006. Combining cepstral and
Prosodic Features in Language Identification. 18th Intern. Conf. on Pattern
Recognition. Vol 4, 254-257.

Speed Up Strategies for the Creation of Multimodal and Multilingual Dialogue Systems

208

[Yu et al, 2005] Yu, D., Mahajan, M., Mau, P., and Acero, A. 2005. Maximum Entropy Based
Generic Filter for Language Model Adaptation. Intern. Conf. on Acoustics, Speech,
and Signal Processing (ICASSP), Vol.1, pp. 597- 600.

[Zissman and Berkling, 2001] Zissman, M. A., and Berkling, K. M. 2001. Automatic
Language Identification. Speech Communication 35, Issues 1-2, pp. 115-124.

[Zissman, 1996] Zissman, M.A. 1996. Comparison of four approaches to automatic language
identification of telephone speech. IEEE Trans. Speech and Audio Processing, Vol.
4(1), pp. 31-44.

[Zhao et al, 2004] Zhao, B., Eck, M., and Vogel, S. 2004. Language model adaptation for
statistical machine translation with structured query models. 20th Intern. Conf. on
Computational Linguistics (COLING), pp 411-417.

[Zhao et al, 2000] Zhao, L., Kipper, K., Schuler, W., Vogler, C., Badler, N. and Palmer, M.
2000. A machine translation system from English to American Sign Language. AMTA
pp. 54-67.

[Zhu and Rosenfeld, 2001] Zhu, X., and Rosenfeld, R. 2001. Improving trigram language
modelling with the World Wide Web. Intern. Conf. on Acoustics Speech and Signal
Processing (ICASSP), Vol.1, pp 533-536.

[Zue et al, 2000] Zue, V., Seneff, S., Glass, J., Polifroni, J., Pao, C., Hazen, T. J., and
Hetherington, L. 2000. JUPITER: A telephone-based conversational interface for
weather information. IEEE Transactions on Speech and Audio Processing. Vol. 8(1),
pp. 85–96.

209

AAPPPPEENNDDIIXX AA.. LLIISSTT OOFF AABBBBRREEVVIIAATTIIOONNSS

ADA Application Description Assistant
AGP Application Generation Platform
ANN Artificial Neural Network
API Application Programming Interface
ASL American Sign Language
ASR Automatic Speech Recognizer
BLEU BiLingual Evaluation Understudy
BNF Backus-Naur Form
BOS Bag-Of-Sounds models
BSL British Sign Language
CCXML Call Control Extensible Markup Language
CFG Context Free Grammars
CGI Common Gateway Interface
CTI Computer Telephony Integration
DB DataBase
DCMA Data Connector Model Assistant
DM Dialogue Manager
DMA Data Model Assistant
DML Data Model Linker
DNI National Identity Document
DTMF Dual-Tone Multi-Frequency
EBMT Example Based Machine Translation
FIA Form Interpretation Algorithm
GDialogXML Gemini Dialogue eXtensible Markup Language
GEMINI Generic Environment for Multilingual Interactive Natural Interfaces
GMM Gaussian Mixture Model
GSL Nuance Grammar Specification Language
GUI Graphical User Interface
HMM Hidden Markov Models
IDE Integrated Development Environment
IR Information Retrieval
IVR Interactive Voice Response
J2EE Java 2 Platform, Enterprise Edition
JDBC Java DataBase Connectivity
JSGF Java Speech Grammar Format
LDA Latent Dirichlet Allocation
LID Language IDentification
LM Language Model
LMT Language Modelling Toolkit
LSA Latent Semantic Analysis
LSE Lengua de Signos Española
MAP Maximum-A-Posteriori
MEA Modality and Language Extension Assistant
MERA-Speech Modality Extension Retrieval Assistant for Speech

210

MI Mixed-Initiative
MRCP Media Resource Control Protocol
MT Machine Translation
NLG Natural Language Generator
NLU Natural Language Understanding
ODBC Open DataBase Connectivity
OOV Out-Of-Vocabulary
OV Over-Answering
PER Position independent word Error Rate
PLP Perceptual Linear Predicative
POS Part-Of-Speech
PPL Perplexity
PPRLM Parallel Phone Recognition followed by Language Modelling
PSTN Public Switched Telephone Network
RMA Retrieval Model Assistant
SALT Speech Application Language Tags
SAMPA Speech Assessment Methods Phonetic Alphabet
SFMA State Flow Model Assistant
SIP Session Initiation Protocol
SISR Semantic Interpretation for Speech Recognition
SLM Statistical Language Model
SMT Statistical Machine Translation
SQL Structured Query Language
SRGS Speech Recognition Grammar Specification
SSML Speech Synthesis Markup Language
TTS Text-To-Speech
UMA User Model Assistant
VB Vocabulary Builder
WER Word Error Rate
XSLT eXtensible Stylesheet Language Transformations

211

AAPPPPEENNDDIIXX BB.. AADDDDIITTIIOONNAALL IINNFFOORRMMAATTIIOONN
AABBOOUUTT CCUURRRREENNTT CCOOMMMMEERRCCIIAALL AANNDD WWEEBB--
BBAASSEEDD PPLLAATTFFOORRMMSS

In this appendix, we provide an overview of the main features and accelerations
included in several commercial and Web-based development platforms that we studied
during the development of this thesis. This appendix complements the studied we have
presented in section 2.1.1 (page 8).

B.1 Commercial Platforms

Audium Studio 70: It is an open Integrated Development Environment (IDE) that
allows developers the creation of interactive and dynamic server-based services. The Audium
platform consists of two main components: Audium Server and Audium Builder.

• Audium Server provides the runtime platform, backend connectivity, application
management, and manages the dynamic generation of the application.

• The Audium Builder interface allows the complete design of the dialogue flow
using a graphical tree view representation (see Figure B.1), which is created using
drag and drop, zoom and right-click commands, and through the customization of
the different VoiceXML elements incorporated into the design. Besides, Audium
Builder also allows local and remote application deployment, access to backend
databases, performing transactions from any Web service or XML-capable system,
and it can be easily integrated with all major VoiceXML gateway vendors and
speech solution providers. Finally, Audium Builder includes an extensible library of
reusable components, known as module inventory, which can be used to create the
call flow. The platform also includes components for menus, recognizing basic
inputs, playing back audio prompts, running external applications, etc. Each
component can be either configured to meet the particular needs of the service, or
dynamically configured to act differently according to pre-defined business rules.

One of the most interesting features included in Audium is the possibility of creating
dynamic applications using dynamic module configurations, rules, worklets, or new modules.
All of them can be created/used through java classes or Web based HTTP/XML exchange. In
detail, rules are used to change the call-flow sequence (i.e. similar to if-then-else conditions).
Dynamic configurations are used to change the VoiceXML content (for instance, to provide
dynamic content for prompts in the application). Worklets are used to perform background
processing without changing the call-flow (i.e. similar to the functionality provided by
ECMA-scripts). Finally, new modules allow the integration of functionalities that the
platform does not provide (for instance, speech verification) or to create new reusable
modules.

70 http://www.audiumcorp.com/Audium_Studio/

http://www.audiumcorp.com/Audium_Studio/�

Speed Up Strategies for the Creation of Multimodal and Multilingual Dialogue Systems

212

Figure B.1. Audium Builder main window. (Source: [Scholz, 2006])

Dialogue Designer by Avaya 71: It is another IDE that includes several tools for
designing and simulating speech-enabled services. The platform includes pre-built java
classes and servlets for the dynamic generation of VoiceXML code and speech grammars, for
the integration with backend databases, as well as support for the Java Telephone API
(JTAPI) to allow the simulation and integration of telephony services.

In addition, Dialogue Designer allows the recording of high-quality speech messages,
access to local and remote databases via the JDBC interface and SQL commands, and support
for internet service integration using the Web Services Description Language (WDSL),
Simple Object Access Protocol (SOAP), CCXML, and Remote Procedure Call (RPC)
protocols. The platform also includes a speech recognition engine, and an embedded
VoiceXML and CCXML browsers to allow the simulation and debugging of the final service.
Figure B.2 shows the main components of the Dialogue Designer GUI, which allows full
access to dialogue libraries and workflow, platform wizards, and component properties.

Finally, the platform includes an extensive library of predefined prompts in more than
20 languages, and allows the creation of TTS prompts supporting the SSML specification to
dynamically modify the synthesis.

71 http://www.avaya.com/gcm/master-usa/en-us/products/offers/dialog_designer.htm#

http://www.avaya.com/gcm/master-usa/en-us/products/offers/dialog_designer.htm�

Appendix B

213

Figure B.2. Avaya Dialogue Designer. (Source: Avaya product brochure available at the
corporate website)

Genesys Voice Platform 72: It is a stand-alone development platform for designing and
testing VoiceXML-based applications. The platform includes all the necessary modules such
as speech recognition, text-to-speech, and tools for backend, mainframes integration, and
access to Web-based information. Genesys allows developers to deploy the service using the
proprietary GenieHosting service or any Web server selected by the designer. The service can
be tested using a SIP soft-phone or a Computer Telephony Integration (CTI) simulator that
allows developers to transfer a call to an operator and to test the passing of arguments
between dialogues and services (as we have also dealt in our platform successfully, see
section 4.5.3, page 105).

The platform includes the following five software components: 1.) The
Communications Server that acts as a media server interpreting and executing the VoiceXML
commands, allowing the integration with the text-to-speech, ASR engines, and with the
Genesys Voice Platform administration system. 2.) The Element Management Provisioning
System that is a Web-based interface that allows the configuration and administration of the
application and platform components. 3.) The Genesys Studio that allows the designer to
develop the service using an intuitive Graphical User Interface. Then, the assistant
automatically converts the graphical representation into the underlying code in VoiceXML
without requiring the designer intervention as we do in our platform. 4.) The Voice
Application Reporter that allows the designer to check user’s interactions with the service, to
save logging events, and to generate traffic and service reports using pre-defined templates.
5.) The Genesys Customer Interaction Management Platform Integration that allows, among

72 http://www.genesyslab.com/products/genesys_voice_platform.asp

http://www.genesyslab.com/products/genesys_voice_platform.asp�

Speed Up Strategies for the Creation of Multimodal and Multilingual Dialogue Systems

214

others, the centralized management of the service, provides intelligent call queuing including
personalized applications and music on hold, as well as different tools for making routing
decisions.

One of the big advantages of the Genesys Voice Platform is that it supports the
personalization of the applications through customized IVR voices and personalities, which
can improve the quality of the service and reinforce the image of the company. For instance,
the platform allows the possibility of automatically send recommendations, optional services,
or other information of interest to the user while the system is running other time-consuming
tasks.

Envox 73: Provides one of the most complete platforms for developing multimodal
applications, supporting integration with IP, PSTN or mixed telephony environments. It
includes four components: 1.) the Envox Studio that provides the graphical interface for
designing the service. 2.) The Communication Server that includes the VoiceXML gateway
and browser, and acts as run-time platform. 3.) The Envox Console that provides the
graphical interface to administrate and control the service. 4.) And the Envox Domain Server
that ensures the continuous availability of the application. The platform may be integrated
with different speech engines including Microsoft API and Nuance ASR, TTS, and speaker
verification modules.

In addition, the platform supports several standard protocols that help to extend the
VoiceXML specification, allowing new speech-based services and development
functionalities. For instance, the platform allows the integration with conferencing, video
messaging, email and fax services (such as receive, send, create or reply emails or faxes),
extensive integration with backend systems, dynamic creation of Web pages, encryption,
execution of external applications, and more. In relation with acceleration strategies, the
platform includes advanced visual debugging tools (allowing variable simulation,
breakpoints, step-by-step debugging, etc), hardware simulation, call logging, and a SQL
wizard, which includes similar capabilities as the assistant described in section 4.3.2 (page
93), that allow the rapid definition of SQL statements suitable for designers with a reduced
background on database languages and architectures.

Besides, the platform allows the rapid development of menus, forms, interaction with
databases, and TTS messages. Like other development platforms, Envox includes pre-built
library components (such as dialogues, prompts and grammars) for requesting credit card
numbers, currencies, dates, phone numbers, etc. Different assistants incorporated into the
platform allow the designer to specify the properties of each component depending on the
dialogue state; For instance, it is possible to specify the input mode (speech or DTMF),
confidences, and the number of times the system confirms a slot, etc. Finally, another
interesting feature is provided through the Nuance RealSpeak TTS system that support
customs G2P (grapheme-to-phoneme) dictionaries, allowing the creation of new custom rules
and entries in order to improve the quality of the pronunciation of special words (e.g. proper
names).

OpenVXML Studio 74: It is an integrated design and management environment that
simplifies the interaction of the platform with any VoiceXML compliant platform. The
toolkit allows the development of DTMF and speech-enabled voice services. The graphical

73 http://www.envox.com/
74 http://www.eclipse.org/vtp/openvxml-announce/content/html/index.htm

http://www.envox.com/�
http://www.eclipse.org/vtp/openvxml-announce/content/html/index.htm�

Appendix B

215

“drag-and-drop” interface allows the designer to create the dialogue flow as shown in Figure
B.3. Key features included in this tool are built-in templates to support Web services and
service oriented architectures, standard database templates for allowing an easy connection
with the enterprise infrastructure, an editor for speech recognition grammars, support for
common types of prompts (dates, currencies, ordinals, etc.), pre-recorded audio files, and
support for user and language modelling through branding functionality.

Figure B.3. Example of dialogue design using the OpenVXML toolkit. (Source: OpenVXML
Web page)

An interesting feature of this tool is that the design is made through configurable built-
in modules, similar to some of the templates included in our development platform, which
provide the main functionalities supported by the VoiceXML language. For instance, the
platform includes the following modules: Fields, For Each, Play Prompts, Call Transfer,
Comparisons, Menus, Database queries, Web services, etc. Each time a module is used in the
application, the visual interface allows the designer to setup and configure it.

Unfortunately, the accelerations provided by the system are limited, since only default
values are proposed when configuring the modules. Finally, during the design these modules
are connected in order to define the dialogue flow. Although this approach allows a high level
of fine-tuning, it could make difficult the creation of very complex services since the flow
view could become confusing. The solution implemented by this platform is the creation of
multiple parallel canvases and a special kind of connectors between canvases called
wormholes. In our platform, we decided to use some kind of encapsulation of the actions
defined in a dialogue in order to reduce the graphical representation, but allowing the
designer to switch between a basic and a complex representation of the flow.

In addition, the platform incorporates the concept of Business Objects, which represent
the fields of the database that the designer defines as necessary for the current service. This
concept is similar to the classes and attributes we used in our platform (see section 3.2.2,

Speed Up Strategies for the Creation of Multimodal and Multilingual Dialogue Systems

216

page 60). These Business Objects are later used in database queries allowing the designer to
retrieve complex objects; then, each particular attribute of the object is matched to a local
variable in the dialogue in order to provide the information retrieved from the database to the
user. In our platform, we follow a similar approach but we went a step forward creating a
semi-automatic procedure that proposes the matching and automatically creates the local
variables (see section 4.5.3, page 105).

Finally, another interesting feature provided by this platform is the methodology used
for the creation of system prompts. In this case, the assistant allows the designer to type in the
words that make up the message, and complete it using dynamic values stored in local or
global variables. The process is very similar to the one we propose in section 4.7.1.1 (page
116).

(a)

(b)

(c)

(d)

Figure B.4. Example of wizards included in the OptimTalk Professional Edition Toolkit.
(Source: OptimTalk Desktop Suite Web page)

OptimTalk Desktop Suite 75: It is another development toolkit currently available in
two versions: a free and a professional edition; both versions run on Linux and Windows,
although some features may be disabled depending on the operating system. The professional
edition includes a big number of features such as a GUI interpreter for VoiceXML and

75 http://www.optimtalk.cz/products/desktop-suite/introduction.php

http://www.optimtalk.cz/products/desktop-suite/introduction.php�

Appendix B

217

CCXML languages, support for TTS messages with SSML tags, speech recognition and
speech synthesis using the Microsoft Speech API, simultaneous speech recognition and
keyboard input, voice activity detector for recording, and barge-in. Besides, it includes a
command line VoiceXML interpreter, logging of CCXML events, and a command line or
GUI-based Grammar tester. The professional version offers support for Speech Recognition
Grammar Specification (SRGS) and Semantic Interpretation for Speech Recognition (SISR),
conferences, and more. Although the user interface is very simple, the platform can be
interesting for novice programmers, companies with reduced budget, or for creating small
business services.

Figure B.4. shows some examples of the wizards included in the professional edition.
In (a) the designer can evaluate the speech recognition engine and the speech synthesizer for
a given dialogue, as well as entering DTMF input using the telephone keyboard. In (b) the
command line interface allows the designer to debug the application using speech from a
microphone or typing in the utterance using the keyboard. The interface also provides
information about recognised sentences and barge-in features, as well as useful feedback
about the grammars and prompts used by the system. Using (c) the designer can set the
CCXML session manager parameters, telephony hardware, and parameters for the
VoiceXML interpreter used by the CCXML script, etc. Finally, the grammar tester, depicted
in (d), allows the designer to type in utterances to be parsed using the current grammar in
order to check if all the sentences can be correctly recognized or not. Besides, the assistant
provides the semantic interpretation and other useful information about the utterances that do
not match the grammar rules.

Vocalocity App Center 76: This platform includes a graphical user interface (see
Figure B.5.) that simplifies the visualization and edition of VoiceXML applications, allows
error checking, prompt recording and importing, as well as down-sampling of audio files for
telephony compatibility. The GUI allows the creation of the dialogue flow through an object-
model approach. In this approach, the flow is created using different objects, representing the
different actions to perform the service, and connecting them through conditioned or direct
transitions. Each object is defined by different configurable properties that control its
behaviour. Besides, each object may have one or several outputs depending on its
configuration for error handling or if there are different result outputs.

An interesting feature of the platform is that any basic design can be specified in four
steps by only dragging and dropping three objects into the application canvas, connecting
them sequentially, and setting some properties of the application. The first step, called Ask
step, consists in the creation of an action for requesting information from the user. The
second step, called Data step, represents the process of accessing and retrieving information
from the backend database. The third step, called Tell step, corresponds to the action of
providing the retrieved information to the user. Finally, during the fourth step, called Publish
step, the designer creates the VoiceXML script and configures the platform in order to make
the service available. Interestingly, in our platform we have developed a similar approach
where most of the actions required to define a dialogue correspond to the first three steps
described above (see section 4.5.2, page 103).

76 http://www.vocalocity.com/products/productdetail.cfm?productid=100007

http://www.vocalocity.com/products/productdetail.cfm?productid=100007�

Speed Up Strategies for the Creation of Multimodal and Multilingual Dialogue Systems

218

Figure B.5. Example of dialogue design using the Vocalocity App Center. (Source:
Vocalocity Web page)

VoiceObjects Desktop 77: This is a free and downloadable platform that allows the
design, development, debugging, deployment, and administration of multimodal applications
(allowing among other modalities video, text, and speech) for voice-enabled and mobile
Web-based services using VoiceXML. The platform is available in two editions:
VoiceObjects Desktop that must be installed on the client machine, and VoiceObjects
Desktop for Web that is a light Web-based version of the previous one. Both interfaces have
the same core functionality and most of the project settings can be share between both
editions.

A singular feature of this platform is that the dialogue flow is designed using a tree-
based form-filling object modelling, in contrast to most of the dialogue platforms, including
ours, that use state-based dialogue modelling. In this case, the dialogue flow is built using a
hierarchical structure of objects and nested objects (see Figure B.6.). Objects are available
through the GUI in a sidebar in the main window or using a quick-search window, which can
be dragged-and-dropped into any place of the dialogue flow or even in some of the
configuration windows of other objects. The workspace can be divided into different layers
including system layers and user-built layers, contributing this way to simplify the
visualization of the dialogue flow. The platform allows two operational modes: network and
stand-alone. The former allows role-based team collaboration, and supports Concurrent
Versions System (CVS) capabilities, and configurable audit trails. The latter is used for
offline development and debugging.

In relation with accelerations and interesting features included in this platform, we can
mention the Storyboard Manager, which is a special tool helps the designer to migrate from
proprietary IVR systems to new VoiceXML-based platforms or to the VoiceObjects platform.
Besides, the Storyboard Manager is also used to automatically export the list of the prompts

77 http://developers.voiceobjects.com/

http://developers.voiceobjects.com/�

Appendix B

219

(audio, TTS, or video) used in the application, to create libraries of dialogues, and for
importing VoiceXML code, among others. The platform also includes a phone simulator that
can be used to test, debug, and check out VoiceXML files. Moreover, the phone simulator
can be used to make demonstrations of voice and portable Web applications. Call tracing and
logging/reporting are also supported, including information about recognition results,
timestamps, and processing time. Other tools included in the platform allow the creation of
prompt recordings and the automatic documentation of the project.

Figure B.6. Appearance of the main work area of the VoiceObjects Desktop. (Source:
VoiceObjects Web page)

Finally, the platform incorporates a runtime version of the VoiceObjects Server that
enables the deployment and management of the service, and includes a complete library of
platform drivers to support different IVR and USSD (Unstructured Supplementary Service
Data for GSM phones) platforms. The server includes a monitoring environment, provides a
connection framework for integration with the backend system (allowing both server-side
scripting and J2EE code execution), and offers support for rollbacks, application tracing, the
creation and dynamic generation of video application for 3G phones, among others.

B.2 Web-Based Development Platforms

BeVocal Café 78: Recently acquired by Nuance, this site allows designers to use all the
capabilities of Nuance modules and tools. The site offers a big number of VoiceXML sample
applications that can be used as an initial point for the creation of basic and advanced
services, including backend integration, dynamic VoiceXML applications using Apache, Perl

78 http://cafe.bevocal.com/

http://cafe.bevocal.com/�

Speed Up Strategies for the Creation of Multimodal and Multilingual Dialogue Systems

220

or Visual Basic scripts, etc., and for learning about the main platform features. Designers can
test the services using an international phone number or a VoIP number. Several Web-based
tools are also available in order to develop, test, and publish the voice service. The most
important ones are:

• VoiceXML checker: allows the designer to verify the syntactic correctness of the
VoiceXML files used in the service.

• Vocal Player and Log Browser: The former allows replaying all calls made to the
application and viewing their log entries; the latter displays information about
errors, recognitions, Web access, variable traces, timestamps, call control, events,
etc. These tools are useful for usability testing and for tuning speech recognition
grammars since they provide feedback about confusing dialogues and in which
dialogues the user spent more time.

• Vocal Debugger and Vocal Scripter: The former allows the designer to step
through the VoiceXML code and view the state of VoiceXML variables during a
call. The latter uses a text or "chat mode" channel to allow the designer to test the
application flow in an interactive mode (i.e. the designer type in responses to
VoiceXML text prompts in real time) or in batch mode (i.e. the designer uses a
URL or text file containing inputs for running the VoiceXML service)

• Grammar Compiler: lets the designer to submit a grammar file and compile it
offline in order to reduce overhead and significant delays during the execution of
the service. The precompiled grammar can be referenced in the VoiceXML
application using a key provided after the compilation.

• Port Estimator: is a statistical-based tool that provides an estimation of the
number of telephony ports that the service will require in order to lose not users
calls.

Tellme Studio 79: This site allows developing, maintaining, documentation, and
testing speech-enabled services in two different ways: using the Web-based portal or an
optional standalone application called Tellme Voice Studio.

In relation to the Web site, it can be divided into two main sections: MyStudio and
MyExtensions. MyStudio features different online tools including VoiceXML and Grammar
scratchpads (see Figure B.7.a), which are used to write manually VoiceXML and grammar
files respectively, and a syntax checker to validate the syntax of VoiceXML and grammar
files. The VoiceXML terminal allows debugging the service using a text interface allowing
the designer to interact with the service without making repeated calls, or using the speech
interface. Moreover, the platform includes a grammar phrase checker and generator for
testing speech grammars, as well as a DTMF generator for creating special grammars where
each word is mapped to the letters of the English alphabet map that appears in the touch-tone
keys on any standard telephone keypad. Besides, the designer can record prompts by phone
and use the generated audio files in the VoiceXML application. In addition, several
VoiceXML code and audio libraries examples, an audio conversion tool, and the possibility

79 http://studio.tellme.com/

http://studio.tellme.com/�

Appendix B

221

of testing the application using a toll-free number or free SIP calls through a VoIP telephone
are also available.

(a)

(b)

(c)

Figure B.7. Appearance of different TellMe Studio tools. (Source: TellMe Studio Web site
and TellMe Voice Studio user guide)

An interesting feature included in the platform, is the possibility of using an external
Web application server to host some VoiceXML and grammars files of the service, instead of
using the scratchpads to write, upload, and host all the files using the Tellme studio servers.
This way some limitations of the Tellme platform for creating dynamic VoiceXML
applications can be overcome. In any case, using the scratchpad or the Application URL, the
system automatically validates the files every time the designer uploads the
grammar/VoiceXML files or set the URL address.

On the other hand, MyExtensions allow designers to make demonstrations of the
service to potential clients or to provide restricted access to groups of alpha/beta test users
without providing them personal information as the Developer ID and PIN obtained after
registering at the Tellme Web site. By default, both the ID and PIN are required to access the
service through the phone, but they are also used to edit the service. This way it is possible to

Speed Up Strategies for the Creation of Multimodal and Multilingual Dialogue Systems

222

analyze, document, and test the service under different conditions. Another available tool is
Mumble; it lets the designer to test external procedures (API), generate documentation of the
service through call flow diagrams, identify call flow coverage, obtain test metrics, and to
specify a pool of different tests to check the behaviour of the service for different conditions
such as nomatch, noinput, http errors, etc.

The Tellme Voice Studio can be downloaded from the Web site without any cost. The
application is based on Microsoft's Visual Studio Domain Specific Language (DSL) toolkit,
and, in a similar way as the Web-based environment, it can be used to design, maintain,
develop, and document the voice application. The toolkit includes a graphical IDE with a
toolbar of configurable modules (such as userinput, record, datafetch, transfer, subdialogs,
presentation, decisions, etc) for creating the call flow specifying the states, transitions, and
error handling procedures that make it up. The program includes tools to record audio
prompts, to validate VoiceXML files, to create speech grammars, and for publishing the
service.

Figure B.7.a shows the appearance of the Web-based interface of the scratchpad used to
create and edit VoiceXML files. Figure B.7.b shows the assistant for creating prompts using
static, concatenated or co-articulated audio files. Figure B.7.c shows the assistant for defining
user input (menu or single slot), besides some error handling features (nomatch and noinput).

Voxeo Evolution 80: This Web portal provides several free development tools and
advanced runtime modules to create a variety of speech and DTMF based services which can
be called from or call out to any phone device. The site includes several free resources such
as tutorials for VoiceXML, CCXML and CallXML languages, pre-recorded audio files in
English for typical dialogues (e.g. names of airports, states, and airplane companies, months,
numbers, weekdays, etc.), VoiceXML grammars, and sample applications. Besides, the site
offers technical support 7 days/24 hours, a free direct-dial developer phone number avoiding
advertisements or requesting awkward pin codes, this way accelerating the debugging of the
service. Besides, the platform also offers the possibility of creating the service in several
languages through the incorporation of different ASR and TTS engines from different
vendors. The platform also features voice recognition, audio play and record, DTMF entry,
and Voice over IP (VoIP) access.

In addition, the platform supports the CCXML standard protocol allowing call routing,
call recording, visualization of logs (see Figure B.8.c), transfer, inbound and outbound calls,
and conferencing capabilities (for 2 to 30 participants). Besides, it is possible to define
different failover URLs and phone numbers allowing the Voxeo platform to ensure that any
user’s call will be processed or transferred in case the primary, secondary, or tertiary Web
server are not responding or working properly.

The platform includes a Web-based application tool called Evolution Designer, also
available as a PC-based standalone application, for developing the service. The Evolution
Designer GUI (see Figure B.8.a) allows developers to create and edit the call flow through
different wizards and configurable modules called “steps”, which allow the creation of
prompts, forms for multiple-choice questions, call recording, call transfers, time-based
routing, data integration including support for Web-service access to external databases using
PHP, Java/JSP, and SQLite, and to configure Voxeo speech recognition and synthesis
engines, among others. The GUI allows the definition of custom rules to handle different user

80 http://evolution.voxeo.com/

http://www.voxeo.com/�

Appendix B

223

and system errors such as re-prompting if the user does not say anything or the selected
option is not available. The platform allows designers to track all the prompts used in the
application (see Figure B.8.b) and the possibility of downloading the list of prompts as a
spreadsheet file in order to record them later or to check them with the client. The Evolution
Designer also supports the creation of query-based reports including information about calls
and detailed steps used in the deployed application. These reports can be sent later in text,
XML, HTML, or CSV (comma-separated values) format.

(a)

(b)

(c)

Figure B.8. Examples of Voxeo Evolution Web-based tools. (Source: Voxeo Studio Web
page)

Finally, the site offers support for an open research meta-project called
RocketSource 81, which provide open source code to three different and common spoken
dialogue applications: a speech-driven voicemail application, a phone and Web-based
conference manager, and an auto attendant system to connect callers with any person or

81 http://www.rocketsource.org/

http://www.rocketsource.org/�

Speed Up Strategies for the Creation of Multimodal and Multilingual Dialogue Systems

224

department in an enterprise. The main motivation of these applications is to provide a starting
point for novice developers, as well as examples of use of advanced features included in the
platform.

VoiceGenie 82: supported by Genesys, this site allows designers to host and access trial
or demo versions of the final application using the GenieHosting service. The site offers,
basically, the same services and features provided by the Voxeo Community. An important
feature is that the site supports integration with several ASR and Text-To-Speech engines
provided by different vendors such as Nuance, SpeechWorks, IBM, Speechify, AT&T, etc.
The platform allows designers to select the language and gender of the TTS voice, as well as
the ASR and TTS engines to be used when providing the service. Then, these settings are
saved using different VoiceXML tags and attributes and applied when the service is loaded
by the runtime platform. Besides, the service can be tested using two different phone
numbers. Depending on the selected number, some properties of the platform will be
available or not. The portal provides different tools for validating VoiceXML files, creation
of grammar files, recording by phone of short prompts, call logs, and conversion of
VoiceXML files among IVR platforms, etc.

Finally, the site also offers a free trial version of a PC-based application called
GenieBuilder, which provides an intuitive graphical tool to create, test, and deliver the
application. This software extends some of the functionalities offered by the Web-based site
such as: a larger built-in library of reusable dialogue modules, support for collaborative and
role-based development, built-in ASR and TTS engines, and support for JDBC, ODBC,
Oracle, Microsoft SQL Server, DB2, and Informix database connections.

82 http://developer.voicegenie.com/

http://developer.voicegenie.com/�

225

AAPPPPEENNDDIIXX CC.. TTEEMMPPLLAATTEESS FFOORR TTHHEE
CCRREEAATTIIOONN OOFF AAUUTTOOMMAATTIICC DDIIAALLOOGGUUEESS IINN
TTHHEE MMEERRAA--SSPPEEEECCHH AASSSSIISSTTAANNTT

This appendix shows the templates used to generate, in the GDialogXML syntax, the
dialogue flow for the confirmation handling and presentation of lists of results in the MERA-
Speech assistant. In order to simplify the reading we use a pseudo code approximation.
Although we have tried to make the pseudo code clear and independent of the GDialogXML
syntax, the complete specification is available at the Gemini Web page 83 for further reading.
The following terms appear throughout this appendix, and refer to specific terminology used
in the templates described in this section.

• StopFilling: Tag used to stop the recognizer and finish the current dialogue.

• DoFilling: Tag used to repeat the query and load the current dialogue again.

• isVarSet: Tag to indicate a function that detects if a variable has been filled or
not.

• fConfidence: Variable used to save the value of the confidence of a selected slot.
The value is returned by the real-time function ConfidenceOfField.

• Unset: Tag used to indicate that the content of a variable is cleared, the variable
is not destroyed.

• sNextDialog: Variable to save the name of the dialogue where to jump to when
the system needs to return to a previous dialogue from inside of a non-returning
dialogue.

• sPreviousDialog: Name of the last DGet dialogue called before the current one.
We use this name in order to jump to this dialogue if there was a correction in an
implicit confirmation procedure. The name is automatically detected.

• xGenericFilling: It makes reference to a template, created in the RMA (see
sections 3.3.2 and 4.5.4, pages 63 and 106), that provides the behaviour when two
or more slots need to be retrieved. Basically, the template attempts to fill in all the
slots at the same time, but if this is not possible, or some of them have not been
filled, the template attempts to fill in each slot one by one using automatic dialogues
for each one.

C.1 Template for the Presentation of Lists of Objects

This is the template used for defining the internal actions and flow for the dialogues
used for the presentation of lists of objects. The template considers four cases considering the
number of items retrieved from the database: zero, one, in a range, and too many items. The
process for filling this template also includes the creation of several automatic dialogues such

83 http://www-gth.die.upm.es/projects/gemini/

http://www-gth.die.upm.es/projects/gemini/�

Speed Up Strategies for the Creation of Multimodal and Multilingual Dialogue Systems

226

as dialogues for providing complete or partial attributes for the object, for requesting the
number of items to show, to ask the user the item he/she wants to obtain more info about, to
inform the user there are no more items to show or that the database query does not return
any result, etc.

//The dialogue returns, through the sNextDialog variable, the name of
the dialogue where to jump to

sNextDialog DSayOfList(Input_List)
{
//Variables' initialization
int iSizeList = sizeof(Input_List);

int iMax_Num_Items_DB = <xMaxDBResultsItems>;//The value is loaded in
the real-time system using this Call in a similar way as the
Confidence_Level (Remember that this value is User Level and Dialogue
dependent)

int iMax_Num_Items_Each_Time = <xMaxDBPresentableItems>;
int iMax_Num_Items = 0;//The number of items that the user wants to

listen to.
int InnerCounter = 0;//Counter for Case 3
int OuterCounter = 0;//Counter for Case 3
int iItem = 0;
String sMaxNumItems;
ObjRefr_Item_I; //It is an Object_Refr with the same type of the List

Unset(sNextDialog); //sNextDialog is a global variable defined in the

output file of the RMA
if(iSizeList == NULL || iSizeList == 0) //Case 1
{
 Call DSayNotificationNoItems; //It's an automatic dialogue, the

designer can change its name

Unset(Slot1, Slot2, Slot3);//Slots that must be unset in order
to repeat the flow

sNextDialog = DFirstDialog or Another_Dialogue;//Name of the dialogue
to continue the flow or to repeat the query

}
else if (iSizeList == 1) //Case 2
{
 if(TypeOf(Input_List) == Object)
 {
 Assign ObjRefr_Item_I = Input_List [0]; //We select the only item

of the list
 Call DSAY_ATTRS_ FOR_LIST (ObjRefr_Item_I); //It's a configurable

DSay dialogue to show complete or partial attributes for the selected item
in the list

 }
 else
 {
 Call DSAY_LIST (Input_List [0]);
 }
}
else if(1 < iSizeList <= iMax_Num_Items_DB) //Case 3
{
 if(bSayNumberOfItems == true) //It's an option for the designer in

order to notify the user how many items exist in the List, and ask him/her
how many items does s/he wants to listen to. If the checkbox is selected
the following code is generated.

 {

Appendix C

227

 Call DSayNumberOfItemsOfList (iSizeList + 1); //Automatic DSay
dialogue to notify the number of items in the List

 sMaxNumItems = DGetObtainMaxNumItems(); //No. of items the user
wants to listen to

 iMax_Num_Items = GetIntFromRepr(sMaxNumItems) - 1;//Convert from
string to integer

 if(iSizeList < iMax_Num_Items)//If the value is greater than the
size of the list then change its value to the size of the list

 iMax_Num_Items = iSizeList;
 }
 else
 {
 iMax_Num_Items = iSizeList; //The user has to listen to all the

items in the list
 }

 while (OuterCounter < iMax_Num_Items)
 {
 for (InnerCounter = 0; InnerCounter < iMax_Num_Items_Each_Time

&& OuterCounter < iMax_Num_Items; InnerCounte++, OuterCounter ++)
 {
 if(TypeOf(Input_List) == Object)
 {
 Call DSay_Basic_Info (Input_List[OuterCounter], InnerCounter

+ 1);//It's an automatic dialogue to show info about the current item of
the list in the loop.

 }
 else
 {
 //It's an automatic dialogue to show information about the

current item of the list in the loop. We pass each attribute individually
 Call DSay_Basic_Info (Input_List[OuterCounter].Attr1,

List[OuterCounter].Attr2, …, InnerCounter + 1);
 }
 }//for
 //Now we need to know if the user wants to continue listening

other in the list
 sAnswer = DGet_ItemIndex();

 if(sAnswer == Continue)
 {
 //Do one iteration more
 }
 //We need to change the counters and to perform a new iteration)
 else if(sAnswer == Repeat)
 {
 OuterCounter = OuterCounter - iMax_Num_Items_Each_Time;
 }
 else if(sAnswer == RepeatAll)
 {
 OuterCounter = 0; //Reset the counter and perform new

iterations
 }
 else if(sAnswer == Exit)
 {
 OuterCounter = iMax_Num_Items + 1;
 }
 //If the item of the list is not an object (it is only made up of

atomic types such as: Strings, Integer, Float, Boolean, etc.) we cannot
show more detailed info (previous info has been shown in DSayBasicInfo
dialogue) so we jump this step

Speed Up Strategies for the Creation of Multimodal and Multilingual Dialogue Systems

228

 if(TypeOf(Input_List) != Object)
 {
 //The user wants to obtain more information about one the

items.
 iItem = GetIntFromRepr(sAnswer) – 1;
 if(OuterCounter < iItem)
 {
 DSay_WrongItemIndex ();
 OuterCounter = OuterCounter - iMax_Num_Items_Each_Time;
 }
 else
 {
 if(bSayDetailedInfo == true)//It’s a checkbox in the

assistant
 {
 Assign ObjRefr_Item_I = Input_List[iItem];
 Call DSay_FullInfo_OF_LIST(ObjRefr_Item_I);//It's the same

as for Case 2
 if(bCallDialog == true) //Optional step in the assistant

to jump to another dialogue
 {
 sNextDialog = DSelectedDialog;
 }
 OuterCounter = iMax_Num_Items + 1;//We exit the while and

jump to the next if condition (i.e., OuterCounter == iMax_Num_Items)
 }
 }
 }//if
 }//While

 //If we arrive here is because the user has not selected any item,

so it is like case 1.The default values are the same for case 1, but the
designer can change them

 if(OuterCounter == iMax_Num_Items)
 {
 Call DSayNotificationNoItems;
 Unset (Slot1, Slot2, Slot3);//The designer chooses the slots

that must be unset in order to repeat the flow
 If(NextDialog != “”) //If the designer has selected a dialogue

where to jump…
 {
 sNextDialog = DFirstDialog or Another_Dialogue;
 }
 }
}
else if(iSizeList > iMax_Num_Items) //Case 4
{
 Call DSayTooManyItems; //It's an automatic dialogue to notify the

user about the high number of returned items (The designer can change the
name of the dialogue)

 /*The designer chooses the slots that are relevant for the whole

query in order to check if they are filled or not.
 If all the relevant slots for the query are set, then we need unset

some of them in order to obtain new values to restrict the query */
 if(Slot_A is VarSet? && Slot_B is VarSet? && Slot_C is VarSet?,

....)
 {
 //If all slots are filled we unset some of them depending on

designer selection.
 unset(Slot_A, Slot_B, Slot_C,...)

Appendix C

229

 //Jump to the dialogue that will fill them again (probably the
first one)

 sNextDialog = DSelectedDialogA; //It's a non-returning dialogue
 }
 else
 { // If all the relevant slots are not filled we can continue with

the dialogue flow to ask for the unfilled ones in order to generate a more
restrictive query.

 sNextDialog = DSelectedDialogB;//Dialogue to jump to in order to
fill the unfilled slots

 }
}
}

C.2 One Slot Confirmation

This is the template used to generate the flow for handling the confirmation of a single
slot. In the code, Slot1 is the slot that the system has to confirm.

sNextDialog DGetConfirmationHandlingOneSlot (Slot1)
{
//Variable's declaration
float fConfidence = 0.0;
String sAnswerYesOrNo = "";
String sNextDialog = ""; //By default is empty
//In the xFilling section there must be the RecognizerCall
//Reaction
Unset(sNextDialog); //All the dialogues unset this global variable by

default
if(isVarSet (Slot1)) //The slot has been filled
{
 fConfidence = ConfidenceOfField(Slot1);
 //This confirmation is allowed only when the previous dialogue has

ImplicitConfirmation
 if(Slot1 EqualStrings "Correct")//Inspect if the recognition result

corresponds to the “Correct” command in case the system is using an
implicit confirmation prompt

 {
 if(fConfidence > implicit)//Go back to the previous dialogue to

ask the user again
 {
 Unset(Previous_Slot);
 Unset(Slot1);
 sNextDialog = Previous_Dialogue; //The Previous_Dialogue is

automatically set for the assistant.
 StopFilling;
 }
 Else //We are not sure about the “correct” command repeat again

the question
 {
 DSayNoMatch();
 Unset(Slot1);
 DoFilling;
 }
 }
 if(0 <= fConfidence < explicit) //NoMatch
 {
 DSayNoMatch();//Repeat the question
 UnSet(Slot1);

Speed Up Strategies for the Creation of Multimodal and Multilingual Dialogue Systems

230

 DoFilling;//Do one iteration more
 }
 else if(Explicit <= fConfidence < Implicit)//Explicit Confirmation
 {
 sAnswerYesOrNo = Call DGetYesOrNo(Slot1);//Ask for the current

slot in this dialogue
 if(sAnswerYesOrNo EqualStrings "No")
 {
 //The system asks again
 UnSet(Slot1);
 DoFilling;
 }
 else//The user answers "yes", so the recognition result is

correct
 {
 StopFilling;
 }
 }
 else if(Implicit <= fConfidence < none)// Implicit Confirmation
 {
 Call DSayImplicit_FOR_DGetConfirmationHandlingOneSlot(Slot1);
 StopFilling;
 }
 else if(none <= fConfidence <= 1.0)//Without confirmation
 {
 StopFilling;
 }
}//If IsVarSet
else ////The slot has not been filled, we need to fill it
{
 DoFilling;
}

}

C.3 Mixed-Initiative Confirmation

This is the template for the verification of two or more slots (Mixed Initiative). For
simplicity, in the code the system only needs to confirm two slots, although the real template
supports two or more slots. This dialogue does not have Implicit Confirmation.

Dialogue DGetConfirmationHandlingMixedInitiative (Slot1, Slot2)
{
 //Variable's declaration
 float fConfidence = 0.0;
 String sAnswerYesOrNo;
 String sNextDialog = ""; //By default is empty

 //In the xFilling section there must be the RecognizerCall

 //Reaction
 Unset(sNextDialog); //All the dialogues unset this global variable

by default
 if(isVarSet (Slot1) && isVarSet (Slot2))//All the slots must be

filled . If not, we fill them one by one following the xGeneric template
 {

Appendix C

231

 fConfidence = ConfidenceOfField(Slot1);//We assume that the
recognizer returns one global confidence value for the recognition, not one
for each slot, so it is not important which slot we use here

 //This confirmation is allowed only when the previous DGet

dialogue has ImplicitConfirmation
 if(Slot1 EqualStrings "Correct")//Inspect if the recognition

result corresponds to the “Correct” command in case the system is using an
implicit confirmation prompt

 {
 if(fConfidence > implicit)
 {
 Unset(Previous_Slot);
 Unset(Slot1);
 Unset(Slot2);
 //The Previous_Dialogue is automatically set for the

assistant.
 sNextDialog = Previous_Dialogue;
 StopFilling;
 }
 else
 {
 DSayNoMatch();
 Unset(Slot1);
 Unset(Slot2);
 DoFilling;
 }
 }

 if(0 <= fConfidence < explicit) //NoMatch
 {
 DSayNoMatch();
 UnSet(Slot1);
 UnSet(Slot2);
 StopFilling;//Ask each slot individually using the xGeneric

Template
 }//If_NoMatch
 else if(Explicit <= fConfidence < none)//Explicit and Implicit:

We merge the Explicit and Implicit Confirmation
 {
 sAnswerYesOrNo = Call DGetYesOrNo_FOR_

DGetConfirmationHandlingMixedInitiative (Slot1, Slot2);
 if(sAnswerYesOrNo EqualStrings "No")//We try to confirm both

slots at the same time
 {
 //The system asks again
 Unset(Slot1);
 Unset(Slot2);
 //We stop the filling because in the xGenericFilling if the

slots are unset then we try to fill them one by one
 StopFilling;
 }
 else//The user answers "yes", so the recognition result is

correct
 {
 StopFilling;
 }
 }
 else if(none <= fConfidence <= 1.0)//Without confirmation
 {
 StopFilling;

Speed Up Strategies for the Creation of Multimodal and Multilingual Dialogue Systems

232

 }
 }//If IsVarSet
 else /Fill them one by one
 {
 Unset(Slot1);
 Unset(Slot2);
 //We stop the filling because in the xGenericFilling if the slots

are unset then we try to fill them one by one
 StopFilling;
 }
}

C.4 One Slot Plus Over-Answering Confirmation

This is the template for the verification of one slot plus one slot for over-answering.
This dialogue has implicit confirmation in only one case (Slot1 = Filled AND SlotOV =
No_Filled).

Slot1 SlotOV Action

Filled Filled Try to confirm both slots at the same time: We use NoMatch,
Explicit and None

Filled No_Filled We try to confirm the compulsory and forget the OV: We use
NoMatch, Explicit, Implicit and None

No_Filled Don't Care DoFilling

Table C.1. Proposed actions for the automatic filling of one slot and over-answering DGet
dialogues in the MERA-Speech assistant

Dialogue DGetConfirmationHandlingOnePlusOV (Slot1, SlotOV)
{
//Variable's declaration
float fConfidence = 0.0;
String sAnswerYesOrNo;
String sNextDialog = ""; //By default is empty
//In the xFilling section there must be the RecognizerCall
//Reaction
Unset(sNextDialog);
if(isVarSet (Slot1) == true && isVarSet (SlotOV) == true)//All the

slots must be confirmed at the same time
{
 fConfidence = ConfidenceOfField(Slot1); //We assume that the

recognizer returns one global confidence value for the recognition, not one
for each slot, so it is not important which slot we use here

 //This confirmation is allowed only when the previous DGet dialogue

has ImplicitConfirmation
 if(Slot1 EqualStrings "Correct")//Inspect if the recognition result

corresponds to the “Correct” command in case the system is using an
implicit confirmation prompt

 {
 if(fConfidence > implicit)

Appendix C

233

 {
 Unset(Previous_Slot);
 Unset(Slot1);
 Unset(SlotOV);
 sNextDialog = Previous_Dialogue;
 StopFilling;
 }
 else
 {
 DSayNoMatch();
 Unset(Slot1);
 Unset(SlotOV);
 DoFilling;
 }
 }
 if(0 <= fConfidence < explicit) //NoMatch
 {
 DSayNoMatch();
 UnSet(SlotOV);
 UnSet(Slot1);
 DoFilling;//Repeat the question, Do one iteration more

 }//If_NoMatch
 else if(Explicit <= fConfidence < none)//Explicit and Implicit: We

merge the Explicit and Implicit Confirmation
 {
 //Automatically generated dialogue in the MERA-Speech, the name

can be changed by the designer
 sAnswerYesOrNo = Call DGetYesOrNo_FOR_

DGetConfirmationHandlingOnePlusOV (Slot1, SlotOV);

 if(sAnswerYesOrNo EqualStrings "No")
 {
 //The system asks again
 UnSet(Slot1);
 UnSet(SlotOV);
 DoFilling;
 }
 else//The user answers "yes"
 {
 StopFilling;
 }
 }//If_ExplicitConfirmation
 else if(none <= fConfidence <= 1.0) //No confirmation
 {
 StopFilling;
 }
}//If_IsVarSet
else if(isVarSet(Slot1) == true && IsVarSet(SlotOV) == false)//We try

to confirm the compulsary slot only and forget the OV
{
 fConfidence = ConfidenceOfField(Slot1); //We assume that the

recognizer returns one global confidence value for the recognition, not one
for each slot, so it is not important which slot we use here

 //This confirmation is allowed only when the previous DGet dialogue

has ImplicitConfirmation
 if(Slot1 == "Correct")//Inspect if the recognition result

corresponds to the “Correct” command in case the system is using an
implicit confirmation prompt

 {

Speed Up Strategies for the Creation of Multimodal and Multilingual Dialogue Systems

234

 if(fConfidence > implicit)
 {
 Unset(Previous_Slot);
 Unset(Slot1);
 sNextDialog = Previous_Dialogue;
 StopFilling;
 }
 else
 {
 DSayNoMatch();
 Unset(Slot1);
 DoFilling;
 }
 }

 if(0 <= fConfidence < explicit) //NoMatch
 {
 DSayNoMatch(); //Pass the counter if there are different prompts
 UnSet(Slot1);
 DoFilling;//Repeat the question, Do one iteration more for the

loop
 }//If NoMatch
 else if(Explicit <= fConfidence < Implicit)//Explicit Confirmation
 {
 sAnswerYesOrNo = Call DGetYesOrNo_FOR_

DGetConfirmationHandlingOneSlot (Slot1);

 if(sAnswerYesOrNo EqualStrings "No")
 {
 //The system asks again
 UnSet(Slot1);
 DoFilling;
 }
 else//The user answers "yes"
 {
 StopFilling;
 }
 }
 else if(Implicit <= fConfidence < none) //Implicit Confirmation
 {
 Call DSayImplicit_FOR_ DGetConfirmationHandlingOneSlot (Slot1);
 StopFilling;
 }
 else if(none <= fConfidence <= 1.0)//Without confirmation
 {
 StopFilling;
 }
}
else if(IsVarSet(Slot1) == false) //All the OV slots are unset
{
 UnSetVar(SlotOV);
 DoFilling;
}
else//Any other combination is unset
{
 UnSet(Slot1);
 UnSet(SlotOV);
 DoFilling;
}

}

Appendix C

235

C.5 Mixed-Initiative Plus Over-Answering Confirmation

This is the template for the verification of two or more slots (Mixed-initiative) plus one
or more slots for OV. This dialogue does not allow implicit Confirmation in any case. For
simplicity, we use only two slots for Mixed-initiative and one slot for Overanswering.

Slot1 And Slot2 SlotOV Action

Filled Filled Try to confirm all at the same time: We use
NoMatch, Explicit and None

Filled No_Filled We try to confirm the compulsory slots and forget
the OV slot; We use NoMatch, Explicit and None

No_Filled Don't Care StopFilling, we use the xGenericFilling

Table C.2. Proposed actions for the automatic filling of mixed-initiative and over-answering
DGet dialogues in the MERA-Speech assistant

Dialogue DGetConfirmationHandling_MI_OV(Slot1, Slot2, Slot_OV)
{
//Variable's declaration
float fConfidence = 0.0;
String sAnswerYesOrNo;
String sNextDialog = ""; //By default is empty
//In the xFilling section there must be the RecognizerCall

//Reaction

Unset(sNextDialog);
if(isVarSet (Slot1) == true && isVarSet (Slot2) == true && isVarSet

(SlotOV) == true)//All the slots must be confirmed at the same time
{
 fConfidence = ConfidenceOfField(Slot1); //We assume that the

recognizer returns one global confidence value for the recognition, not one
for each slot, so it is not important which slot we use here

 //This confirmation is allowed only when the previous DGet dialogue

has ImplicitConfirmation
 if(Slot1 EqualStrings "Correct")//Inspect if the recognition result

corresponds to the “Correct” command in case the system is using an
implicit confirmation prompt

 {
 if(fConfidence > implicit)
 {
 Unset(Previous_Slot);
 Unset(Slot1);
 Unset(Slot2);
 Unset(Slot_OV);
 sNextDialog = Previous_Dialogue; //The Previous_Dialogue is

automatically set for the assistant.
 StopFilling;
 }
 else
 {
 DSayNoMatch();
 Unset(Slot1);
 Unset(Slot2);

Speed Up Strategies for the Creation of Multimodal and Multilingual Dialogue Systems

236

 Unset(Slot_OV);
 DoFilling;
 }
 }

 if(0 <= fConfidence < explicit) //NoMatch
 {
 DSayNoMatch();
 UnSet(SlotOV);
 UnSet(Slot1);
 UnSet(Slot2);
 StopFilling;
 }//If NoMatch
 else if(Explicit <= fConfidence < none)//Explicit and Implicit: We

merge the Explicit and Implicit Confirmation
 {
 sAnswerYesOrNo = Call

DGetYesOrNo_FOR_DGetConfirmationHandling_MI_OV (Slot1, Slot2, SlotOV);
 if(sAnswerYesOrNo EqualStrings "No")
 {
 //The system asks again using the xGeneric Template
 UnSet(Slot1);
 Unset(Slot2);
 UnSet(SlotOV);
 StopFilling;

 }
 else//The user answers "yes"
 {
 StopFilling;
 }
 }//If ExplicitConfirmation
 else if(none <= fConfidence <= 1.0) //No confirmation
 {
 StopFilling;
 }
}//If IsVarSet
else if(isVarSet(Slot1) = = true AND isVarSet(Slot1) = = true AND

IsVarSet(SlotOV) = = false)//We try to confirm the compulsory slots only
and forget the OV

{
 fConfidence = ConfidenceOfField(Slot1); //We assume that the

recognizer returns one global confidence value for the recognition, not one
for each slot, so it is not important which slot we use here

 //This confirmation is allowed only when the previous DGet dialogue

has ImplicitConfirmation
 if(Slot1 == "Correct")//Inspect if the recognition result

corresponds to the “Correct” command in case the system is using an
implicit confirmation prompt

 {
 if(fConfidence > implicit)
 {
 Unset(Previous_Slot);
 Unset(Slot1);
 Unset(Slot2);
 sNextDialog = Previous_Dialogue; //The Previous_Dialogue is

automatically set for the assistant.
 StopFilling;
 }
 else

Appendix C

237

 {
 DSayNoMatch();
 Unset(Slot1);
 Unset(Slot2);
 DoFilling;
 }
 }

 if(0 <= fConfidence < explicit) //NoMatch
 {
 DSayNoMatch(); //We pass it a counter to allow different prompts
 UnSet(Slot1);
 UnSet(Slot2);
 StopFilling;//Repeat the question, Do one iteration more for the

loop
 }//If NoMatch
 else if(Explicit <= fConfidence < None)//Explicit Confirmation
 {
 sAnswerYesOrNo = Call DGetYesOrNo_FOR_

DGetConfirmationHandlingMixedInitiative (Slot1, Slot2);

 if(sAnswerYesOrNo EqualStrings "No")
 {
 //The system asks again
 UnSet(Slot1);
 UnSet(Slot2);
 StopFilling;
 }
 else//The user answers "yes"
 {
 StopFilling;
 }
 }
 else if(none <= fConfidence <= 1.0)//Without confirmation
 {
 StopFilling;
 }
}
else
{
 UnSet(Slot1);
 UnSet(Slot2);
 UnSet(SlotOV);
 StopFilling;
}
}

C.6 Simple Confirmation and Basic Dialogues

This is the template for the verification of basic dialogues e.g., DGetYesOrNo. This
dialogue does not have implicit confirmation. The arguments of the dialogue are only useful
for the prompt of the dialogue.

Dialogue DGetBasicOrSimple (Compulsory_Slot, Slots_OV)
{
//LocalVars
float fConfidence = 0.0;
String sReturningConcept = "";

Speed Up Strategies for the Creation of Multimodal and Multilingual Dialogue Systems

238

//If the dialogue does not exist in the output file of the RMA, we
need to specify the InputFieldVar, ReturningVars

//InputFieldVar
sReturningConcept;
//ReturningVar
sReturningConcept;

//Reaction
if(isVarSet(sReturningConcept) = = true)
{
 Unset(sNextDialog);

 //If the dialogue is new in the output file of the MERA-Speech
 fConfidence = ConfidenceOfField(sReturningConcept);
 //Else, it exists in the output file of the RMA
 fConfidence = ConfidenceOfField(Compulsory_Slot);

 if (Implicit <= fConfidence <= 1.0)
 StopFilling;
 else
 DoFilling;
}
else
 DoFilling
}

239

AAPPPPEENNDDIIXX DD.. QQUUEESSTTIIOONNNNAAIIRREE FFOORR
EEVVAALLUUAATTIINNGG TTHHEE AAPPPPLLIICCAATTIIOONN
GGEENNEERRAATTIIOONN PPLLAATTFFOORRMM

Age: _______________ yrs.

Experience on dialogue development: _______________ yrs

Developer Status: Novice  Intermediate  Expert 

Mother Tongue: German  Greek  Spanish 

D.1 Specific Questions by Assistant

D.1.1 Questions regarding the assistant:

1. How quickly did you learn to use the assistant?

Not fast at all very fast

1 2 3 4 5 6 7 8 9 10

Comment: ___

2. Is the assistant easy and intuitive to use? Do you know what to do at each step?

Not easy at all very easy

1 2 3 4 5 6 7 8 9 10

Comment: ___

3. Is the functionality sufficient?

Not at all all of them

1 2 3 4 5 6 7 8 9 10

Comment: ___

Speed Up Strategies for the Creation of Multimodal and Multilingual Dialogue Systems

240

4. How do you rate the appearance of the assistant (consistent, transparent, and
intuitive)?

Very poor very good

1 2 3 4 5 6 7 8 9 10

Comment: ___

D.2 General Questions about the AGP
D.2.1 Advantages of using the AGP

1. The provision of data modelling and connecting to external data sources:

not useful at all very useful

1 2 3 4 5 6 7 8 9 10

2. The provision of application state flow modelling:

not useful at all very useful

1 2 3 4 5 6 7 8 9 10

3. Easy adaptability to other languages

not useful at all very useful

1 2 3 4 5 6 7 8 9 10

4. Easy adaptability to other modalities

not useful at all very useful

1 2 3 4 5 6 7 8 9 10

5. Ready-made error-handling (nomatch, noinput)

not useful at all very useful

1 2 3 4 5 6 7 8 9 10

Appendix D

241

6. Speed up of development time as compared to writing VoiceXML/XHTML code by
hand

not useful at all very useful

1 2 3 4 5 6 7 8 9 10

7. Provision of user modelling

not useful at all very useful

1 2 3 4 5 6 7 8 9 10

8. Provision of mixed-initiative dialogue handling

not useful at all very useful

1 2 3 4 5 6 7 8 9 10

9. Provision of list handling [if applicable]

not useful at all very useful

1 2 3 4 5 6 7 8 9 10

10. Provision of over-answering [if applicable]

not useful at all very useful

1 2 3 4 5 6 7 8 9 10

11. Provision of easy connection to run-time modules (i.e. speaker recognition, language
recognition):

not useful at all very useful

1 2 3 4 5 6 7 8 9 10

D.2.2 Do you learn quickly how to make applications with the AGP?

yes  no 

Comment: ___

Speed Up Strategies for the Creation of Multimodal and Multilingual Dialogue Systems

242

D.2.3 How do you rate the overall appearance of the AGP (consistent, transparent, and
intuitive)?

Very poor very good

1 2 3 4 5 6 7 8 9 10

Comment: __

D.2.4 Do you find the various assistants of the AGP are well integrated?

yes  no 

Comment: ___

D.2.5 Do you think non-experts could use the AGP efficiently?

yes  no 

Comment: ___

D.2.6 Would you use this system in the future or recommend it to develop speech/Web
applications?

For any decision, please give a few reasons or name conditions if there are any.

yes  no 

Comment: ___

D.2.7 If yes, how much would you be willing to pay for its use?

Comment: ___

Thank you very much for your participation!

243

AAPPPPEENNDDIIXX EE.. DDEETTAAIILLEEDD RREESSUULLTTSS OOFF TTHHEE OOBBJJEECCTTIIVVEE EEVVAALLUUAATTIIOONN
OOFF TTHHEE PPLLAATTFFOORRMM

Table E.1. Quantitative measures obtained during the objective evaluation

Task
Av. Novices Av. Intermediates Av. Experts All Average

AGP Diagen Impr. AGP Diagen Impr. AGP Diagen Impr. AGP Diagen Impr.
DMA - Create DB-based Class

Elapsed Time (in seconds) 55 122 54.9% 47 93 48.9% 22 85 74.0% 45 104 56.6%
No. of Clicks 12 20 37.2% 11 9 -21.4% 8 17 55.9% 11 16 30.0%

No. of Keystrokes 9 116 92.6% 7 117 93.8% 7 97 92.8% 8 112 93.1%
No. of Keystroke Errors 0 5 100% 0 2 100.0% 0 2 100.0% 0 3 100%
Average Improvement 69.8% 55.3% 80.7% 69.0%

DMA - Create Mixed Class
Elapsed Time (in seconds) 67 157 57.5% 70 118 40.6% 52 125 58.2% 65 137 52.8%

No. of Clicks 13 27 50.5% 16 14 -14.3% 14 25 42.9% 14 22 34.8%
No. of Keystrokes 8 152 94.6% 17 147 88.7% 15 158 90.8% 12 152 91.8%

No. of Keystroke Errors 3 5 38.9% 1 3 77.8% 0 7 100.0% 1 5 68.3%
Average Improvement 60.4% 48.2% 73.0% 61.9%

DCMA - Create Database Function
Elapsed Time (in seconds) 181 180 -0.8% 92 139 34.1% 65 137 52.7% 125 156 19.9%

No. of Clicks 23 26 13.3% 19 11 -70.6% 14 19 24.3% 20 20 0 %
No. of Keystrokes 73 237 69.4% 51 211 76.0% 63 227 72.2% 63 226 72.1%

No. of Keystroke Errors 16 10 -71.1% 2 5 50.0% 2 4 62.5% 8 7 -25.0%
Average Improvement 2.7% 22.4% 52.9% 16.6%

Speed Up Strategies for the Creation of Multimodal and Multilingual Dialogue Systems

244

Task Av. Novices Av. Intermediates Av. Experts All Average
AGP Diagen Impr. AGP Diagen Impr. AGP Diagen Impr. AGP Diagen Impr.

SFMA – Create One Slot State
Elapsed Time (in seconds) 36 92 61.4% 35 68 48.0% 24 56 56.8% 33 76 56.7%

No. of Clicks 12 13 9.4% 11 11 0.0% 6 12 50.0% 10 12 15.3%
No. of Keystrokes 25 80 69.5% 28 84 66.5% 26 71 64.1% 26 79 67.4%

No. of Keystroke Errors 1 2 50.0% 2 3 44.4% 1 1 50.0% 1 2 50 %
Average Improvement 47.6% 39.8% 55.2% 46.6%

SFMA - Create State With Mixed-
Initiative Slots + Transition

Elapsed Time (in seconds) 73 128 42.7% 54 91 40.9% 33 79 58.9% 58 105 44.9%
No. of Clicks 21 23 6.6% 16 16 4.1% 16 21 23.8% 18 20 9.9%

No. of Keystrokes 27 81 66.1% 26 88 70.9% 25 77 67.3% 26 82 68.1%
No. of Keystroke Errors 2 3 10.0% 1 1 33.3% 0 4 100.0% 1 2 50.0%
Average Improvement 31.4% 37.3% 62.5% 42%

SFMA - Create Connection Between
States

Elapsed Time (in seconds) 7 87 91.6% 15 50 70.9% 8 44 81.8% 10 65 84.8%
No. of Clicks 6 3 -83.3% 9 4 -136.4% 6 1 -400.0% 7 3 -132.0%

No. of Keystrokes 0 36 100.0% 0 21 100.0% 0 15 100.0% 0 26 100.0%
No. of Keystroke Errors 0 7 100.0% 0 1 100.0% 0 0 0.0% 0 3 100.0%
Average Improvement 52.1% 33.6% -54.5% 38.2%

RMA - Create A Menu Dialogue
Elapsed Time (in seconds) 100 759 86.8% 61 618 90.2% 55 470 88.3% 77 647 88.1%

No. of Clicks 20 44 55.1% 18 35 49.5% 18 33 44.6% 19 38 51.4%
No. of Keystrokes 47 344 86.4% 49 402 87.7% 48 454 89.4% 48 388 87.6%

No. Of Keystroke Errors 1 95 99.5% 1 51 97.4% 0 14 100.0% 1 62 98.9%
Average Improvement 82.0% 81.2% 80.6% 81.5%

Appendix E

245

Task Av. Novices Av. Intermediates Av. Experts All Average
AGP Diagen Impr. AGP Diagen Impr. AGP Diagen Impr. AGP Diagen Impr.

RMA - Create a Dialogue With OVR +
Condition

Elapsed Time (in seconds) 187 1,763 89.4% 107 1,421 92.5% 99 1,060 90.7% 140 1,493 90.6%
No. of Clicks 35 92 62.0% 28 83 66.0% 31 80 61.9% 32 86 63.3%

No. of Keystrokes 19 918 97.9% 18 1,079 98.4% 15 1,040 98.6% 18 998 98.2%
No. of Keystroke Errors 0 164 99.8% 0 56 100.0% 0 35 100.0% 0 100 100 %
Average Improvement 87.3% 89.2% 87.8% 88.0%

RMA - Create a Dialogue With Mixed-
Initiative

+ Local Variable

Elapsed Time (in seconds) 126 69 68 94
No. of Clicks 23 21 21 22

No. of Keystrokes 8 6 8 7
No. of Keystroke Errors 1 0 2 1

MERA-Speech – Create a Dialogue To
Present A List Of Objects

Elapsed Time (in seconds) 109 89 52 89
No. of Clicks 20 15 16 17

No. of Keystrokes 0 0 0 0
No. of Keystroke Errors 0 0 0 0

MERA-Speech - Fill In All DGet
Dialogues

Elapsed Time (in seconds) 4 4 6 4
No. of Clicks 3 2 3 3

No. of Keystrokes 0 0 0 0
No. of Keystroke Errors 0 0 0 0

Speed Up Strategies for the Creation of Multimodal and Multilingual Dialogue Systems

246

Table E.2. Results for general questions about the assistants in the AGP during the subjective evaluation

General Questions About Each Assistant Average
Novice

Average
Intermediate

Average
Expert

Average
All

How quickly did you learn to use the DMA?
(Very Slow – Very Fast) 7.8 8.0 9 8.1

How intuitive do you think is the DMA?
(No Intuitive at all – Very Intuitive) 8.0 8.7 9.5 8.6

Do you think that the functionality of the DMA is sufficient? (No at all – Totally) 8.8 7.7 8.5 8.3
How do you rate the appearance of the DMA (consistent, transparent)?

(Very Poor – Very Good) 8.0 8.7 8 8.2

Average Score DMA 8.1 8.3 8.8 8.3
How quickly did you learn to use the DCMA?

(Very Slow – Very Fast) 7.8 8.3 9 8.2

How intuitive do you think is the DCMA?
(No Intuitive at all – Very Intuitive) 7.3 8.7 9.5 8.2

Do you think that the functionality of the DCMA is sufficient? (No at all – Totally) 7.8 8.7 9.5 8.4
How do you rate the appearance of the DCMA (consistent, transparent)?

(Very Poor – Very Good) 7.3 8.7 9 8.1

Average Score DCMA 7.5 8.6 9.3 8.3
How quickly did you learn to use the SFMA?

(Very Slow – Very Fast) 8.8 8.7 9 8.8

How intuitive do you think is the SFMA?
(No Intuitive at all – Very Intuitive) 9.3 8.7 9 9.0

Do you think that the functionality of the SFMA is sufficient? (No at all – Totally) 9.5 8.3 10 9.2
How do you rate the appearance of the SFMA (consistent, transparent)?

(Very Poor – Very Good) 9.3 8.7 9 9.0

Average Score SFMA 9.2 8.6 9.3 9.0

Appendix E

247

General Questions About Each Assistant Average
Novice

Average
Intermediate

Average
Expert

Average
All

How quickly did you learn to use the RMA?
(Very Slow – Very Fast) 8.3 7.3 8.5 8.0

How intuitive do you think is the RMA?
(No Intuitive at all – Very Intuitive) 9.3 8.0 9 8.8

Do you think that the functionality of the RMA is sufficient?
 (No at all – Totally) 9.5 8.0 9.5 9.0

How do you rate the appearance of the RMA (consistent, transparent)?
(Very Poor – Very Good) 9.0 8.3 9 8.8

Average Score RMA 9.0 7.9 9.0 8.6
How quickly did you learn to use the MERA-Speech?

(Very Slow – Very Fast) 9.3 9.3 10 9.4

How intuitive do you think is the MERA-Speech?
(No Intuitive at all – Very Intuitive) 8.5 9.0 10 9.0

Do you think that the functionality of the MERA-Speech is sufficient? (No at all
– Totally) 8.8 9.0 9.5 9.0

How do you rate the appearance of the MERA-Speech (consistent, transparent)?
(Very Poor – Very Good) 8.8 8.3 8.5 8.6

Average Score MERA-Speech 8.8 8.9 9.5 9.0
How quickly did you learn to use the Diagen?

(Very Slow – Very Fast) 5.5 4.3 7.5 5.6

How intuitive do you think is the Diagen?
(No Intuitive at all – Very Intuitive) 4.0 4.7 5.5 4.6

Do you think that the functionality of the Diagen is sufficient?
 (No at all – Totally) 3.3 5.3 3.5 4.0

How do you rate the appeareance of the Diagen (consistent, transparent)?
 (Very Poor – Very Good) 3.0 5.3 4 4.0

Average Score Diagen 3.9 4.9 5.1 4.5

	ABSTRACT
	RESUMEN
	ACKNOWLEDGMENTS
	AGRADECIMIENTOS
	INDEX
	INDEX OF FIGURES
	INDEX OF TABLES
	INTRODUCTION
	Motivation
	Objectives
	Design platform
	Language Identification System
	Machine Translation
	Relevant Definitions

	Organization

	STATE-OF-THE-ART
	Development Platforms and Acceleration Strategies for Designing Multimodal Dialogue Systems
	Commercial Platforms
	Web-based development tools and portals
	Grammar development

	Academic and Research Platforms
	Research Platforms that Provide an Assisted Dialogue Design
	Weaknesses of Commercial and Academic Platforms

	Language Modelling
	Statistical Language Models
	Smoothing techniques
	Long span and syntactic information
	Dynamic and topic dependent models
	Adaptation and interpolation
	Gathering of new training data

	Context-Free-Grammars (CFG´s)

	Language Identification (LID)
	Description of the PPRLM Technique: Advantages and Disadvantages

	Machine Translation
	Current Approaches for Machine Translation
	Statistical machine translation

	Word-based and Phrase-based Translation
	Current Metrics for the Automatic Evaluation of Machine Translation Quality
	Word error rate (WER)
	Position independent word error rate (PER)
	Bilingual evaluation understudy (BLEU)
	NIST
	Metric for evaluation of translation with explicit ordering (METEOR)

	Speech to Sign Language Translation
	Sign language transcription formats

	PLATFORM ARCHITECTURE
	GDialogXML: Internal Descriptive Language for the Generated Models
	FrameWork Layer
	Application Description Assistant (ADA)
	Data Model Assistant (DMA)
	Data Connector Modelling Assistant (DCMA)

	Retrieval Layer
	State Flow Modelling Assistant (SFMA)
	Retrieval Modelling Assistant (RMA)

	Dialogues Layer
	User Modelling Assistant (UMA)
	Modality Extension Retrieval Assistant for Speech (MERA-Speech)
	Modality and Language Extension Assistant (MEA)
	Dialogue Model Linker (DML)
	Script Generators
	VoiceXML generator and connection with the runtime platform
	Web script generator

	Auxiliary Assistants
	Vocabulary builder
	Language modelling toolkit
	Diagen

	Runtime System
	Speech Recognizer and Synthesizer
	Animated Agent Used by the Sign Language Translation System
	Distributed Platform and VoiceXML Interpreter (OpenVXI)
	Portability and Use of Standards

	Scope and Limitations

	SPEED UP STRATEGIES APPLIED IN THE DIALOGUE DESIGN
	Heuristics
	Strategies Applied to the Data Model Assistant (DMA)
	Semi-automatic Classes Proposals
	Common Accelerations

	Strategies Applied to the Data Connector Model Assistant (DCMA)
	Definition of Relations between the Function Arguments and the Data Model
	Automatic Generation of SQL Queries

	Strategies Applied to the State Flow Model Assistant (SFMA)
	Functionalities Included in the Graphical User Interface
	Automatic State Proposals for Defining the Dialogue Flow
	Class dependent states
	States from attributes with database dependency
	From the database access functions
	Empty state and already created states

	Automatic Unification of Slots for Mixed-Initiative Dialogues

	Strategies Applied to the Retrieval Model Assistant (RMA)
	Automatically Proposed Dialogues
	Automatic Generation of Action Proposals in Each State
	Automated Passing of Arguments between Actions
	Mixed-Initiative and Over-Answering
	Other Functionalities

	Strategies Applied to the Modality Extension Retrieval Assistant for Speech (MERA-Speech)
	Presentation of Object Lists
	Confirmation Handling

	Strategies Applied to Other Assistants
	Modality and Language Extension Assistant (MEA)
	Setting of system prompts
	Creation of rule-based grammars
	Creation of stochastic grammars

	Conclusions

	EVALUATION OF THE ACCELERATION TECHNIQUES
	Subjective Evaluation
	Experimental setup
	Evaluation results

	Objective Evaluation
	Experimental setup
	Description of the evaluated tasks and results
	Subjective survey

	Conclusions

	DEVELOPMENTS AND IMPROVEMENTS APPLIED TO THE RUNTIME SYSTEM
	Language Identification System
	System Description
	Database corpus
	Parallel phone recognizer followed by language modelling (PPRLM)
	Gaussian classifier for LID
	General conditions of the experiments

	Proposed Technique: n-gram Frequency Ranking
	Base system: all n-grams in one ranking
	N-gram specific rankings
	Measure of separation between distributions
	N-gram discriminative ranking
	Threshold
	Results using the discriminative PPRLMRANK system
	Longer span of the technique
	Accumulative improvements

	Incorporation of additional information
	Inclusion of the sentence acoustic score
	Inclusion of the acoustic score for each phoneme
	Inclusion of the duration for each phoneme
	Individual features
	Combination of all features
	Evaluation of the Multi-Gaussian Classifier
	Analysis of Confidence Intervals

	Conclusions

	Automatic Translation of Dialogue Prompts into the Sign Language
	Runtime System for the Speech-to-Sign Language Translation System
	Bilingual Corpus
	Speech Recognition Results
	Statistical Machine Translation System
	Proposed Adaptation Technique
	Language Model Experiments
	Machine Translation Experiments
	Conclusions

	CONCLUSIONS AND FUTURE WORK
	CONCLUSIONS
	Dialogue Platform
	LID System
	Machine Translation System

	FUTURE WORK
	Dialogue Platform
	Data model assistant (DMA)
	Data connector model assistant (DCMA)
	State flow model assistant (SFMA)
	Retrieval model assistant (RMA)
	Modality extension retrieval assistant for speech (MERA-Speech)
	User modelling assistant (UMA)
	Common improvements or extensions to other assistants

	LID System
	Machine Translation System

	BIBLIOGRAPHY
	LIST OF ABBREVIATIONS
	ADDITIONAL INFORMATION ABOUT CURRENT COMMERCIAL AND WEB-BASED PLATFORMS
	Commercial Platforms
	Web-Based Development Platforms

	TEMPLATES FOR THE CREATION OF AUTOMATIC DIALOGUES IN THE MERA-SPEECH ASSISTANT
	Template for the Presentation of Lists of Objects
	One Slot Confirmation
	Mixed-Initiative Confirmation
	One Slot Plus Over-Answering Confirmation
	Mixed-Initiative Plus Over-Answering Confirmation
	Simple Confirmation and Basic Dialogues

	QUESTIONNAIRE FOR EVALUATING THE APPLICATION GENERATION PLATFORM
	Specific Questions by Assistant
	Questions regarding the assistant:

	General Questions about the AGP
	Advantages of using the AGP
	Do you learn quickly how to make applications with the AGP?
	How do you rate the overall appearance of the AGP (consistent, transparent, and intuitive)?
	Do you find the various assistants of the AGP are well integrated?
	Do you think non-experts could use the AGP efficiently?
	Would you use this system in the future or recommend it to develop speech/Web applications?
	If yes, how much would you be willing to pay for its use?

	DETAILED RESULTS OF THE OBJECTIVE EVALUATION OF THE PLATFORM

	Presidente: José Manuel Pardo Muñoz
	Vocal: Michael McTear
	Vocal_2: Ramón López-Cózar Delgado
	Vocal_3: Javier Macías Guarasa
	Secretario: Luis Alfonso Hernández Gómez
	Suplente: Volker Schless
	Suplente_2: Emilio Sanchis Arnal
	Calificación: Sobresaliente Cum Laude por Unanimidad - Mención de Doctorado Europeo
	general this kind of functionalities are not totally considered in most of the current platforms:
	undefined:
	train and improve the statisticalbased language models The third section describes the state:
	accelerated using the J2EE platform and through two basic wizards for creating JSPServlets:
	order to improve the quality of the service and increasing the user satisfaction in the:
	addition the platform provides mechanisms to enable different designer profiles ie flow:
	exporting partial or complete grammar files Finally the designer can also write directly the:
	undefined_2:
	Source DialogDesigner Web page:
	undefined_3:
	concepts to facilitate multilingual interaction the use of special variables related to the:
	information provided by the system fulfils the expectations of the user or not:
	undefined_4:
	undefined_5:
	of the translation is good For instance in Verbmobil the goal was the creation of a mobile:
	language performers The corpus consists of different video material including one medium:
	page 170 In SanSegundo et al 2007 three different MT approaches are compared rule:
	undefined_6:
	undefined_7:
	the real time system number 7:
	undefined_8:
	creation of all the possible symbols covered by the HamNoSys standard using the popup:
	undefined_9:
	uttered sentence and the slots that the application defines For instance a sentence like I:
	least one of these items Finally the item element includes a special label tag CDATA that:
	undefined_10:
	037:
	00:
	00_2:
	380:
	00_3:
	00_4:
	German Greek and Spanish However in order to allow the transcription for other:
	used other platforms or languages to develop dialogue applications:
	79:
	The provision of data modelling and connecting to external data sources:
	The provision of application state flow modelling:
	Easy adaptability to other languages:
	Easy adaptability to other modalities:
	Readymade errorhandling nomatch noinput:
	90:
	Provision of user modelling:
	Provision of mixedinitiative dialogue handling:
	Provision of list handling:
	Provision of overanswering:
	Provision of easy connection to runtime modules:
	Assistant:
	Novice:
	SFMA:
	98:
	87:
	95:
	93:
	80:
	80_2:
	95_2:
	83:
	80_3:
	90_2:
	9:
	86:
	PPRLMNG:
	PPRLMRANK:
	trigram:
	1057:
	842:
	4gram:
	641:
	bigram:
	854:
	535:
	5gram:
	443:
	unigram:
	317:
	206:
	Formula:
	Average Separation:
	Original no discriminative:
	615:
	Gaussians:
	1:
	369:
	321 130:
	2:
	374:
	322 139:
	3:
	375:
	332 115:
	4:
	375_2:
	324 114:
	Up to 5gram:
	321:
	Up to 4gram:
	336:
	Up to trigram:
	365:
	Gaussians_2:
	1_2:
	369_2:
	321_2:
	820:
	817:
	3231:
	1_3:
	PPRLMNG Sentence Acoustic:
	321_3:
	130:
	2_2:
	PPRLMNG Phoneme Acoustic:
	313:
	152:
	3_2:
	PPRLMNG Phoneme Duration:
	368:
	27:
	4_2:
	PPRLMNG both Acoustics:
	305:
	173:
	5:
	PPRLMNG both Acoustics Duration:
	325:
	119:
	6:
	PPRLMRANK Sentence Acoustic:
	279:
	131:
	7:
	PPRLMRANK Phoneme Acoustic:
	278:
	134:
	8:
	PPRLMRANK Phoneme Duration:
	308:
	41:
	9_2:
	PPRLMRANK both Acoustics:
	267:
	168:
	10:
	259:
	fill_46:
	193:
	11:
	PPRLMNG PPRLMRANK:
	285:
	228:
	112:
	12:
	266:
	279_2:
	171:
	13:
	254:
	312:
	209:
	14:
	252:
	317_2:
	215:
	369Row1:
	321_4:
	369Row2:
	369Row3:
	30:
	2639:
	353:
	692:
	1595:
	maximum phrase size was fixed to seven In order to perform this process we used:
	undefined_11:
	undefined_12:
	Source fi:
	Target ei:
	1 you must deliver:
	05:
	10_2:
	135000:
	fill_8:
	587:
	b you have to:
	0364:
	0739:
	148000:
	d you must:
	0410:
	0952:
	179000:
	Dev:
	Test:
	Source:
	Target:
	Source_2:
	Target_2:
	565:
	502:
	1534:
	108:
	1537:
	107:
	Adapted:
	undefined_13:
	representing different levels of annotation The toolkit allows many possibilities such as:
	modules:
	undefined_14:
	5 The Genesys Customer Interaction Management Platform Integration that allows among:
	toolkit allows the development of DTMF and speechenabled voice services The graphical:
	edition includes a big number of features such as a GUI interpreter for VoiceXML and:
	undefined_15:
	Besides the Storyboard Manager is also used to automatically export the list of the prompts:
	services including backend integration dynamic VoiceXML applications using Apache Perl:
	undefined_16:
	engines among others The GUI allows the definition of custom rules to handle different user:
	conference manager and an auto attendant system to connect callers with any person or:
	undefined_17:
	process for filling this template also includes the creation of several automatic dialogues such:
	Age:
	Experience on dialogue development:
	1_4:
	2_3:
	3_3:
	4_3:
	5_2:
	6_2:
	7_2:
	8_2:
	9_3:
	10_3:
	Comment:
	1_5:
	2_4:
	3_4:
	4_4:
	5_3:
	6_3:
	7_3:
	8_3:
	9_4:
	10_4:
	Comment_2:
	1_6:
	2_5:
	3_5:
	4_5:
	5_4:
	6_4:
	7_4:
	8_4:
	9_5:
	10_5:
	Comment_3:
	1_7:
	2_6:
	3_6:
	4_6:
	5_5:
	6_5:
	7_5:
	8_5:
	9_6:
	10_6:
	Comment_4:
	1_8:
	2_7:
	3_7:
	4_7:
	5_6:
	6_6:
	7_6:
	8_6:
	9_7:
	10_7:
	1_9:
	2_8:
	3_8:
	4_8:
	5_7:
	6_7:
	7_7:
	8_7:
	9_8:
	10_8:
	1_10:
	2_9:
	3_9:
	4_9:
	5_8:
	6_8:
	7_8:
	8_8:
	9_9:
	10_9:
	1_11:
	2_10:
	3_10:
	4_10:
	5_9:
	6_9:
	7_9:
	8_9:
	9_10:
	10_10:
	1_12:
	2_11:
	3_11:
	4_11:
	5_10:
	6_10:
	7_10:
	8_10:
	9_11:
	10_11:
	1_13:
	2_12:
	3_12:
	4_12:
	5_11:
	6_11:
	7_11:
	8_11:
	9_12:
	1_14:
	2_13:
	3_13:
	4_13:
	5_12:
	6_12:
	7_12:
	8_12:
	9_13:
	1_15:
	2_14:
	3_14:
	4_14:
	5_13:
	6_13:
	7_13:
	8_13:
	9_14:
	1_16:
	2_15:
	3_15:
	4_15:
	5_14:
	6_14:
	7_14:
	8_14:
	9_15:
	1_17:
	2_16:
	3_16:
	4_16:
	5_15:
	6_15:
	7_15:
	8_15:
	9_16:
	1_18:
	2_17:
	3_17:
	4_17:
	5_16:
	6_16:
	7_16:
	8_16:
	9_17:
	Comment_5:
	1_19:
	2_18:
	3_18:
	4_18:
	5_17:
	6_17:
	7_17:
	8_17:
	9_18:
	10_12:
	Comment_6:
	Comment_7:
	Comment_8:
	Comment_9:
	Comment_10:
	AGPRow1:
	DiagenRow1:
	ImprRow1:
	0Row1:
	5Row1:
	0Row1_2:
	2Row1:
	0Row1_3:
	2Row1_2:
	0Row1_4:
	3Row1:
	3Row1_2:
	5Row1_2:
	1Row1:
	3Row1_3:
	0Row1_5:
	7Row1:
	1Row1_2:
	5Row1_3:
	16Row1:
	10Row1:
	2Row1_3:
	5Row1_4:
	2Row1_4:
	4Row1:
	8Row1:
	7Row1_2:
	AGPRow1_2:
	DiagenRow1_2:
	ImprRow1_2:
	1Row1_3:
	2Row1_5:
	2Row1_6:
	3Row1_4:
	1Row1_4:
	1Row1_5:
	1Row1_6:
	2Row1_7:
	2Row1_8:
	3Row1_5:
	1Row1_7:
	1Row1_8:
	0Row1_6:
	4Row1_2:
	1Row1_9:
	2Row1_9:
	0Row1_7:
	7Row1_3:
	0Row1_8:
	1Row1_10:
	0Row1_9:
	0Row1_10:
	0Row1_11:
	3Row1_6:
	1Row1_11:
	95Row1:
	1Row1_12:
	51Row1:
	0Row1_12:
	14Row1:
	1Row1_13:
	62Row1:
	Task:
	AGPRow1_3:
	DiagenRow1_3:
	ImprRow1_3:
	0Row1_13:
	164Row1:
	873:
	0Row1_14:
	56Row1:
	892:
	0Row1_15:
	35Row1:
	878:
	0Row1_16:
	100Row1:
	880:
	126:
	69:
	68:
	68_2:
	94:
	23:
	21:
	21_2:
	22:
	8_18:
	6_18:
	8_19:
	7_18:
	1_20:
	0:
	2_19:
	1_21:
	109:
	89:
	52:
	89_2:
	20:
	15:
	16:
	17:
	0_2:
	0_3:
	0_4:
	0_5:
	0_6:
	0_7:
	0_8:
	0_9:
	4_19:
	4_20:
	6_19:
	4_21:
	3_19:
	2_20:
	3_20:
	3_21:
	0_10:
	0_11:
	0_12:
	0_13:
	0_14:
	0_15:
	0_16:
	0_17:
	General Questions About Each Assistant:
	General Questions About Each Assistant_2:
	83 93 95 90:
	85 9 95 9:
	93 85 88 88:
	10 10 95 85:
	55 40 33 30:
	75 55 35 4:
	Dia: 13
	Mes: Mayo

